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A novel approach for discovering 
stochastic models behind data 
applied to El Niño–Southern 
Oscillation
Roman Olson1, Soon‑Il An1,2*, Soong‑Ki Kim2 & Yanan Fan3

Stochastic differential equations (SDEs) are ubiquitous across disciplines, and uncovering SDEs 
driving observed time series data is a key scientific challenge. Most previous work on this topic has 
relied on restrictive assumptions, undermining the generality of these approaches. We present a 
novel technique to uncover driving probabilistic models that is based on kernel density estimation. 
The approach relies on few assumptions, does not restrict underlying functional forms, and can 
be used even on non-Markov systems. When applied to El Niño–Southern Oscillation (ENSO), the 
fitted empirical model simulations can almost perfectly capture key time series properties of ENSO. 
This confirms that ENSO could be represented as a two-variable stochastic dynamical system. Our 
experiments provide insights into ENSO dynamics and suggest that state-dependent noise does not 
play a major role in ENSO skewness. Our method is general and can be used across disciplines for 
inverse and forward modeling, to shed light on structure of system dynamics and noise, to evaluate 
system predictability, and to generate synthetic datasets with realistic properties.

Stochastic differential equations (SDEs) are used to model phenomena from a variety of disciplines ranging from 
finance to hydrology, from rotational diffusion in granular media to climatology1–13. A key problem is estimat-
ing these equations from available observed time series data, with subsequent modeling and prediction1–8,14–17. 
The core problem can be stated as follows: given a time series y(t), t = 1, . . . , n observed at n time points where 
y(t) ∈ R

D , find the underlying stochastic dynamical model:

where a is a vector mean function RD → R
D (sometimes called drift coefficient), ξ0 is a vector of zero-mean 

noise with standard deviation of one (typically assumed to be standard independent Gaussian noise) and B is 
a matrix-valued diffusion coefficient (a function RD → R

D×D ). Here, we call ξ(y) the noise function. It is a 
random variable whose probability density function (pdf) depends on state y . We are going to assume that its 
components (e.g., ξi and ξj , i  = j ) are independent conditional on y . We note that the word “noise” does not 
necessarily represent a diffusion process, it can be any external physical process that is forcing the system and 
that is not modelled directly via a state variable.

Recent work in the area has broken important new ground, yet it makes assumptions about the pdf of the 
noise function or the structure of the mean function1–6,8,15,18. This limits the generality of these approaches. Here 
we present a novel and a flexible method that makes no parametric assumptions about the SDE. Notably we do 
not restrict the noise function ξ(y) to be Gaussian or independent in time. We approach this problem from a 
purely statistical perspective. We note that equation (1) can be represented in a probabilistic way by specifying 
that the state derivative is a D-dimensional random variable with a conditional distribution given the state as:

or for a particular component i of the state:

(1)
dy

dt
= a(y)+ B(y)ξ0 = a(y)+ ξ(y),

(2)p

(

dy

dt
|y

)

,
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If the joint probability density function (pdf) of p
(

y,
dyi
dt

)

 is known, the conditional probability can be 
obtained as simply:

The main problem is estimating the joint probability p
(

y,
dyi
dt

)

= p
(

y1, ..., yD ,
dyi
dt

)

 . Here we estimate this 

joint pdf from available observed samples of (y, dyidt )
(1), ..., (y,

dyi
dt )

(n) using kernel density estimation (KDE). The 
only parameter that the method requires is a bandwidth matrix. We calculate the joint and conditional probabili-
ties on a fine mesh of y and dyidt  values.

Strictly speaking, the mean and the noise functions are not employed in the proposed method. However, they 
can be diagnosed from the conditional pdfs. For example, the estimate of the mean function ai(y) can then be 
derived as a mean of the conditional pdf on this mesh. Conditional on the state value y , the i th noise component 
ξi(y) is then a random variable obtained by subtracting for each y the deterministic conditional mean ai(y) from 
the tendency random variable dyidt .

The key difference from previous work is that we do not assume any particular form for the mean function a 
or the noise function ξ ; in fact we do not use explicit mean or noise functions. Generally, the process also does 
not need to be Markov.

