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Background: Influenza A virus infection results in viral pneumonia, which is often
accompanied by the infiltration and recruitment of macrophages, overactivation of
inflammatory responses, and obvious cell autophagy and exosome production.
However, little is known about the roles of autophagy and exosome production in these
inflammatory responses.

Methods: In this study, multiple methods, such as flow cytometry, real-time quantitative
reverse transcription-polymerase chain reaction, immune–fluorescence technology, and
western blot, were applied to explore the possible effects of autophagy and exosome
production by H1N1-infected host cells.

Results: It was observed that a high number of polarized macrophages (CD11b+/F4/80+/
CD86+) were recruited to the lung tissues of infected mice, which could be mimicked by
tracking the movement of macrophages to H1N1-infected cells in vitro (transwell assays).
Furthermore, there was some coordinated upregulation of M1 polarization signs (iNOS/
Arg-1 bias) as well as autophagy (LC3) and exosome (CD63) biomarkers in the infected
macrophages and epithelial cells. Moreover, exosomes extracted from the supernatant of
virus-infected cells were shown to promote the recruitment and polarization of more
peritoneal macrophages than the normal group. The fluorescence colocalization of LC3-
CD63 and the inhibition of autophagy and exosome signaling pathway further revealed
that H1N1 infection seemed to sequentially activate the M1 polarization and recruitment of
macrophages via autophagy–exosome dependent pathway.

Conclusion: Autophagy and exosome production coordinately enhance the M1
polarization and recruitment of macrophages in influenza virus infection, which also
provides potential therapeutic targets.
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INTRODUCTION

Influenza A viruses (IAVs) are negative-sense, single-stranded,
segmented RNA viruses and include several subtypes that are
distinguished by the type of hemagglutinin (HA) and
neuraminidase (NA) present on the viral surface. IAVs are a
leading cause of respiratory infection and an ongoing threat to
public health globally. According to the latest World Health
Organization report, annual influenza epidemics are estimated to
result in approximately 3–5 million cases of severe illness and
approximately 290,000–650,000 respiratory deaths worldwide
(1). In extreme cases, primary viral pneumonia with rapid
progression leads to lung failure and is associated with a high
risk of fatal outcomes (2). Currently available vaccinations and
antiviral agents are not effective in tackling this problem (3–5).
Therefore, novel and effective strategies for the prevention and
treatment of IAV infection are the need of the hour.

Overactivation of the host’s innate immune system is a significant
factor that causes viral pneumonia (6, 7). Fatal influenza infections
activate the innate immune cells of the host, such as macrophages,
dendritic cells, and neutrophils. These overactivated immune cells
secrete numerous inflammatory cytokines/chemokines, such as IL-6,
TNF-a, CXCL1, and CXCL10, which play a crucial role in IAV-
induced lung pathology (8–10). Therefore, suppressing these
overactivated immune cells could serve as a practical therapeutic
approach for viral pneumonia.

Macrophages, which are one of the primary sources of
inflammatory cytokines/chemokines (such as TNF-a and IL6),
Frontiers in Immunology | www.frontiersin.org 2
act as critical modulators of IAV disease severity and the
development of lethal pulmonary injury (11–13). Shifts in the
phenotype of macrophages between the classically activated
(M1, proinflammatory) and alternatively activated (M2, anti-
inflammatory) types have been recognized as a crucial factor in the
initiation, progression, and termination of numerous inflammatory
diseases (14–16), especially influenza virus infection (17–19). In our
previous study, we found that a TNF-a inhibitor (20) and a cell
autophagy inhibitor (21)were capable of protecting against influenza
virus infection,whichwaspossibly related tomacrophages.However,
the underlying linkage among these factors (influenza, macrophage,
autophagy) is yet to be elucidated.

This study investigated the possible correlation among
macrophage recruitment, M1/M2 polarization, viral replication,
autophagy, and exosome production in IAV-infected in vitro and
in vivo experimental models.
MATERIALS AND METHODS

Chemicals and Reagents
Antibodies against mouse CD11b, F4/80, CD86, and CD206
were obtained from BD Biosciences (San Jose, CA, USA).
Antibodies against mouse CD63, IL-1b, cleaved IL-1b, caspase-
1, and GAPDH were sourced from Affinity Biosciences
(Cincinnati, OH, USA). Antibodies against LC3-I/II, p62, and
anti-rabbit IgG Fab2 Alexa Fluor® 488 molecular probes were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA,
GRAPHICAL ABSTRACT | In vivo experiment, H1N1 virus infection caused recruitment and M1 polarization of macrophages in the lung, accompanied by the
increasement of LC3 and CD63 expression, as autophagy and exosome markers. In vitro experiment, H1N1 virus also promoted the formation of autophagosomes
and exosomes in macrophages and epithelial cells. Based on the assumption that autophagosomes could fuse with multivesicular bodies (MVBs) to formulate
amphisomes, to induce colocalization of LC3 and CD63 in virus-infected cells. Besides, secreted exosomes were found to induce M1 polarization and recruitment of
adjacent macrophages. Moreover, LY294002 and GW4869 inhibited recruitment of macrophages via inhibiting formation/maturation of autophagosomes and
exosomes in virus-infected cells.
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USA). Antibodies against CD9 (ab92726) and syntenin
(ab19903) were obtained from Abcam (Cambridge, USA).
Unless otherwise specified, HRP-conjugated anti-rabbit IgG
secondary antibody, FITC-labeled goat anti-mouse IgG (H+L),
Cy3-labeled goat anti-rabbit IgG (H+L), and all other chemicals
were obtained from Beyotime Biotechnology (Shanghai, China).

