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SUMMARY

Gene expression profiles of more than 10,000 individual microglial cells isolated from cortex and 

hippocampus of male and female AppNL-G-F mice over time demonstrate that progressive 

amyloid-b accumulation accelerates two main activated microglia states that are also present 

during normal aging. Activated response microglia (ARMs) are composed of specialized 

subgroups overexpressing MHC type II and putative tissue repair genes (Dkk2, Gpnmb, and Spp1) 

and are strongly enriched with Alzheimer’s disease (AD) risk genes. Microglia from female mice 
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progress faster in this activation trajectory. Similar activated states are also found in a second AD 

model and in human brain. Apoe, the major genetic risk factor for AD, regulates the ARMs but not 

the interferon response microglia (IRMs). Thus, the ARMs response is the converging point for 

aging, sex, and genetic AD risk factors.

Graphical Abstract

In Brief

Sala Frigerio et al. show how microglia respond to amyloid-b, the Alzheimer’s disease (AD)-

causing factor. Their major response, the ARMs response, is enriched for AD risk genes, is 

abolished by Apoe deletion, develops faster in female mice, and is also part of normal aging. Thus, 

major AD risk factors converge on microglia.

INTRODUCTION

Alzheimer’s disease (AD) is characterized by typical biochemical lesions (β-amyloid 

peptide [Ab] plaques and tau tangles) accompanied by extensive cellular changes (neuronal 

dystrophic alterations, neuronal cell loss, astrogliosis, and microgliosis) (De Strooper and 

Karran, 2016; Serrano-Pozo et al., 2011). Rare mutations in amyloid precursor protein 

(APP), presenilin (PSEN) 1 and 2 (Karch et al., 2014), ADAM10 (Suh et al., 2013), and 

ADAM17 (Hartl et al., 2018) trigger Aβ plaque accumulation and are sufficient to induce 

the full biochemical and morphological signature of AD. While this clearly indicates a major 
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role for Aβ in AD pathology (Jack et al., 2013; Selkoe and Hardy, 2016), even in these 

genetic forms, a decades-long asymptomatic phase is present (Bateman et al., 2012). Thus, 

in addition to Aβ plaques, other pathological processes, either in response to or in parallel to 

Aβ accumulation, need activation to cause neurodegenerative disease (De Strooper and 

Karran, 2016).

The search for the genetic risk determinants in sporadic AD has highlighted the central role 

of non-neuronal genes in pathways that do not appear directly related to Aβ metabolism 

(Cruchaga et al., 2014; Guerreiro et al., 2013; Lambert et al., 2013; Marioni et al., 2018; 

Salih et al., 2018; Sims et al., 2017; Villegas-Llerena et al., 2016). Most of the genes 

associated with the ~40 loci identified by genome-wide association (GWA) analysis or by 

rare variant sequencing studies are expressed in glial cells (e.g., APOE, TREM2, BIN1, 

CD33, INPP5D, CTSB, CTSD, and PICALM). Moreover, analysis of available single-cell 

transcriptome datasets for human brain cells reported an association between AD GWA 

signals and microglia as well as astrocytes (Calderon et al., 2017). Analysis of regulatory 

networks of genes differentially expressed in AD patients indicates that immune- and 

microglia-specific gene modules are key contributors to AD pathology (Zhang et al., 2013). 

Thus, genetic and molecular evidence suggest that Aβ accumulation is the trigger of a series 

of pathogenic processes in which microglia play a central role. No consistent hypothesis, 

however, links the causality implied by the mutations in the amyloid pathway genes to the 

genetic risk linking sporadic AD to inflammatory pathways. This has caused severe criticism 

on the amyloid cascade hypothesis for AD, raising questions about its validity in sporadic 

AD (Behl and Ziegler, 2017; Harrison and Owen, 2016; Herrup, 2015; Karran and Hardy, 

2014; Makin, 2018; Selkoe and Hardy, 2016). One possible resolution is that amyloid 

pathology acts only as a trigger in sporadic AD (Karran et al., 2011); i.e., Aβ accumulation 

is necessary but insufficient to cause full-blown disease. The cellular response, determined 

by the genetic makeup of the patients, tilts the table from a rather benign Aβ proteopathy to 

the severe neurodegeneration with inflammation and Tau pathology that characterizes AD 

(De Strooper and Karran, 2016). In this regard, further understanding of the microglia 

response to amyloid pathology and the role of risk factors for AD in this response is key.