We apply the new method to fitting a dynamical model of El Niño–Southern Oscillation (ENSO). ENSO is a 
quasi-periodic tropical Pacific phenomenon sustained through ocean-atmospheric coupling, important through 
its far-reaching effects throughout the globe2,3,6,19–32. Its oscillatory feature is characterized by two phases—El 
Niño with relative warming of the surface equatorial Pacific, and La Niña with a corresponding cooling. The 
temperature (commonly taken as average sea surface temperature [SST] anomaly from its seasonal mean in one 
of the designated regions in equatorial Pacific) oscillations are seasonally-locked (i.e., tend to have the highest 
variance during boreal winter), come about in irregular periods of 2–7 years, and are asymmetrical. Specifically, 
El Niño events are on average stronger than La Niña events. Several reasons for this asymmetry have been pro-
posed but their relative importance is under debate or may vary for individual ENSO events4,22–24,26,32. Another 
ENSO property, the so-called “transition asymmetry” is the tendency of El Niño events to quickly turn into La 
Niñas during the following winter, and for La Niñas to persist for more than one year26,33.

One commonly used simple ENSO model includes two variables—SST in the eastern equatorial Pacific, 
and thermocline depth in the equatorial Pacific4,30. While the model has substantial skill at reproducing many 
observed ENSO features, it does not capture ENSO perfectly. This has lead to doubts whether a two-variable 
system is sufficient to model ENSO in principle. While many other ENSO models exist e.g.,34, the search is on 
to find an ENSO model that includes the smallest number of variables, while still capturing important statistics 
or properties of ENSO SST anomalies: seasonal standard deviation, spectrum, pdf, transition asymmetry, etc.

Using the new stochastic dynamical fitting method we attempt to answer the following main questions: (1) 
Can the empirical stochastic-dynamical model estimation method successfully recover a known mean and noise 
function in a perfect-case setting? (2) Can ENSO be represented as a low-order dynamical model of eastern 
equatorial SST and equatorial thermocline depth anomalies? (3) What is the relative contribution of nonlinear 
dynamics, state-dependent noise, and noise self- and cross-correlations to ENSO skewness? and (4) What is the 
spectral structure of ENSO forcing?

Results
Kernel density‑based method to recover dynamical systems from time series data.  We assume 
that we have a stationary time series y(1), y(2), . . . , y(n) . For each time t we can approximate the ith component 
tendency as dy

(t)
i
dt ≈

y
(t+1)
i −y

(t)
i

dt  . In the cases analyzed here we assume that dt = 1 , allowing us to drop this term. 
We apply our method separately to each component i. We calculate joint pdfs p(y1, ..., yD ,

dyi
dt ) on a fine mesh of 

y and dyidt  values using KDE35. We use the R package ks for the estimation36. We use bandwidth as sK where s is a 
tunable smoothness parameter and K is the plug-in estimator of the bandwidth matrix35. We find conditional 
pdfs p

(

dyi
dt |y

)

 by scaling the joint pdf at each y mesh point so that it integrates to one over all values of dyidt  on our 
mesh. From this conditional pdf, the mean function and the standard deviation of the noise can be easily 
obtained.

The same method can be extended to cyclostationary processes where sampling interval is an exact fraction of 
the period. In this case separate joint pdfs can be found for each phase of the process. For example, in the main 
ENSO application of the paper we work with monthly ENSO observations. ENSO is a cyclostationary process 
with the frequency of 1 year.

We test the KDE method to estimate the conditional mean and the conditional standard deviation of the noise 
in a perfect model framework (Supplementary Note 1, Figs. S1–S6). The details are provided in Supplementary 
Note 1. Overall, these perfect model experiments indicate that for a relatively small number of data points 
(59 points), and a 2D model, the method can successfully recover some features of mean and noise functions 
(Figs. S1–S6). The method is especially good at capturing non-planar behavior of the mean tendency (Figs. S1–S2, 
S5–S6). By “non-planar” we mean any deviation of the conditional mean tendency from a linear function of the 

(3)p

(

dyi

dt
|y

)

.