Experimental H1N1 Infection In Vivo
Male BALB/c mice (weight: 16-18 g, age: 6-8 weeks) obtained
from the Shanghai SLACCAS Laboratory Animal Co., Ltd.
(Shanghai, China) were housed under specific pathogen-free
(SPF) conditions and provided free access to sterile water and
standard mouse chow feed. All experimental protocols were
approved by The Animal Experiment Committee of Fudan
University (Shanghai, China) (Approval number: 2018-03-WY-
SXL-01). All efforts were made to minimize animal pain and
discomfort. The number of animals used in the experiment was
minimized on a guaranteed basis of sufficient data analysis.

The influenza virus A/FM/1/47 (H1N1) was used for the in
vivo experiments. This virus strain, isolated from the patients at
Fort Monmouth (NJ, USA) during an outbreak in 1947, is a
highly virulent, mouse-adapted virus that can cause severe
pneumonia, with a high mortality rate in mice. The virus was
supplied by the Shanghai Center for Disease Control &
Prevention (Shanghai, China) and stored in aliquots at -70°C.

Under isoflurane anesthesia, the experimental mice were
infected intranasally (i.n.) with 10LD50 (equal to 2.1 × 103 PFU)
of influenza virus A/FM/1/47 (H1N1) in a 30-mL-inoculum
volume per mouse, and with the normal control mice treated
with Dulbecco’s modified Eagle’s medium (DMEM). Three animal
experiments are recruited. First, to record the survival rates, the
body weight and the survival of mice (n = 10, per group) were
recorded daily. Second, the mice (n = 6, per group) on day 4 post-
infection were sacrificed. The lung lobes were harvested to
calculate the lung/body index, evaluate the lung histopathology
score, conduct further experiments (which included quantification
of the total protein content, ELISA assay of TNF-a, H&E staining,
and immunofluorescence histochemical staining). Third, the mice
(n = 6, per group) on day 4 post-infection were anesthetized, and
the bronchoalveolar lavage fluid (BALF) was collected to identify
the macrophage phenotypes by flow cytometry.

Lung Histopathology
Onday4post-infection, themice (n=6,pergroup)were euthanized
with 10%phenobarbital in theNaCl solution (250mg/kg), weighed,
and sacrificed. The lung lobes were harvested and weighed to
calculate the lung/body index. The right lobes were homogenized
in PBS buffer for the quantification of the total protein content and
TNF-a by using commercial ELISA kits (BD Biosciences). The left
lobes were suspended in PBS-buffered formalin and preserved in
paraffin blocks as per the standard procedures. Next, tissue sections
(10-µm-thick) were prepared, placed on glass slides, and stained
with hematoxylin and eosin (HE) using conventional techniques.
The lung histopathology score was calculated according to the
histopathological severity of the analyzed sections of each lung (six
separate randomfields per tissue section). The scoreswere assigned
Frontiers in Immunology | www.frontiersin.org 3
as follows: normal = 0; minor = 1; mild= 2; intermediate = 3; and
severe = 4 (22, 23).

The Phenotype of Macrophages
in the BALF
On day 4 post-infection, the BALF was collected thrice by lavage
with 0.5-mL ice-cold PBS from the mice (n = 6, per group). The
collected BALF was centrifuged at 700 ×g at 4°C for 5 min, and
the harvested cells were resuspended in 200-mL PBS. The cells
were stained with fluorescently labeled antibodies against the
following mouse proteins: CD11b+ and F480+ (macrophages);
CD11b+, F480+, and CD86+ (triple positive, M1 phenotype); and
CD11b+, F480+, and CD206+ (triple positive, M2 phenotype).
The expression of the member proteins was measured on the BD
FACSAria II flow cytometer, and the data were analyzed by the
CytExpert software.

Immunofluorescence
Histochemical Staining
The experimental mice (n = 6, per group) on day 4 post-infection
were sacrificed, and the lung lobes were harvested to prepare
paraffin sections. The paraffin sections of the lung tissues were
heated at 65°C for 30 min and washed in dimethyl benzene for 30
min. Then, we used 100%/90%/80%/70% ethanol to hydrate the
paraffin sections for 4 min each at room temperature. The
paraffin sections were transferred to 10 mM sodium citrate
buffer in a 99°C water bath for 20 min, incubated in 3% H2O2

methanol for 15 min, and blocked with a blocking buffer
(Beyotime Biotechnology) for 30 min in a 37°C water bath.
The paraffin sections were probed with F4/80 and CD11b
antibodies (1:1000, fluorescently labeled) at 4°C overnight and
stained with DAPI. The paraffin sections were incubated with
antibodies against CD63 and LC3 at 4°C overnight, FITC- or
Cy3-labeled secondary antibodies at 37°C for 1 h, and stained
with DAPI.

Experimental H1N1 Infection in
Macrophages and Epithelial Cells
For in vitro experiments, the influenza A/PR/8/34 TC adapted
(H1N1) was obtained from ATCC (VR,1469 AC) and stored in
aliquots at -70°C.

Murine and epithelial cells (A549 and BEAS-2B) were
obtained from the Cell Bank of Shanghai Institute of
Biochemistry and Cell Biology of the Chinese Academy of
Sciences (Shanghai, China).