Several groups have applied high-throughput single-cell genomics and proteomics methods 

to characterize the shift in microglial cell states after different kinds of insults (Friedman et 

al., 2018; Hammond et al., 2019; Keren-Shaul et al., 2017; Mathys et al., 2017; Mrdjen et 

al., 2018). In neurodegenerative settings, microglia develop disease-associated phenotypes, 

such as the microglial neurodegenerative phenotype (MGnD) (Krasemann et al., 2017) or 

the disease-associated microglia (DAMs) (Keren-Shaul et al., 2017), but it is still an open 

question whether different subsets of such phenotypes exist, whether there are brain-area- or 

sex-specific differences in the microglial responses to Aβ, and which are the roles of AD 

risk genes expressed in microglia.

Here, we set out to address in a systematic way the question of how microglia respond over 

time, in cortex and hippocampus, to progressive Aβ deposition and whether this is affected 

by the three major risk factors for AD, i.e., age, sex, and genetics. We use an App knockin 

mouse model (AppNL-G-F), which displays progressive amyloidosis and microgliosis while 

avoiding overexpression of APP via artificial promotors (Masuda et al., 2016; Saito et al., 
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2014; Sasaguri et al., 2017) (Figure 1A). We show that the microglial responses to Aβ 
pathology are complex but, surprisingly, largely reproducible cell states that are also 

appearing during normal aging, albeit slower and quantitatively more limited. Moreover, we 

show that microglia in female mice tend to react earlier and in a more pronounced way than 

microglia in male mice, particularly in older mice. Interestingly, the major response of 

microglia to amyloid pathology is enriched for AD risk genes, with Apoe expression, in 

particular, becoming highly upregulated. This is partially confirmed in human tissue. 

Analysis of microglia from an Apoenull AD mouse model showed that the main Aβ response 

is severely impaired in the absence of Apoe.

RESULTS

We analyzed cortical and hippocampal microglia in female and male C57BL/6J wild-type 

and in AppNL-G-F mice at four different time points: at the beginning of Aβ deposition (3 

months old [m.o.]), at the beginning of overt histologically detectable microgliosis (6 m.o.), 

when both processes are well underway (12 m.o.), and at a late stage (21 m.o.) (Masuda et 

al., 2016) (Figure 1A). All together, we analyzed 32 different experimental conditions, 

taking into consideration the combinations of genotype, age, sex, and tissue (Figure 1A).

Tissue and cell suspensions were kept at <4°C during all steps of the isolation of microglia, 

to minimize artifactual activation (see STAR Methods). We isolated single live microglial 

cells (Cd11b+/DAPI−) by fluorescence-activated cell sorting (FACS) (Figure S1) and 

prepared single-cell full-length mRNA-sequencing libraries, using a modified SmartSeq2 

method (Picelli et al., 2013, 2014; Trombetta et al., 2014) (see Figure 1A and STAR 

Methods). We sequenced a total of 12,024 single cells across the different experimental 

conditions. After quality control and removal of peripheral neutrophils (see Figure S2A and 

STAR Methods), we retained 10,801 microglial cells for further analysis.

Aging and Aβ Deposition Induce Similar Responses in Microglia

We next performed clustering analysis (see STAR Methods), which resulted in the 

identification of 6 major subpopulations of microglia (Figure 1B), displaying different 

abundances between genotypes and age groups (Figure 1C).

Two clusters expressing high levels of known homeostatic microglia markers (Tmem119, 

P2ry12, and Cx3cr1; Figure 1D) (Butovsky et al., 2014) dominated the whole microglial 

population (homeostatic 1 microglia and homeostatic 2 microglia; H1Ms and H2Ms, 

respectively; Figure 1B). In wild-type mice, H1Ms and H2Ms together accounted for 80%–

90% of the total microglial population. They were roughly equally large at every time point, 

although H2Ms decreased by ~10% in 21-m.o. mice (Figure 1C). In AppNL-G-F mice, both 

H1Ms and H2Ms were equally (>40% of all microglia each) represented at 3 months but 

then showed a drastic decrease with age over the course of pathology, particularly H2Ms 

(Figures 1C and S3A). Thus, H2Ms seem to be more sensitive to aging and amyloid 

pathology than H1Ms. H1Ms and H2Ms display subtle differences in expression of more 

than 700 genes, with statistically significant fold changes of 1.1–1.5 in either direction. 

While no clear gene expression signature differentiates the two subsets, genes such as C1qa, 

C1qb, C1qc, Ctsb, Ctsd, Fth1, and Lyz2 were significantly upregulated in H2Ms. Therefore, 
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the cluster of H2Ms, although displaying a canonical homeostatic gene expression profile, 

seems more primed toward synapse pruning and heightened lysosomal activity and might 

therefore engage faster into more activated states. Interestingly, the clusters of H1Ms and 

H2Ms display a differential distribution relative to sex and tissue groups (Figures S3A–

S3D). Therefore, our data uncover previously unrecognized heterogeneity in homeostatic 

microglia.