(4)p
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dyi

dt
|y
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=
p
(

y,
dyi
dt
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form E( dyidt |y1, y2) = k1y1 + k2y2 where E is the expectation operator. However, for a planar mean function, it 
may discover non-existent non-planar features (Figs. S3–S4). Since the non-planar behavior of the derivatives is 
important theoretically in case of ENSO4, we believe the KDE method is suited to our particular case.

Application to ENSO.  Dynamical model estimates.  We apply the KDE method to construct a probabilis-
tic 2D model of ENSO that includes Niño 3 region SST anomaly T, as well as thermocline depth anomaly in the 
equatorial Pacific h. All anomalies are with respect to the climatological annual cycle. To construct the model we 
use monthly data from 1958 to 2016. SST observations are from ERSSTv537, while the 17-degree isotherm data 
approximating the thermocline depth has two sources. Years 1958–2010 are from SODAv2.2.4 reanalysis31 while 
later data are from GODAS reanalysis38. We obtain a separate model for each month m. Thus, our combined 
model is a collection of monthly submodels (see “Methods”).

We show the mean and the standard deviation of the estimated noise function for SST anomalies in Fig. 1. 
The ENSO systems exhibits oscillatory behavior, at least for considered months (Fig. 1A,C,E,G). For most of the 
year, SST response depends primarily on the thermocline, with deeper thermocline forcing surface warming, 
and shallower thermocline forcing surface cooling. The linear component dTdt = c1h is one of the components 
of a thermocline feedback4, and is known as “angular frequency” in some work. Positive angular frequency was 
also found in Stein et al.39. However, in that work the angular frequency’s magnitude is approximately the same 
throughout the year, while in our case it appears to vanish in December.

Moreover, there appears to be a non-planar deviation of the mean function for some months. Specifically, in 
March and June the mean function exhibits rapid changes above a certain SST threshold. This may be a manifesta-
tion of possible enhanced response of convection and wind stress to SST anomalies above a certain threshold as 
previously discussed in Takahashi et al.40. We note that any threshold behavior in the real world is not expected 
to appear as a discontinuity in the mean and noise standard deviation plots because of (i) possible variation of 
the threshold with time and (ii) smoothing introduced by KDE method. Thresholds of 1.3 and 1.5 K have been 
mentioned in Takahashi et al.40. These are slightly higher than the value of around 1 K found here; note that these 
estimates are subject to uncertainty and vary with season and for different datasets.

The Bjerknes feedback ( dTdt = c2T ; also known as temperature growth rate) appears to be relatively weak for 
March, June, and September compared to the thermocline feedback. Our results suggest that Bjerknes feedback 
is slightly negative in March and June, but is neutral in September. The picture changes drastically in December 
(Fig. 1G), where negative Bjerknes feedback dominates. This strong negative Bjerknes feedback is a reason for the 
strong decrease in ENSO standard deviation after December (Fig. 3). The tendency of the Bjerknes feedback to 
be negative is consistent with the results of Moon and Wettlaufer41 and Stein et al.39 who also estimate Bjerknes 
feedback from observations and a high-resolution model hindcast, respectively. They show that this feedback is 
negative for most seasons, except that it is slightly positive in the fall. These results are also in broad agreement 
with a physically-based method to calculate Bjerknes stability index39.

Since our method may uncover non-planar behavior of the noise standard deviation that is non-existent in the 
data, we refrain from over-interpretation of the apparent non-planar behavior for some months (Fig. 1B,D,F,H). 
Specifically, an apparent noise reduction at low thermocline anomalies and high SST anomalies in the fall appears 
to be caused by a simple lack of observations in that region of phase space (Fig. S7).

ENSO prediction models exhibit a so-called spring predictability barrier in SST6,7, broadly defined here as loss 
of forecast skill when spring is in between the forecast generation and valid times. Our work shows that spring 
is the period of lowest variability in the modeled SST anomaly (Fig. 3), while overall noise magnitude appears 
to be similar to other seasons (Fig.  1B,D,F,H). Thus, our results are consistent with the view that the spring 
barrier is not caused by high absolute noise magnitude, but rather by low signal-to-noise ratio during spring7.