Epithelial cells (A549 or BEAS-2B) were cultured in the
DMEM supplemented with 10% (v/v) heat-inactivated fetal
bovine serum (FBS), 0.3 mg/mL l-glutamine, 100 U/mL
penicillin, and 100 mg/mL streptomycin (Gibco) at 37°C under
5% CO2. The cells were cultured to 80% confluence,
supplemented with 0.5 mg/mL TPCK-treated trypsin (Sigma-
Aldrich, Germany), infected with 10 TCID50 of the H1N1 virus
for 2 h, and then transferred to a serum-free culture medium.

ANA-1 macrophages and primary peritoneal macrophages
(isolated from SPF BALB/c mice) were cultured in the Roswell
Park Memorial Institute Medium (RPMI)-1640 media with 10%
March 2022 | Volume 13 | Article 722053
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(v/v) heat-inactivated fetal bovine serum, 0.3 mg/mL l-
glutamine, 100 U/mL penicillin, and 100 mg/mL streptomycin
(Gibco) at 37°C under 5% CO2 and infected similarly.

Real-Time Quantitative RT-PCR Analysis
According to the manufacturer’s instructions, total RNA was
isolated from ANA-1 cells and mouse peritoneal macrophages
using TRIzol reagent (Invitrogen, CA, USA) and then converted
into cDNA using the Reverse Transcription Kit (Takara, Japan).
qRT-PCR was performed using the StepOne Plus RT-PCR
System (Appl ied Biosys tems) us ing the fo l lowing
thermocycling parameters: 94°C for 5 min, followed by 40
cycles of 94°C for 5 s and 60°C for 30 s (20). We normalized
the mRNA levels of iNOS, Arg-1, influenza M gene, IL-1b, IL-13,
and Tnf-a to the geometric mean of the Gapdh mRNA levels.
The primers used in this study are shown in Table 1. Each group
included at least three independent samples.

Western Blotting
Total cellular proteins were extracted from the infected primary
macrophages and analyzed by Western blotting. Briefly, the cells
were washed twice with ice-cold PBS and then lysed with RIPA
buffer on an ice bath for 1 h. Equal amounts of total protein of
each sample (determined by the BCA assay) were separated by
10% SDS-PAGE and then electrophoretically transferred to the
polyvinylidene difluoride (PVDF) membranes (Millipore). The
membranes were blocked with the QuickBlock™ Blocking Buffer
(Beyotime) and incubated with an appropriate primary antibody
(1:1000 dilution) at 4°C overnight. The PVDF membranes were
washed thrice times with TBST and incubated with the
horseradish peroxidase-conjugated secondary antibody (1:2000
dilution) at 25°C for 1 h. The proteins were visualized using an
enhanced chemiluminescence kit (Millipore).

Macrophage Recruitment
(Transwell) Assay
ANA-1 macrophage cells (labeled with GFP lentiviral vectors
from Genechem, Shanghai, China) were cultivated in the upper
Frontiers in Immunology | www.frontiersin.org 4
chamber of a 24-well Transwell plate (104 cells/well). ANA-1 or
BEAS-2B cells (labeled with mRFP-LC3 lentiviral vectors) or
A549 cells were cultivated in the lower chamber (105 cells/mL).
The cells in the lower chambers were infected with 10 TCID50 of
the H1N1 virus for 2 h and then transferred to a fresh culture
medium. Macrophage recruitment was evaluated by tracking the
movement of GFP+ ANA-1 cells under the Leica EL6000
Microscope (Leica Microsystems CMS GmbH).

Cell Immune-Fluorescence
Staining Analysis
The cells were fixed with 4% paraformaldehyde buffer for 30 min,
permeabilized with 0.5% Triton X-100 for 20 min, and blocked
with blocking buffer (Beyotime) for 30 min at room temperature.
The cells were probed with LC3, IL-1b, and CD63 antibodies
(1:1000 dilution) at 4°C overnight and subsequently detected
with anti-rabbit IgG Fab2 Alexa Fluor® 488 molecular probes
(1:2000 dilution). After staining the cell nuclei with DAPI (0.1
µg/mL stock solution) for at least 3 min, the immunofluorescent
images were obtained using the Leica EL6000 Microscope
(Leica Microsystems).

Exosome Extraction and Peritoneal
Macrophage Recruitment
(Transwell) Assay
A549 cells were infected with 10 TCID50 of H1N1 virus (A/PR/8/
34, ATCC) for 2 h and then transferred to a fresh culture
medium. The supernatant of infected or normal A549 cells was
collected and centrifuged at 300 ×g for 10 min, 2,000 ×g for 20
min, and 10,000 ×g for 30 min, which contained the conditioned
medium after each centrifugation step. The conditioned medium
was collected in a new Seal tube and centrifuged for 70 min at
100,000 ×g, 4°C with the rotor of P70AT in the Hitachi Himac
CP100WX Preparative Ultracentrifuge. The precipitate extracted
from 80 mL supernatant was redissolved in a 150-mL fresh
culture medium and then purified using 70-nm qEV2 size-
exclusion chromatography (SEC) columns (H-wayen
Biotechnologies, China).
TABLE 1 | Real-time PCR primers.