The other clusters were quite divergent from the homeostatic ones (Figure 1D). One cluster 

(ARMs; Figure 1B) increased strongly in the AppNL-G-F mice. It is characterized by the 

expression of gene sets involved in inflammatory processes (Cst7, Clec7a, and Itgax), in 

major histocompatibility complex (MHC) class II presentation (Cd74, H2-Ab1, H2-Aa, 

Ctsb, and Ctsd), and possibly involved in tissue regeneration (Spp1, Gpnmb, and Dkk2) 

(Figures 1D and 1E). A second cluster (TRMs; transiting response microglia; Figure 1B) has 

an overall transcriptomic profile similar to that of the ARMs cluster but had lower 

expression levels of Apoe and other inflammatory genes, particularly of MHC class II genes, 

while it did not express tissue regeneration genes (Figures 1D and 1E). A third cluster (IRMs 

[interferon response microglia]; Figure 1B) displayed a high expression of several genes 

involved in innate immune response and interferon response type I pathways (e.g., Ifit2, 

Ifit3, Ifitm3, Irf7, and Oasl2), which were otherwise not expressed in other clusters (Figures 

1D and 1E). Finally, we identified a very small cluster of cells corresponding to 0.3%–1.2% 

of the total microglial pool (CPMs, cycling/proliferating microglia) (Figures 1B and 1C) that 

was enriched in genes involved in DNA replication, chromatin rearrangement, and cell cycle 

(e.g., Top2a, Mcm2, Tubb5, Mki67, and Cdk1) (Figure 1D). The cluster of CPMs did not 

display any selective enrichment for specific phenotypic groups (Figure 1C and S3A–S3D) 

and may represent a small pool of cycling microglia (Askew et al., 2017).

The proportion of cells in the clusters of reactive microglia (ARMs, TRMs, and IRMs) 

increased over age in both AppNL-G-F and wild-type mice (Figures 1C and S3A–S3D). 

Importantly, each cluster is present even in young wild-type mice (all together constituting 

5.5% of the total wild-type microglia at 3 m.o.; Figure 1C), demonstrating that these clusters 

are physiological states of microglia. Although amyloid pathology does not induce a unique 

pathological microglial state in this animal model, there is, however, a very outspoken 

quantitative effect on the ARMs cluster, with 87% of the microglia in this cluster coming 

from AppNL-G-F mice. The number of ARMs increased 5-fold (6% to 33%) between 3 and 6 

months, and by 12 months, they were the major type of microglia (52%) in the AppNL-G-F 

mice, outnumbering the two homeostatic clusters. ARMs are, nevertheless, also increasing 

with aging in wild-type mice, reaching 12% of the total number of microglia at 21 months of 

age (Figure 1C). IRMs were present at a low percentage in both wild-type and AppNL-G-F 

mice, but their number increased over aging, particularly in AppNL-G-F mice (Figures 1C 

and S3A). Thus, aging alone induces transcriptome changes leading to two subtypes of 

activated microglia (ARMs and IRMs), and Aβ deposition enhances both cell states 

significantly.
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Microglia Differentiate into Mutually Exclusive Response States

We wondered whether the different responses represented separate differentiation fates or 

consecutive steps on a continuous differentiation trajectory. Semi-supervised pseudotime 

analysis with Monocle 2 (Qiu et al., 2017a, 2017b; Trapnell et al., 2014) aligned microglial 

cells along a two-branched trajectory (Figure 2A). By identifying the distribution of cells 

from each cluster along these three branches, it becomes evident that homeostatic microglial 

cells (state 1) progressed either toward a state corresponding to the interferon-based IRMs 

response (state 2) or to a state corresponding to the heterogeneous ARMs response (state 3) 

(Figure 2A). This is quantitatively represented in Figure 2B, showing that 86% of 

homeostatic microglia (H1Ms and H2Ms) were retrieved in state 1, while 90% of the 

interferon response cells from the cluster of IRMs were in state 2, and 93% of the main Aβ-

responsive ARMs cluster cells were in state 3 (Figure 2B; Figure S4). Cells from the cluster 

of TRMs were distributed between state 1 (36%) and state 3 (63%) (Figure 2B; Figure S4), 

further suggesting that this cluster represents cells transitioning between the two stages. The 

few cells in the cluster of CPMs were mostly found in state 1 (54%; 43 cells) but were 

represented also in state 2 (18%; 14 cells) and state 3 (28%; 22 cells) (Figure 2B; Figure 

S4).