Figure 2 show thermocline tendencies’ conditional means and standard deviations for select months. There is 
a clear seasonal variability in the mean term, with the strongest mean dynamics in December (Fig.  2A,C,E,G). In 
particular, in December the therhoclime depth anomaly exhibits a large damping of the form dhdt = c3T , c3 < 0 in 
addition to more complex non-planar behavior. This term has been previously called “slow equatorial recharge-
discharge process associated with oceanic heat content”25. It results from weakening of the trade winds as a 
response to higher SST anomalies in the Eastern equatorial Pacific. The resulting changes in the wind stress curl 
induce anomalous Sverdrup transport away from the equator, resulting in anomalous mass and heat divergence 
in the upper ocean along the equator, thereby shallowing the thermocline. Our results indicate that this pro-
cess is most important in December. One of the reasons is simply that there is a higher range of observed SST 
anomalies in December due to increased variability. Another reason may include higher sensitivity of the trade 
winds to the SST anomalies. Our results suggest a possible non-planar behavior of the mean term, especially in 
September, when there is a feasible nonlinearity as a function of thermocline depth anomaly (Fig.  2A,C,E,G).

The overall magnitude of the thermocline noise appears to be similar for all seasons (Fig. 2B,D,F,H). Again, 
we avoid an over-interpretation of the possible non-planarities of the standard deviation of the noise. Specifically, 
in September there is a noise minimum at low thermocline depth anomalies and high SST anomalies (Fig. 2F). 
This is, however, an artifact of lack of observations in this region of state space (Fig. S7).

Simulation with basic forcing.  We note that our dynamical model for T and h can be formulated as:
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Figure 1.   (Left) Mean tendency of SST anomalies in the Niño 3 region for different months (color) [K 
month

−1 ], as a function of Niño 3 SST anomalies T [K] and equatorial thermocline depth anomalies h [m]. 
Arrows represent joint tendency of both thermocline depth anomalies [m month

−1 ] and SST anomalies [K 
month

−1 ]. (Right) Standard deviation of tendencies of SST anomalies [K month
−1 ] as a function of SST and 

thermocline depth anomalies. Months are (from top to bottom): March, June, September, and December.
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Figure 2.   Same as Fig. 1 but for equatorial thermocline depth anomaly tendencies [m month
−1 ]. Joint tendency 

vectors are not shown.
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Figure 3.   (A) Observed (red) and modelled (blue) pdfs of Niño 3 region SST anomalies; (B) observed (red) 
and modelled (blue) standard deviations of the SST anomalies for different months; (C) observed (red) and 
modelled (blue) spectra of the SST anomalies; (D) composite plot for modelled SST anomalies for warm 
(orange) and cold (black) events for months relative to the December of each event; and correlation coefficient 
between predicted and observed SST (E) and thermocline depth (F) anomalies for seasons centered on various 
target months and for different forecast lead times.
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where F−1
(·|T ,h,m)

 is a conditional quantile function of random forcing uT or uh , mapping this forcing at a given 
value of T, h and month m to the tendency value. Every tendency value dTdt  is associated, at given T, h, and m with 
a conditional cumulative distribution function (CDF) value uT = F( dTdt |T , h,m) between 0 and 1. This CDF 
represents the probability that another random sample dTdt

∗ at the same associated values of T, h, and month 
would be below the given dTdt  . Thus, uT = 1 is associated with SST tendency that is at the extreme upper end of 
the expected tendencies given the associated T, and h for the same month. On the other hand, 0 represents an 
extreme low tendency. F−1

(

dT

dt
|T ,h,m

) is a function that maps the CDFs uT back to the associated tendencies dTdt  , given 

the respective T, h, and month values. Similar reasoning applies to thermocline tendency, while fm and gm are 
shorthand notations.

The simplest possible forcing of the model is that of uniform independent forcing uT and uh . Here, however, 
we use a non-uniform independent forcing, empirically corrected for the overdispersiveness of the stochastic 
model (e.g., too broad pdf of 

[

T , h, dTdt

]T
 , see “Methods”).