Name Oligo Primer sequence

influenza A virus M gene Forward primer 5’-GACCGATCCTGTCACCTCTGAC-3’
Reverse primer 5’-AGGGCATTCTGGACAAAGCGTCTA-3’

GAPDH Forward primer 5’-ACCACCATGGAGAAGGCTGG-3’
Reverse primer 5’-CTCAGTGTAGCCCAGGATGC-3’

iNOS Forward primer 5’-TCCTGGAGGAAGTGGGCCGAAG -3’
Reverse primer 5’-CCTCCACGGGCCCGGTACTC -3’

Arg-1 Forward primer 5’-CAGAAGAATGGAAGAGTCAG -3’
Reverse primer 5’-CAGATATGCAGGGAGTCAC -3’

IL-1b Forward primer 5’-GCCCATCCTCTGTGACTCAT -3’
Reverse primer 5’-AGGCCACAGGTATTTTGTCG -3’

IL-13 Forward primer 5’-TGAGCAACATCACACAAGACC-3’
Reverse primer 5’-GGCCTTGCGGTTACAGAGG-3’

TNF-a Forward primer 5’-GGAACACGTCGTGGGATAATG-3’
Reverse primer 5’-GGCAGACTTTGGATGCTTCTT-3’

b-actin Forward primer 5’-AAGGCCAACCGTGAAAAGAT-3’
Reverse primer 5’-GTGGTACGACCAGAGGCATAC-3’
March 2022 | Volume 13 | Article 722053
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The International Society for Extracellular Vesicles (ISEV)
established Minimal Information for Studies of Extracellular
Vesicles (MISEV) guidelines for the analysis of extracellular
vesicles (EVs), including exosomes. According to this criterion,
we characterized the microscopic appearance, particle size, and
specific markers of exosomes (24). The exosome sample was
observed under transmission electron microscopy (Hitachi, HT-
7700), and the particle diameter and concentration were
measured using a particle size analyzer (NanoFCM, N30E).
The exosome samples were incubated with FITC-labeled
antibodies against CD63 or IgG at 37°C for 30 min and
detected using NanoFCM. Other specific markers of exosomes,
CD9, and syntenin, were detected by Western blotting.

Each male BALB/c mouse (weight: 16-18 g, age: 6-8 weeks)
was intra-peritoneal injected with 4% sodium thioglycolate for 2
mL. After 3 days, primary peritoneal macrophages were isolated
and cultivated in the upper chamber of 24-well transwell plates
(105 cells/well). The lower rooms were filled with a fresh medium
containing exosomes, whose concentration was consistent with
that of the original culture supernatant. After 24 h, macrophage
recruitment was evaluated by counting the numbers of peritoneal
macrophages in the lower chambers under a microscope. The
cells in the upper and lower chambers were collected to extract
total RNA for qRT-PCR analysis.

Statistical Analyses
All statistical analyses were performed using GraphPad Prism for
Windows (Version 6.0) and presented as mean ± standard
deviation (SD). The survival of mice was analyzed by the
Gehan–Breslow–Wilcoxon test. Meanwhile, the other
experimental data were evaluated by the two-tailed Student’s t-
test or one-way analysis of variance (ANOVA), followed by
Bonferroni’s test. In all cases, probability levels less than 0.05 (P <
0.05) were considered to indicate statistical significance.
RESULTS

Influenza Virus Infection Caused Massive
Recruitment of M1 Macrophages Into the
Lung Tissues of Mice
As shown in Figures 1A, B, the infectionwith 10 LD50 influenza virus
A/FM/1/47 caused 100% mortality and approximately 35% body
weight loss within 9 days post-infection. Severe viral pneumonia was
observed in the infected mice on Day 4 post-infection, which showed
that H1N1 virus infection triggered alveolar tissue destruction (P <
0.01, Figure 1C), pulmonary edema, and hemorrhage (P < 0.01,
Figures 1D, E), accompanied by high levels of the inflammatory
cytokine TNF-a (P < 0.01, Figure 1F).

The results offlow cytometry revealed that these overactivated
inflammatory responses correlated positively with the massive
macrophage recruitment (nearly 105, CD11b+, F4/80+, P < 0.01)
in the BALF of infected mice, of which 95% were of the M1
phenotype (CD11b+, F4/80+, CD86+, triple positive), as shown in
Figures 1G, H. Meanwhile, few macrophages were detected in
the BALF of normal mice. HE and immunofluorescence
histochemical staining of lung tissues further confirmed that
Frontiers in Immunology | www.frontiersin.org 5
the H1N1 virus promoted the recruitment of macrophages
(Figures 1I, J). Thus, the recruitment and M1 polarization of
macrophages might be involved in influenza virus-induced lung
pathological destruction and inflammatory responses.

H1N1 Infection Triggered Similar
Macrophage Recruitment In-Vitro
A cell-to-cell transwell assay system was built to explore
macrophage recruitment under virus infection conditions
(Figure 2A). H1N1 virus-infected ANA-1 macrophages or A549
lungepithelial cellswere inoculated in the lower chamber, andGFP-
labeledANA-1macrophageswere cultivated in the upper chamber.
GFP+ macrophages were observed to be recruited to the infected
cells (macrophages or A549) in a time-dependent manner upon
tracking themigration of GFP+ cells (Figures 2B, C). Furthermore,
the infected cells and recruited macrophages were markedly
aggregated at 48 h post-infection.

Additionally, owing to more pronounced agglomerations
observed in ANA-1 macrophages (Figure 2B), H1N1 infection
might trigger more complicated macrophages than those in the
A549 cells despite the similarities in the recruitment pattern.