Remarkably, Apoe expression continually increases along pseudotime in the ARMs (state 3) 

branch, together with several inflammatory markers (e.g., Cst7) (Figure 2C). MHC class II 

genes (e.g., H2-Ab1 and Cd74) were predominantly expressed by cells toward mid-to-late 

pseudotime in the ARMs (state 3) branch (Figure 2C). Genes involved with tissue repair 

(e.g., Spp1 and Dkk2) were expressed only by cells at the farthest end of the ARMs (state 3) 

branch (Figure 2C), which also expressed the highest Apoe levels, indicating that this 

subpopulation represents an advanced evolution of the microglial response. Most (94%) of 

these cells are derived from the AppNL-G-F mice. Although Apoe is also expressed in some 

interferon response (state 2) branch cells, its expression levels were lower compared to those 

in state 3 cells (Figure 2C), in agreement with differential expression analysis conducted at 

the cluster level (discussed earlier).

Differential expression analysis did not yield tissue- or sex-specific responses (Figures S3E 

and S3F), indicating that microglial responses to Aβ deposition is actuated stereotypically in 

hippocampus and cortex. Interestingly, female microglia displayed a faster progression in 

the deployment of the ARMs response in 6 m.o. AppNL-G-F and onward (Figures 2D–2G), 

which is reflected by the higher proportion of female ARMs cells compared to that of males 

(Figure S3B). Thus, although the response types and the genes involved are conserved 

between the two sexes, microglia in female mice appear to react earlier to Aβ.

ARMs Display Distinct Subpopulations Enriched for GWAS AD Risk Genes

Strikingly, Apoe, the main genetic risk factor for AD (Corder et al., 1993; Lambert et al., 

2013), is strongly upregulated in ARMs, representing the major Aβ-response population 

(Figures 1D and 1E). Therefore, we wondered whether other AD risk genes are enriched 

among the genes that are differentially expressed (both up and down) in each of the reactive 

microglial clusters, compared to homeostatic microglia, using gene set enrichment analysis 

(GSEA) (Mootha et al., 2003; Subramanian et al., 2005). We used a list of genes associated 
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with family history of AD from a recent extensive GWA study (GWAS) (Marioni et al., 

2018). Taking into account that recent studies on polygenic risk scores show that genes with 

no genome-wide significance in GWASs still carry information with regard to risk of AD 

(Escott-Price et al., 2017), we decided to test for enrichment of GWAS genes at a number of 

different p value cutoffs (Figure 3A). For all tested p value cutoffs (ranging from p < 1e−6 to 

p < 0.01), only the ARMs cluster shows a strong enrichment for GWAS-associated AD 

genes (between p < 1e−6 and p <0.005), suggesting that polygenic risk associates with the 

ARMs cell state. The GSEA algorithm yields a set of GWAS genes most responsible for the 

observed enrichment (which we refer to as the GWAS core enrichment genes). In our case, 

using the set with the strongest enrichment (p < 1e−5), these genes are the well-established 

AD risk genes Apoe, H2-Eb1, Inpp5d, Bin1, and Ms4a6b but also Siglech (or CD33) and 

H2-Ab1, which have been suggested to be associated with AD (Lambert et al., 2013). 

Interestingly, Siglech, Inpp5d, Bin1, and Ms4a6b were significantly downregulated in the 

ARMs cluster, while the others were significantly upregulated. Further work is needed to 

determine whether these changes act in a protective or harmful way, but it is known that a 

SNP in the Siglech locus suppressing CD33 expression is protective in AD (Griciuc et al., 

2013), while a SNP increasing its expression also increases AD risk (Bradshaw et al., 2013). 

We further looked specifically at the expression level (Figure S5) of a list of AD-related 

genes (Table S2) compiled from an extensive literature review. The expression levels of 

cathepsins Ctsb and Ctsd, Trem2 and Tyrobp, H2-Eb1, Pld3, and Aplp2 were all 

significantly upregulated in the ARMs cluster, while Adam10, Bin1, Cass4, Cd33, Ctsf, 
Inpp5d, Ms4a6d, and Picalm showed decreased expression in the same cluster (Figure S5).

We next investigated the genes upregulated in the ARMs cluster relative to the homeostatic 

cluster in bulk tissue from human brains obtained from the Accelerating Medicines 

Partnership-AD (AMP-AD) portal (Hodes and Buckholtz, 2016). 62 of the top 100 genes 

upregulated in the ARMs cluster were also significantly (adjusted p < 0.05) upregulated in 

subjects with high plaque burden (Consortium to Establish a Registry for AD [CERAD] 

stage C3) compared to the stage-C0 subjects. The parahippocampal region from the Mount 

Sinai Brain Bank (MSBB) cohort region had the highest number of differentially expressed 

genes, with TREM2, ITGAX, and CD74 displaying the highest effect sizes (Figure 3D). 