Some properties of the associated time series of SST from a stochastic model run forced with such forcing 
are presented in Fig. 3. The SST anomaly pdf is too narrow (Fig. 3A), and there is a substantial underestimation 
of the skewness: the observed skewness is 0.84, while modelled skewness is 0.43. A recent work3 finds that non-
linear models with quadratic terms could simulate a skewed probability distribution found in the GFDL CM2.1 
climate model. However, they use more data by virtue of modelling several principal components of SST, while 
we only model two variables. Moreover, the skewness in their run of GFDL CM2.1 is much smaller than in the 
observations and is similar to our empirically modelled value of 0.40.

The simulation with basic forcing can capture the seasonal locking behavior relatively well (Fig. 3B), aside 
from the lower overall variability. Previous work has identified that seasonally-varying Bjerknes feedback 
( dTdt = c2(t)T ) is responsible for ENSO seasonal locking behavior30,39,42. Moreover, even using a seasonally-
resolved 1D model can lead to a good simulation of seasonal cycle41. Thus, the ability of our more complex model 
that includes two variables and a seasonally-varying Bjerknes feedback effect to capture the seasonal locking 
behavior is quite expected.

There are some minor differences between the modelled and the observed spectra (Fig. 3C). Specifically, the 
combination mode (C mode) is less pronounced in the modelled spectrum. In addition, the empirical model 
slightly overestimates the high-frequency variability.

The composite plots of SST anomalies during the cold and warm events are shown in Fig. 3D. Unlike in the 
observations26, there is no marked transition asymmetry between El Niño and La Niña events. The stochastic 
model also exhibits a spring predictability barrier (Fig. 3E). The thermocline tends to be better predicted at longer 
lags, but there is also a predictability barrier (Fig. 3F). The barrier is less pronounced compared to SST, and it 
happens in winter. The winter barrier has been previously identified in literature43.

Simulation with complex forcing taken from observations.  In the more complex forcing case we use empirically 
derived auto- and cross-correlated uT and uh forcing (see “Methods”). The spectra of this forcing are shown 
in Fig. S8. Our results (Fig.  4) indicate that temporal structure of the forcing increases ENSO amplitude (Fig.  
4A,B). This is consistent with previous indications that the component of noise with periods longer than two 
months is very effective at generating ENSO44,45. A range of physical processes can contribute to this forcing 
component23,40,46–49. However, none of the previous work implicates thermocline processes. Our spectral results 
indicate that there is a previously unidentified oscillation related to the thermocline with a broad period of 
between about half a year to about two years that may contribute to the ENSO amplitude. The precise role of the 
different spectral components of the forcing in generating ENSO is a topic of active research45. Future work can 
conduct the sensitivity analysis of the stochastic model to various forms of driving forcing.

Using the more complex forcing dampens short-term variability and improves the representation of the 
C-mode spectral peak found in the observations (Fig. 4C). The C-mode arises due to the combined effects of 
annual and interannual frequencies present in the ENSO system42,50, and it includes frequencies 1− f  and 1+ f  
where f is the natural ENSO frequency. In fact, now the modelled spectrum is in almost perfect match to the 
observations. Our results suggest that while basic uncorrelated forcing and seasonally-varying dynamics explain 
most of the spectral features, using more complex forcing provides additional improvements.

The observed pdf is now much better represented, with higher skewness compared to the basic forcing case 
(Fig. 4A). Specifically, the modelled skewness is now 0.73, which is close to the observed value of 0.84. Choosing 
even longer block sizes leads to even better skewness results, and this effects holds for empirical models with 
different smoothness parameters (Fig. S9), and even when model output is nudged to the range of observations 
(Fig. S10). A block size of 20 years appears to be optimal. However, using larger block sizes decreases effective 
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Figure 4.   Same as Fig. 3, but for the case of complex time-dependent input forcing that was block-resampled 
from the observations.
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sample size, since we have a short observational record. Hence, we only analyze a run forced with 10-year resa-
mpled forcing in detail. An additional experiment with purely additive independent noise results in skewness of 
0.52 (Fig. S11). Here, instead of using uniform CDF noise, we take samples directly from normal distributions 
with the local conditional means, and standard deviations given by the mean noise standard deviation over 
the state space for each month. The mean standard deviations are found by an arithmetic average of tendency 
standard deviations at each grid point of T and h, without multiplying by their joint pdf.