Influenza Virus Activated the M1
Polarization of Macrophages and
Promoted LC3/CD63/IL1b
The phenotype and other cellular responses in the infected ANA-
1 macrophages were explored. A higher proportion of CD86+

phenotype cells were observed in infected ANA-1 cells compared
with the uninfected control cells (Figure S1). Subsequently,
overall transcriptional analyses of H1N1 replication (M gene),
macrophage phenotype marker genes (iNOS: M1 polarized, Arg-
1: M2 polarized), and proinflammatory cytokine genes (IL-1b
and TNF-a) were performed.

As shown in Figures 3A–F, high levels of viral replication (P <
0.01, Figure 3A) were consistent with significant M1 polarization
status (>6-fold iNOS and 1.5-foldArg-1, equivalent to 4-fold iNOS/
Arg-1 bias vs. the uninfected samples, P < 0.01, Figures 3B–D) and
promotedproinflammatory cytokine transcription (>1.5-fold IL-1b
and TNF-a vs. the normal samples, P < 0.01, Figures 3E, F).

Simultaneously, cellular immunofluorescence staining was used
to evaluate several possible cell behaviors (LC3: cell autophagy;
CD63: exosome; cleaved IL-1b: proinflammatory activation). As
shown inFigures 3G–J, remarkable upregulation of LC3 andCD63
indicated autophagy, and exosomes were obviously activated by
virus infection. IL-1b cleavage denoted the proinflammatory
activation of macrophages. The increased expression and
colocalization of LC3 and CD63 were also observed in the lung
tissues of H1N1-infected mice with immunofluorescence
histochemical staining (Figure 4).

Exosomes Possibly Mediated the
Recruitment of Macrophages and Their
M1 Polarization
The exosomes were extracted from the supernatant of the normal or
H1N1-infected A549 cells, and the purified exosome samples were
characterized, as shown in Figure S2. The specific shape of the
March 2022 | Volume 13 | Article 722053
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exosome was observed in both samples by transmission electron
microscopy (Hitachi, HT-7700). The mean diameters and
concentrations of the exosome samples in the normal and H1N1-
infected groups were 76.67 nm and 2.11×109 particles/mL and 83.66
nm and 3.26×1010 particles/mL, respectively. Furthermore, the
positive rates of exosome CD63 expression were 20.9%. The
specific protein markers, CD9, and syntenin (25), were also
detected to identify the exosomes. As shown in Figure 5A, the M1
polarizationofperitonealmacrophageswaspositively correlatedwith
viral replication in a dose-dependent manner. In transwell
experiments, exosomes steered the recruitment of more peritoneal
macrophages to the lower chamber (Figures 5B, C). Comparedwith
the normal group, the exosomes in the virus-infected group
promoted macrophage recruitment to a greater extent (Figure 5C).
The phenotypes of the peritoneal macrophages in the upper and
lower chambers were analyzed. The exosomes of the infected A549
cellswere found to enhanceM1polarization (iNOS/Arg-1, Tnfa/Arg-
Frontiers in Immunology | www.frontiersin.org 6
1, and IL-1b/Arg-1) in a better way (Figure 5D), thereby indicating
that exosomes might play an essential role in influenza-mediated
macrophage polarization. To exclude the possible interference of
residual viruses in the exosomes, the expressions of the M gene in
ANA-1 cells directly infected by H1N1 and ANA-1 cells
supplemented with exosomes derived from normal or H1N1
infected cells were detected (Figure S3). The M gene level
represents the relative amounts of the H1N1 virus. Compared with
cellsdirectly infectedbyH1N1, fewvirusesweredetected inexosome-
supplementedmacrophages, which implied the presence of few virus
particles in the exosomes. However, these exosomes could still
promote M1 polarization of the macrophages, thereby suggesting
that the stimulation of polarization in the exosome groups might be
caused by exosomes themselves rather than the H1N1 virus. The
results in Figure S3 also showed that macrophages were more M1
polarized by virus-derived exosomes than by exosomes derived from
normal cells, which signified that exosomes produced during viral
A B C D

E F G H

I J

FIGURE 1 | High mortality and macrophage-related overactivation of inflammatory responses in infected mice. Mice (n = 6 or 10, per group) were infected with
freshly prepared influenza virus A/FM/1/47 (H1N1) strain. Mice (n = 10, per group) and monitored daily for survival and body weight. For lung histopathology, the
mice (n = 6, per group) were euthanized with 10% phenobarbital to harvest the whole lungs on day 4 post-infection. (A) Percentage survival. Data below individual
survival curves represent the number of survivors/total number of mice. (B) Bodyweight. Mice were weighed every day. (C) Lung histopathology score. Data were
calculated by evaluating the histopathological severity of the analyzed sections of each lung (six separate random fields per tissue section); the scores were assigned
as: normal = 0; minor = 1; mild= 2; intermediate = 3; and severe = 4. (D) Lung/body index was calculated as follows: whole lung weight (mg)/body weight.
(E, F) The right lobes of the mice were homogenized to quantify the total protein (E) and inflammatory cytokine TNF-a (F). (G-H) Flow cytometric analysis of the
macrophage number and phenotype in BALF; macrophages (CD11b and F4/80 positive cells), M1 polarized macrophages (CD11b, F4/80 and CD86 triple-positive
cells), and M2 polarized macrophages (CD11b, F4/80 and CD206 triple-positive cells). Mean ± SD from at least three independent experiments are shown. **p <
0.01. (I) H&E staining of the lung tissues. Scale bar: 40 mm. (J) Immunofluorescence histochemical staining of the lung tissues. Scale bar: 50 mm.
March 2022 | Volume 13 | Article 722053
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infection could promote polarization of macrophages to a greater
extent. The possible role of remaining virionswould befigured out in
our future experiments.