Some of the GSEA core enrichment genes were also significantly upregulated in C3 

subjects: HLA-DRB5, HLA-DQA1, and HLA-DQB1 (orthologs of H2-Eb1 and H2-Ab1) 

(Figure 3D). We then sought to determine whether these expression changes due to plaque 

increase were independent of the presence of tangles. To test this hypothesis, we analyzed 

gene expression between subjects with different plaque load and without tangles (Braak 

stages 0, I, and II), the human conditions most analogous to AppNL-G-F mice. The top genes 

that increased with plaque mean score were TREM2, TYROBP, and CD68 in the MSBB 

parahippocampal dataset, with TREM2 displaying a 2.7-fold increase (p = 0.2 · 10−4).

As indicated earlier, the ARMs from AppNL-G-F mice do not appear as one homogeneous 

cluster. Therefore, we assessed whether we could further subdivide the ARMs cells. In 

Figure 3B, we visualized the signature score (see STAR Methods) for the upregulated 

GWAS core enrichment genes, showing two sub-clusters within the ARMs cluster (labeled 

“A” and “B” in Figure 3B). Both subclusters are highly enriched (96%) for AppNL-G-F cells, 

suggesting that these particular subsets of ARMs might constitute specific responses to Aβ 
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accumulation. The ARMs A sub-cluster expresses typical ARMs genes, along with genes 

possibly involved in tissue repair and remyelination, e.g., Spp1 (osteopontin, a 

chemoattractant and an adhesion protein involved in wound healing), Gpnmb (osteoactivin, 

involved in extracellular matrix remodelling), and Dkk2 (a secreted Wnt pathway 

antagonist) (Figure 1E). The ARMs B subcluster expresses Tmem119 but no genes 

overexpressed by other ARMs (e.g., Spp1, Lpl, Gpnmb, Apoe, Clec7a, and Cst7) (Figure 

1E). Thus, in AppNL-G-F mice, Aβ boosts the heterogeneous ARMs response, with a gene 

signature that is enriched with AD risk genes, and elements of which can be retrieved in 

human subjects displaying a high plaque load.

Apoe-Expressing Microglia Cluster around β-amyloid Plaques

We were particularly intrigued by the high expression of Apoe in ARMs. As Apoe is mainly 

expressed by astrocytes in non-pathological conditions, we wondered whether astrocytes 

would also increase Apoe expression upon exposure to Aβ plaques. We performed single-

molecule fluorescence in situ hybridization (smFISH) with RNAscope probes against Apoe 
and Itgam or Slc1a3 to mark microglia and astrocytes, respectively. smFISH was coupled 

with immunofluorescent detection of Aβ plaques using 6E10 antibody (Figures 4A–4F). 

Itgam and Apoe signals strongly colocalized in cells associated with plaques, while this was 

rare in cells located further away from plaques (Figures 4A, 4B, and 4G). Staining with the 

astrocyte marker Slc1a3 (Figures 4D and 4E) confirmed that astrocytes, but no microglia, 

were expressing Apoe in wild-type mice (Figures 4C and 4F).

We quantified the intensity of Apoe staining in microglia and astrocytes at different 

distances from plaques. The intensity of Apoe staining gradually increased in both cell types 

when closer to plaques, but the increase was much higher in microglia than in astrocytes 

(Figure 3G). Microglia, furthermore, were clustered around Aβ plaques, while astrocytes 

were evenly distributed across the tissue (Figure 4H).

These results indicate that microglia constitute the main cellular response close to plaques 

and that ApoE production at plaques is mainly of microglial origin. We did not see an 

increase of cycling cells (cluster of CPMs) in AppNL-G-F mice, suggesting that the increased 

number of microglia next to plaques is not due to increased proliferation and represents 

likely the evolution of microglia from homeostatic H1 and H2 to reactive ARMs cell states 

in AppNL-G-F.

Deletion of Apoe Suppresses the Microglial Responseto β-amyloid

We wondered whether Apoe was directly involved in the microglial responses to Aβ 
pathology. An Apoenull mouse strain is not available on an AppNL-G-F background at this 

moment; therefore, we used a second AD mouse model (APP/PS1) for which an Apoenull 

strain has been recently developed (APP/PS1-Apoenull; [E.H., J. Klickstein, C. Cannavo, R. 

Jackson, A. Muzikansky, S. Gandhi, D. Urick, T. Sargent, L. Wrobleski, A.D. Roe,S., Hou, 

K.V. Kuchibhotla, R.A. Betensky, T. Spires-Jones, B.T. Hyman, unpublished data]). We 

sequenced 2,304 single cells from 18-m.o. male APP/PS1 and APP/PS1-Apoenull mice and 

from the respective control strains, C57BL/6J and C57BL/6J-Apoenull. After quality control 

and removal of peripheral neutrophils (Figure S6), we retained 1,880 microglial cells for 
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further analysis. Clustering analysis of cells from all four genotypes identified 4 major 

microglial populations (Figure 5A, middle) and was consistent with a similar analysis 

performed after removal of Apoe from the original gene count matrix (data not shown).