Previously, ENSO skewness has been explained by a range of physical processes19,26, which manifest them-
selves as (i) the quadratic term of the nonlinear dynamical heating dTdt = c4T

24, (ii) threshold behavior of the 
mean term as a function of SST40 or (iii) the temperature-dependent noise30,44,51. Our work indicates that the 
non-planarities in the dynamics (i and ii) explain the majority of ENSO’s skewness, and suggest a relatively small 
role for the state-dependent noise52. On the other hand, the results point to the role of time-dependent forcing 
in increasing ENSO’s skewness.

Using the more complex forcing also results in transition asymmetry (Fig. 4D). Specifically, an El Niño tends 
to be followed by a La Niña, yet La Niñas tends to persist until following years, as in the observations26. As in the 
basic forcing case, the stochastic model also exhibits a spring predictability barrier in SST (Fig. 4E). There is no 
SST predictability improvement from the basic forcing to the more complex forcing case, however the winter 
thermocline barrier becomes less pronounced (Fig. 4F).

Discussion
Our method can be compared with previous work14. They approximate the conditional pdfs used to calculate 
the mean and the noise terms with simple histograms. However, this limits their method to large datasets, thus 
restricting its applicability. In our case we demonstrate that the method can be applied with just 59 data points 
(for each month).

Our results confirm the view that ENSO can be represented as a low-dimensional system with just two vari-
ables, whose dynamics is changing with season, and which is forced by complex external forcing that includes a 
long-term component. The role of the multiplicative noise in generating ENSO’s skewness appears to be small, if 
any. Our results suggest that most of ENSO’s observed skewness is a result of feedback processes involving SST 
and the thermocline, while the rest is contributed to by auto- and cross-correlation in the forcing.

Our work is subject to important caveats. First, we do not provide explicit estimates of the confidence bounds 
for the mean and the noise functions. Instead, we use the perfect model experiments with known data to quali-
tatively inform us about the skill of our method. While we provide some sensitivity of our results to the KDE 
smoothness parameter and to the specifics of the numerical integration (Figs. S9, S10), our estimation of ENSO 
dynamics needs to be validated using other methods. In addition, the observational record is short. Thus, some 
of the observed and modelled ENSO time series features may be simply caused by randomness, and are not 
true features of the system. Finally, this work assumes cyclostationarity of ENSO. In reality, the autocovariance 
function of SST and thermocline depth anomaly is expected to somewhat vary with time on an interdecadal 
time-scale due to slow changes in the background state of the tropical Pacific ocean. Moreover, the background 
state itself can be affected by ENSO through rectification of ENSO variability.

Further work can involve analyzing in greater detail the prediction skill of our model. Ensemble simulations 
of the stochastic model can provide insights into which features of the observed short observational record are 
likely to be a real property of the system, and which may arise due to chance. In addition, model simulations 
with various noise structures can elucidate the effects different noise components have on ENSO properties 
(e.g., skewness).

In summary, we propose an equation-free method to estimate a stochastic dynamical system from obser-
vational data. The method does not impose restrictive assumptions on the data, and allows us to discover the 
properties of noise which is forcing the underlying dynamical system. We illustrate the skill of the method on 
three simulated datasets and then apply it to El Niño–Southern Oscillation—a 2-variable system. The method 
proves that ENSO can be well-represented as two-dimensional system, provides insights into ENSO dynamics, 
and results in simulations with a near-perfect fit to observed time series properties. This is remarkable given the 
issues many complex climate models have in simulating these properties53 and that these models generally fail 
at even producing correct ENSO skewness51.

The method can be in principle applied across disciplines, with the goal of inverse and forward modelling, 
and for predictability and prediction research. Furthermore, it could be used for generating large amounts of 
simulated data with desired properties—a procedure which is relevant for several fields, including health care, 
fraud detection systems, machine learning, and self-driving cars54.