Autophagy and Exosome Production
Coordinately Enhanced M1 Polarization
and Recruitment of the Macrophages
Non-cancerous cell lines (ANA-1 macrophages and BEAS-2B
epithelial cells) were further chosen to explore the role of
autophagy by introducing mRFP-LC3 lentiviral vectors to
overexpress LC3 labeled with a red fluorescent protein (RFP).

Tracking the labeled cells revealed that GFP+ ANA-1 macrophage
recruitment was positively correlated with LC3 augmentation and
increased aggregation of GFP+ ANA-1 with infected BEAS-2B cells at
24 h post-infection (Figures 6A,C). As shown inFigures 6B,C, similar
recruitment of GFP+ANA-1macrophages was observed in the infected
macrophages. This finding suggested that upregulated autophagy by
H1N1 enhanced the recruitment of remote macrophages.

Based on the role of autophagy and exosome production in
macrophage recruitment andM1 polarization, whether autophagy
and exosome production coordinately regulated the activation of
Frontiers in Immunology | www.frontiersin.org 7
macrophages was determined. As shown in Figure 6D,
remarkable upregulation of LC3 and CD63 was observed in the
infected macrophages. Apparent overlaps in fluorescence (yellow
arrow) were observed in the margined LC3 (red) and CD63
(green) fluorescence images, which suggested a possible and
tight interaction between autophagy and exosome production.

The correlation between autophagy and macrophage
proinflammatory activation was investigated. As shown in Figure 6E,
there was some overlap between the fluorescence images of cleaved IL-
1b+cells andLC3+cells, anda largeproportionof thecleavedIL-1b+cells
were aggregated with the LC3+ cells, which indicated that autophagy
steered macrophage recruitment and activation.

The overlap between LC3 and CD63 in infected BEAS-2B
cells (Figure 6F) and lung tissues (Figure 4) verified the possible
interaction between autophagy and exosome production.

These aspects were further explored in infected primary
peritoneal macrophages using western blotting. As shown in
Figure S4, LC3 and CD63 decreased in a similar manner and
were accompanied by the accumulation of the autophagy
substrate p62 and the augmentation of cleaved IL-1b. This
evidence indicated that the canonical autophagic flow was
A

B

C

FIGURE 2 | Macrophage recruitment in in-vitro infection experiments. (A) A systematic study of macrophage recruitment using 24-well transwell chambers (8.0-mM
membrane). (B) GFP+ ANA-1 recruitment in transwell assays. GFP+ macrophages were inoculated into the upper chambers, while A549 cells or ANA-1
macrophages were inoculated into the lower chambers and infected with influenza PR/8/34. Scale bar: 30 mm. (C) The GFP+ ANA-1 macrophages in the lower
chambers were enumerated to evaluate the extent of trans-membrane recruitment of macrophages. No fewer than three fluorescent images were captured and
analyzed per group. **p < 0.01.
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blocked in the infected cells and that LC3 protein likely enhanced
exosome production and secretion.

When the infected ANA-1 macrophages (lower chambers in
transwell experiments) were treated with the autophagy inhibitor
LY294002 (1 µM) and the exosome inhibitor GW4869 (1 µM),
the recruitment of GFP+ macrophages was significantly reduced
(Figures 6G, H).

The possible interaction between these functional proteins
(LC3 and CD63) was also supported by GeneMANIA Bank
(https://genemania.org) network analysis. As shown in Figure 7,
possible coexpression of the genes involved in autophagy and
exosome production was found.
Frontiers in Immunology | www.frontiersin.org 8
Thus, a possible and sequential activation of macrophages
triggered by H1N1 infection in autophagy and exosome-
dependent manner was established.
DISCUSSION

This study revealed that autophagy and exosome production are
involved in H1N1-induced macrophage recruitment and
M1 polarization.

Many researchers have reported that inhibiting overactive
immune responses can offer protection against H1N1-induced
A B H

C D

I

E F

G

J

FIGURE 3 | M1 polarization and LC3/CD63/IL-1b analysis of infected ANA-1 macrophages. Total RNA was isolated from infected ANA-1 cells at 24-h post-infection and
used for transcriptional analysis of the related genes. (A) Influenza virus M gene. (B) iNOS gene (M1 marker). (C) Arg-1 gene (M2 marker). (D) iNOS/Arg-1 (M1/M2 bias).
(E) IL-1b (a proinflammatory cytokine). (F) Tnf-a (an inflammatory cytokine). N ≥ 3, **p < 0.01. (G–J) Normal and infected ANA-1 cells were fixed, incubated with primary
antibodies (LC3/CD63/cleaved IL-1b, 1:1000 dilution), and then fluorescently stained with the secondary antibody (anti-rabbit IgG Fab2 Alexa Fluor ® 488 molecular
probes, 1:2000 dilution). (G) The cells’ fluorescence intensity of LC3, CD63, and cleaved IL1-1b was quantified and normalized by the corresponding DAPI fluorescence
amount using the Image-Pro Plus 6.0 software. No fewer than three fluorescent images were captured and analyzed for each group. *p < 0.05 and **p < 0.01. (H) LC3
cellular immunofluorescence. (I) CD63 cellular immunofluorescence. (J) Cleaved IL-1b cellular immunofluorescence. Scale bar: 50 mm.
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severe viral pneumonia (20, 26–28). However, the detailed
interactions among the influenza virus, immune cells, and
epithelial cells remain unclear. In this study, M1 polarized
macrophage recruitment was observed to be possibly responsible
for the exacerbated inflammatory responses andhighmortality of the
infected mice. In vitro, the transwell experiment system was
successfully employed to mimic the recruitment and M1
polarization of the macrophages, which provided a straightforward
method to explore the possible crosstalk among the different cells
involved in the process of virus infection.