We confirmed that the overall microglial responses in APP/PS1 mice were similar to those 

seen in AppNL-G-F mice. The major cluster displayed high expression of homeostatic genes 

(Figure 5B) (H1/2M [homeostatic microglia 1 and 2]; Figure 5A). A second cluster 

displayed a high score for the ARMs signature (ARMs cluster; Figure 5A, right), while a 

third cluster displayed high scores for the interferon response signature (IRMs cluster; 

Figure 5A, left). A fourth cluster displayed high levels of homeostatic genes but also a 

higher ARMs score compared to that of cluster H1/2M, thus representing a transiting state 

between H1/2M and ARMs (TRMs cluster; Figure 5A). Notably, the ARMs cluster was 

strongly enriched for APP/PS1 microglia (15% of all APP/PS1 microglia; p = 0.08e–10) but 

contained only very few (2%) APP/PS1-Apoenull cells (Figure 5D). Conversely, APP/PS1-
Apoenull mice showed 6% cells in the IRMs cluster versus 3% of microglia in APP/PS1 
mice (Figure 5C). Thus, deletion of Apoe impairs the normal deployment of the ARMs 

response but does not block the IRMs response. Moreover, lack of Apoe boosted the 

interferon-type response independently of Aβ deposition, as C57BL/6J-Apoenull showed a 

tendency for a higher percentage of IRMs compared to C57BL/6J mice (2.9% versus 1.2%, 

respectively) (Figure 5C). This is in agreement with gene expression data from AppNL-G-F 

mice, which displayed high levels of Apoe in ARMs cells, while IRMs cells showed only a 

moderate increase in Apoe expression (Figure 2C).

Plaques of APP/PS1 mice appear bigger and more amorphous compared to plaques in 

AppNL-G-F mice (Figures 6A and 6B), as evidenced elsewhere (E.H.,J. Klickstein, C. 

Cannavo, R. Jackson,A. Muzikansky, S. Gandhi, D. Urick,T. Sargent, L. Wrobleski, A.D. 

Roe,S., Hou, K.V. Kuchibhotla, R.A. Betensky,T. Spires-Jones, B.T. Hyman, unpublished 

data). In both AppNL-G-F and APP/PS1 mice, plaques are stained heavily for ApoE, and 

microglia appear to develop ramifications and to invade plaques (Figures 6A and 6B). Lack 

of Apoe expression did not alter the global amyloid burden (Figures 6B, 6D, and 6E); 

however, it caused a significant decrease in the amounts of Metoxy-XO4-stained amyloid 

(Figure 6F), as previously reported for other Apoenull AD mouse models (Holtzman et al., 

2000; Irizarry et al., 2000; Krasemann et al., 2017; Ulrich et al., 2018), with a consequent 

shift of the total versus dense core amyloid ratio (Figure 6G). Moreover, lack of ApoE 

causes a significant decreased density of microglial cells around amyloid deposits (p < 

0.001; Figure 6H). Thus, ApoE, next to be involved in amyloid aggregation, also appears 

required to mount a full ARMs transcriptional response against Aβ plaques.

DISCUSSION

Our data show previously unrecognized heterogeneity in both homeostatic and reactive 

microglia. We identified two populations of homeostatic microglia (H1Ms and H2Ms), 

which display subtle but significant gene expression differences and are differentially 

enriched in different brain areas and in female compared to male mice. The separation in 

these two clusters is relevant, as H2Ms cells also decline more rapidly than H1Ms cells with 

aging. We identified also two major populations of reactive microglia. One displays a 
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multifunctional gene response that we call here the ARMs response. Although the ARMs 

response overlaps with the DAMs response described by Keren-Shaul et al. (2017), we 

provide evidence that these cells are part of the normal evolution of microglia in healthy 

aging, and we find the term “disease associated” misleading. In fact, ARMs cells are already 

detected in the brains of wild-type mice at young ages, further underlining that they are not 

necessarily disease associated. The presence of amyloid plaques in AppNL-G-F mice boosts 

the redistribution of homeostatic microglia to ARMs cells, which eventually become the 

predominant population. At odds with the original DAMs response description is also the 

heterogeneity in the ARMs group uncovered here: several subpopulations can be discerned 

by the expression of specific subsets of genes, such as genes involved in MHC class II 

presentation (H2-Ab1, H2-Aa, and Cd74) and genes potentially involved in tissue repair 

(Spp1, Gpnmb, and Dkk2). These subsets are highly enriched for AppNL-G-F microglia, 

suggesting that they could represent an exaggerated or modified response to the plaques and 

that these sub-responses might provide the real pathological signature of microglia in AD.