Materials and methods
Calculation of SST and thermocline anomalies.  Thermocline and SST anomalies are calculated in the 
following way. First, an area average is carried out for the Niño 3 region (5°S–5°N, 150°W–90°W) and equato-
rial line for tropical Pacific (120°E–80°W) for SST and thermocline depth (17 °C isotherm), respectively. The 
isotherm is calculated using vertical linear interpolation of the original ocean temperature data. Both datasets 
are monthly over a period 1958–2016. Then, the data are linearly detrended, and the seasonal cycle is removed 
by subtracting monthly means for the entire period. Switching the order of the detrending and seasonal cycle 
removal has only minor effect on the processed data.

Details of the empirical stochastic model.  We estimate separate models for each month. We use 
smoothing of s = 1.75 . We choose this value because it results in smooth estimates of the conditional mean and 
standard deviation fields, while being reasonably close to values used in the perfect model experiments. The 



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2648  | https://doi.org/10.1038/s41598-021-81162-2

www.nature.com/scientificreports/

KDE estimates are evaluated on a regular 150× 150× 150 grid of state and tendency values. The grid encom-
passes the observed range that has been extended 20% in each direction (e.g., 20% on the bottom and 20% on 
top) in each dimension.

Basic forcing.  Using uniform forcing uT and uh will be incorrect if the stochastic model is overdispersive 
(e.g., too broad pdf of 

[

T , h, dTdt

]T
 at any given month, etc.), which we find is a tendency of our smoothing-based 

KDE model. Thus, we obtain the forcing empirically as follows: we obtain a sequence of (uT , uh)(1), ..., (uT , uh)(n) 
in the 59-year long observational and reanalyzed records by calculating the conditional CDF of dTdt  evaluated at 
the observed sequence ( dTdt ,T , h,m)(1), ..., ( dTdt ,T , h,m)(n) , e.g., u(i)T = F( dTdt

(i)
|T(i), h(i),m(i)) . We then take inde-

pendent samples of uT and uh and force the model with these samples (i.e., for each sampled uT we calculated 
associated temperature tendency using Eq. 5 and similarly for thermocline). Such re-sampling aims to preserve 
the overall pdf of uT and uh , while erasing all self-correlation and cross-correlation at all lags. An independent 
noise assumption is commonly employed in physically-based simple ENSO models4,28,39. We perform a forward 
integration of the model for 100,000 monthly time steps starting from neutral conditions in January and using 
Euler’s method.

The relationship between the forcing u as used here and the Gaussian noise typically employed in stochastic 
differential equations (Eq. 1) requires clarification. Previous work often uses standard Gaussian noise ξ0 that is 
multiplied by a state-dependent matrix-valued diffusion function. Here, similar noise is ξ0 = [�−1(uT ),�

−1(uT ) ] 
where �−1 is a univariate CDF of a standard normal distribution. If the KDE-derived conditional pdf is equal to 
the true underlying conditional pdf, and in the limit of infinite observations, this noise would follow a standard 
Gaussian distribution. Note that in our formulation when this noise is zero, the resulting tendency is a condi-
tional median tendency, rather than the conditional mean. We choose to work with the forcing u = [uT , uh] 
rather than with the more similar noise ξ0 since there is a simple transformation between elements of u and the 
tendencies—the conditional quantile functions F−1(·).

More complex forcing.  In the more complex forcing formulation we account for the fact that the forcing 
uT , uh may be auto- and cross-correlated. We block-resample the previously-obtained empirical 59-year time-
series of (uT , uh)(1), ..., (uT , uh)(n) , with 10-year block sizes. Such re-sampling aims to preserve forcing autocor-
relations, as well as cross-correlations (since blocks of both T and h are reshuffled together) that are found in the 
observations. As previously, we run the model for 100,000 years.

ENSO event definitions.  ENSO warm and cold events used to calculate composites shown in Figs.  3 and 
4 are defined following prior work55, with some differences. Specifically, here a warm event is defined for Decem-
ber when a 5-month running mean of Niño 3 region SST centered on December is above the 90th percentile of 
the original time-series for three previous months including December (e.g., October, November, and Decem-
ber). The cold events are defined similarly except the running mean SST must be below the 10th percentile.
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