Macrophages play an essential role in influenza virus
infection. During the infection, alveolar macrophages, as well
as neutrophils, perform the function of phagocytizing apoptotic
infected cells, thereby arresting viral propagation (29). Alveolar
macrophages differ in their susceptibilities to different viral
strains. Strains with weak infectivity toward macrophages, such
as PR8 (H1N1), exhibit high virulence in mice, perhaps because
macrophages are not activated directly by the virus. IAV strains
that infect macrophages, such as ST169 (H1N1) and ST602
(H3N2), can stimulate the M1 polarization of macrophages, a
phenotype with highly expressed iNOS and proinflammatory
Frontiers in Immunology | www.frontiersin.org 9
cytokines. M1 macrophages also possess enhanced phagocytic
ability and are capable of eliminating intracellular pathogens
(30). In our study, murine macrophages (ANA-1) and primary
peritoneal macrophages were infected by A/PR/8/34 (H1N1) and
polarized to M1 phenotype with the secretion of several
proinflammatory cytokines, thus inducing the polarization and
recruitment of more macrophages.

In previous studies, cell autophagy has been proven in
influenza virus replication and viral pathology (31–34), and
inhibiting autophagy has been shown to suppress H3N2
replication in vitro (35). In this study, activation of autophagy
(LC3 upregulation) was found to correspond to H1N1 infection
and correlated positively with macrophage recruitment.
Furthermore, LC3 seemed to induce marked cell infusion
(abnormal morphology) and promote macrophage aggregation
in response to infection. Thus, autophagy might result in
morphological abnormalities in the infected cells and promote
macrophage phagocytosis. These results were partly confirmed
by other studies, thereby asserting that atypical autophagy
induces LC3-associated phagocytosis (36–38). However, the
role of autophagy-associated phagocytosis in H1N1 infection
FIGURE 4 | Autophagy and exosomes in the infected lung tissues. Immunofluorescence histochemical staining of the lung tissue to determine the expression of
LC3 (green) and CD63 (red) and their colocalization (yellow). The nuclei were stained with DAPI (blue). Scale bar: 100 mm.
March 2022 | Volume 13 | Article 722053

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xia et al. Autophagy/Exosome Enhance Macrophage Polarization
needs to be elucidated in the future via an appropriate
experimental design. In addition, autophagy can be classified
into canonical and noncanonical, both of which are marked by
LC3; however, which one plays a dominant role in IAV infection
is still obscure. Studies have shown that noncanonical autophagy
reduces IAV replication and fusion with endosome and inhibits
interferon signaling, which helps control lung inflammation (39).
Therefore, further studies are needed to distinguish between
canonical and noncanonical autophagy.

Exosomes are extracellular vesicles measuring 30-150 nm and
are released by almost all cell types, including stem cells (40) and
cancer cells. Exosomes are significantly altered in many diseases
and physiological states (41–44). In this study, significant
upregulation of CD63 (exosome marker) was found in the
virus-infected cells. Moreover, exosome production and
autophagy pathways exhibited synergies in cellular homeostasis
and metastasis (45, 46). Also, an overlap of LC3 and CD63
immunofluorescence imaging was noted in H1N1-infected cells.
Some reports have shown that LC3 participates in the production
of exosomes known as autophagic exosomes, which function via
Frontiers in Immunology | www.frontiersin.org 10
a mechanism that is independent of canonical macroautophagy
(47–49). Autophagosomes can fuse with multivesicular bodies to
form amphisomes (50), which in turn fuse with the plasma
membrane. The intraluminal vesicles present in the amphisome
are released from the cell as exosomes, which carry both viral
nucleic acids and proteins and transmit immune signals between
cells (51). Employing the transwell method, exosomes from the
supernatant of H1N1-infected A549 cells were demonstrated to
induce the recruitment and M1 polarization of peritoneal
macrophages. This phenomenon was more remarkable than
that in the noninfected group and the solvent group. When
autophagy and exosome production in the infected macrophages
were inhibited with LY294002 and GW4869, the recruitment of
GFP+ macrophages was observed to dramatically decrease in a
pattern that was quite similar to the one observed in normal cells.
These findings indicate that autophagy and exosome production
coordinately enhance macrophage recruitment, although the
detailed interactions are yet to be clarified.