The second population of reactive microglia is enriched for interferon response genes and 

therefore called the IRMs response. IRMs are again present in wild-type and AppNL-G-F 

mice in all age groups and, therefore, again part of the normal physiological heterogeneity of 

microglia in the healthy mouse brain. The IRMs population is much less affected by the 

presence of amyloid plaques than the ARMs population. Interestingly, gene enrichment 

analysis indicates that ARMs, but not IRMs, are enriched for known AD risk genes such as 

Apoe, Trem2, Tyrobp (DAP12), Ctsb, Ctsd, H2-Eb1, and Pld3 (Cruchaga and Goate, 2015a, 

2015b; Cruchaga et al., 2014; Fazzari et al., 2017; Heilmann et al., 2015; Hooli et al., 2015; 

Lambert et al., 2015; van der Lee et al., 2015). This strongly argues that the role of these 

genetic risk factors in AD is in the activation and function of this specific microglia 

subpopulation.

Microglia expressing interferon response genes have been described as a late response to 

neurodegeneration in a CK-p25 model (Mathys et al., 2017); however, these look quite 

different from the IRMs described here. For example, IRMs do not co-express MHC genes 

and, as stated earlier, are present also in healthy, normal brain, even at a young age. It should 

be noted that CK-p25 induces a rapid and severe neurodegeneration that might be different 

mechanistically from the very slow and mild disease caused in AppNL-G-F mice by Aβ 
deposition. AppNL-G-F mice are regarded as models of early AD pathology.

Pseudotime analysis is a good way to investigate how different microglial expression 

profiles relate to each other (Trapnell et al., 2014). This analysis suggests that the different 

cell states we describe here are, in fact, part of a continuous spectrum, with homeostatic 

microglia (H1Ms and H2Ms) adapting two major response branches, IRMs and ARMs, 

which increase during aging and especially upon exposure to Aβ. These branching 

trajectories broadly match the old classification of microglia as resting (M0), pro-

inflammatory (M1), and pro-resolution (M2) microglia, but they also indicate that microglial 

phenotypes are highly dynamic (Butovsky and Weiner, 2018; Friedman et al., 2018; Keren-

Shaul et al., 2017; Mrdjen et al., 2018; Ransohoff, 2016).
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Heterogeneity of microglia between different brain areas (Grabert et al., 2016) and between 

different sexes (Villa et al., 2018) is increasingly recognized. We show here, however, that 

the response to Aβ deposition evolves stereotypically across brain areas (cortex and 

hippocampus) in animals of both sexes. Remarkably, we show that microglia in female mice 

progress faster over the ARMs trajectory compared to microglia in male mice (Figure 2D). 

This is in agreement with previous histological analysis (Masuda et al., 2016). Such sex-

dependent differences in microglial responses are interesting to note, as there is a higher 

incidence of AD in women (Ferretti et al., 2018; van der Flier and Scheltens, 2005; Laws et 

al., 2018; Mazure and Swendsen, 2016).

We demonstrate here, in agreement with previous findings (Keren-Shaul et al., 2017; 

Krasemann et al., 2017), that ARMs induce Apoe expression up to 27-fold, compared to 

homeostatic microglia. In particular, in proximity to plaques, microglia express higher levels 

of Apoe than astrocytes (~2.3-fold higher median Apoe intensity per cell; Figure 3G). We 

show also that Apoe is not merely a marker for this cell state but is a key component of the 

ARMs response, as its deletion severely reduces the number of microglia displaying an 

ARMs signature (Figure 4) and affects the interaction of microglia with Aβ plaques (Figure 

5). Given this spectacular influence of Apoe expression on the phenotype of microglia, we 

speculate that a large part of the genetic risk associated with the APOE4 genotype (Corder et 

al., 1993; Rebeck et al., 1993) is likely executed via modification of the microglial function 

rather than other mechanisms. While we cannot exclude that the abnormal plaques that are 

generated in the absence of ApoE affect the microglia response, it seems more likely that 

ApoE directly modulates the response of the microglia to the plaques and that ApoE is 

responsible for the induction of the ARMs response to amyloid, likely by interacting with 

Trem2 (Yeh et al., 2016). Thus, the major genetic risk factor for AD, together with most 

other identified risk genes in GWASs, modulates the neuroinflammatory response of the 

microglia to amyloid plaques.

Our observation that many AD GWAS-associated genes appear to change their expression in 

the ARMs indicates an overlap between the pathogenesis of AD in humans and the 

microglial response to the accumulation of amyloid in the brain of the mouse models. Thus, 

these GWAS variants, when present in a patient, likely affect the way that microglia cope 

with the accumulation of amyloid over age. In that capacity, they might either exacerbate or 

act protectively with regard to the onset of the disease. Such a view predicts that patients 

with a high load of amyloid but with a protective combined polygenic risk score (which, in 

the case of AD, covers mostly genes expressed in microglia) will respond in a beneficial way 

to amyloid and will not develop full-blown AD.