Influenza virus infection induces a severe cytokine storm that
releases several proinflammatory cytokines, such asTNFa, IL-1b, IL-
A B

C D

FIGURE 5 | Effects of H1N1 virus infection and exosomes on the polarization and recruitment of peritoneal macrophages. (A) Mouse peritoneal macrophages were
infected with a gradient dilution (10-2, 10-3, 10-4) of the H1N1 virus, and total RNA was isolated for the transcriptional analyses of Influenza virus M, iNOS, Arg-1 genes. N = 3,
*p < 0.05 and **p < 0.01. (B) Schematic diagram of the transwell assay in order to investigate the recruitment of peritoneal macrophages by exosomes. The upper chambers
were covered with peritoneal macrophages, and the lower chambers were supplemented with a fresh culture medium (solvent group) or the medium containing exosomes
from normal or infected A549 cell’ supernatant (normal or virus groups). (C) Cells in the lower chambers were microscopically observed and counted at 24 h after adding
exosomes. Scale bar: 50 mm. (D) Total RNA was isolated from peritoneal macrophages in the upper and lower chambers at 24 h after adding exosomes and employed for
transcriptional analysis of iNOS, Tnfa, IL-1b, Arg-1 genes. N ≥3, *p < 0.05, **p < 0.01 and ***p < 0.001. ns, no significance.
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FIGURE 6 | Crosstalk among LC3, CD63, and cleaved IL-1b in macrophage recruitment. (A, B) Transwell assays results showed that LC3 enhanced macrophage
recruitment in PR/8/34 infected BEAS-2B cells (A) and ANA-1 cells (B). GFP+ ANA-1 cells were incubated in the upper chambers, BEAS-2B and ANA-1 cells
transfected with mRFP-LC3 lentivirus were incubated in the lower chambers and infected with PR/8/34 virus. Scale bar: 100 mm. (C) Cell counting of GFP-positive
cells (per 100 cells) and the fluorescent quantitation of LC3 (per cell) using the Image-Pro Plus 6.0 software. No fewer than three fluorescent images were captured
and analyzed per group. *p < 0.05 and **p < 0.01. (D, E) LC3, CD63, and IL-1b interaction. The ANA-1 cells transfected with mRFP-LC3 lentivirus were infected
with PR/8/34 virus for 24 h. Then, these cells were fixed, permeabilized, blocked, probed with primary antibodies for the detection of CD63 (D), and cleaved IL-1b
(E), followed by exposure to the anti-rabbit IgG Fab2 Alexa Fluor ® 488 molecular probes. After staining the cell nuclei with DAPI, the interaction between LC3/
CD63/IL-1b was observed and imaged. Scale bar: 100 mm. (F) LC3 and CD63 interaction in the infected BEAS-2B cells. The BEAS-2B cells transfected with mRFP-
LC3 lentivirus were infected with PR/8/34 virus for 24 h. The cells were then fixed, permeabilized, blocked, and probed with primary antibodies for the detection of
CD63, followed by the anti-rabbit IgG Fab2 Alexa Fluor® 488 molecular probes. After staining the cell nuclei with DAPI, the interaction of LC3/CD63 was observed
and imaged. Scale bar: 50 mm. (G) The influence of autophagy and exosome inhibitors on macrophage recruitment. GFP+ ANA-1 cells were incubated in the upper
chambers of the transwell system, while ANA-1 cells were incubated in the lower chambers, infected with PR/8/34 virus, and treated with the autophagy inhibitor
LY294002 (1 µM) and the exosome inhibitor GW4869 (1 µM). GFP+ ANA-1 macrophages in the lower chambers were counted to evaluate the trans-membrane
recruitment of macrophages. Scale bar: 50 mm. (H) Cell counting of GFP-positive cells (per 100 cells). No fewer than three fluorescent images were captured and
analyzed per group. *p < 0.05. ns, no significance.
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 72205311

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xia et al. Autophagy/Exosome Enhance Macrophage Polarization
6, and IFN-g. Pro-IL-1b is upregulated by activated NF-kB and then
matures into cleaved IL-1b and is secreted under the influence of
NOD-like receptor protein 3 (NLRP3). IL-1b could recruit
neutrophils and T cells and induce the epithelial and endothelial
cells toproduceTNF-aandIL-6, thusaggravating lung inflammation
and injury (52). In this study, a cleaved IL-1b antibody was used to
label the macrophages, and the possible correlation between
autophagy and macrophage proinflammatory activation was
explored. Some overlap was seen in the immunofluorescence
signals of cleaved IL-1b and LC3, but more IL-1b+ cells were found
to be aggregated with the LC3+ cells (Figure 6E), which suggests that
upregulated autophagy enhances the activation of M1macrophages.

The exosomes were also purified using 70-nm qEV2 size-
exclusion chromatography (SEC) columns and characterized by
transmission electron microscopy, the particle diameter, and
exosomes markers analysis (NanoFCM and Western blotting).
The purified exosome sample from virus-infected cells showed
more significant M1 stimulation on macrophages and minor
virus replication. However, the possible role of remaining virions
would be designed in our future experiments.

Based on these results, we propose that autophagy and
exosome production coordinately induce M1 polarization and
recruitment of the macrophages via a possible autophagic
exosome pathway. Exosomes serve as a vehicle for transporting
cargo from parental cells to recipient cells. However, the
components of the vesicles (LC3, CD63, virus-related proteins,
Frontiers in Immunology | www.frontiersin.org 12
DNA strands, mRNA, microRNAs, lncRNAs, and circRNAs)
responsible for these effects have not yet been identified (53–56).

This studyonautophagyandexosomeproduction inpulmonary
cells may shed light on potential therapeutic strategies to manage
respiratory diseases caused by the influenza virus and other such
viruses. For instance, mesenchymal stem cell-derived exosomes
have been proven to have the potential to cure SARS-CoV-2
pneumonia owing to their anti-inflammatory effects and
immune-modulating capabilities (57, 58). Some modulators of
autophagy or exosome production may also be used to intervene
in disease processes (59) and have implications in the treatment
of influenza.

Above all, our findings might provide feasible targets for
treating influenza virus infection by interfering with macrophage
activation and recruitment.
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