In conclusion, our data refine the concepts of homeostatic and reactive microglia and 

indicate that major AD risk factors (age, sex, and APOE) link to a multifunctional and 

complex microglial response to amyloid plaques that evolves over different branches of a 

continuous spectrum of molecular phenotypes. The complex response of the microglia, even 

when described as a unique cell state, “ARMs,” is probably not so surprising, as the 

responses of individual microglia will likely profoundly depend on factors in the 

microenvironment of the plaques requiring differential functions of the microglial toolkit to 

be engaged. A particular challenge for the future is to dissect the distribution of different 
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ARMs subpopulations over the brain and to add functional significance to the different gene 

expression patterns. It is likely that such functional dissection will lead to a whole set of 

novel drug targets that each will be useful in modulating a microglial response that is most 

beneficial for AD.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Prof. Bart De Strooper (bart.destrooper@kuleuven.vib.be).

EXPERIMENTAL MODELS DETAILS

Mice—For the 3, 6 and 12 m.o. time points we used homozygous AppNL-G-F (Saito et al., 

2014) mice, backcrossed for at least 2 generations with C57BL/6J mice in the De Strooper 

lab, and wild-type C57BL/6J mice themselves. For the 21 m.o. time point, both AppNL-G-F 

and C57BL/6J mice were transferred from the Saido lab to the De Strooper lab, and housed 

at least 1 month before being used for experiments. Both male and female AppNL-G-F and 

C57BL/6J mice were used for experiments. The novel APP/PS1-Apoenull strain is described 

in another manuscript [Hudry et al., submitted]. Briefly, APPswe/PS1dE9 (APP/PS1) were 

crossed with a C57BL/6J-Apoenull breeder to obtain homozygous APP/PS1-Apoenull mice. 

APP/PS1-Apoenull mice, along with parental APP/PS1 mice and the respective control 

strains C57BL/6J and C57BL/6J-Apoenull, were transferred from the Hyman lab to the De 

Strooper lab, and housed for at least 1 month before being used for experiments. Only male 

APP/PS1, APP/PS1-Apoenull, C57BL/6J and C57BL/6J-Apoenull were used. In every case, 

mice were housed according to the appropriate institution’s ethical requirements, and in 

compliance to the country’s laws for animal research.

METHOD DETAILS

Single cell suspension preparation—Mice were euthanized with CO2 and then 

rapidly perfused with ice cold PBS for 10–15 minutes using a pumping rate of 100 mL/h. 

The dissection (Srinivasan et al., 2016) and microglia isolation steps were carried out on ice 

or at +4°C, to minimize microglia activation due to technical artifacts. We removed the brain 

and placed it on a chilled glass plate sitting on wet ice. We quickly dissected the whole 

cortex and the whole hippocampus separately, using instruments chilled on ice. The tissue 

was finely chopped using a chilled razorblade and then transferred to a tube containing ice-

cold Hibernate A medium without phenol red (BrainBits, Springfield, IL). For each 

experimental condition we pooled tissue from two mice. We prepared a single cell 

suspension from the minced tissue using the Adult Brain Dissociation kit from Miltenyi 

Biotec (Bergisch Gladbach, Germany) adapting manufacturer’s recommendations for 

manual tissue processing. First, we pelleted the tissue chunks by centrifugation (300 g for 2 

minutes at 4°C), removed the Hibernate A medium and resuspended the tissue in a mix of 

buffer Z with enzymes P, A and Y prepared according to the manufacturer’s instructions. We 

next placed the tubes horizontally on ice for 30 minutes, with mechanical dissociation steps 

performed at 10 minutes intervals (first with 5 mL pipettes, then with fire-polished glass 

Pasteur pipettes, and lastly with P1000 tips). The resulting cell suspension was filtered on a 
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70 μm cell strainer, and the strainer was washed with 10 mL of D-PBS containing 

magnesium, calcium, glucose, and pyruvate (Life Technologies, Carlsbad, CA). Cells were 

centrifuged, resuspended in D-PBS, gently mixed with Debris Removal Solution, and 

overlaid with D-PBS according to manufacturer’s instructions. After centrifugation (3000 g 

for 10 minutes at 4°C), cells were washed once with D-PBS, resuspended in 1X Red Blood 

Cell Removal Solution, incubated for 10 minutes at 4°C, diluted 10 times with D-PBS 

containing 0.5% BSA (Miltenyi Biotec), and pelleted by centrifugation. Cells were finally 

resuspended in D-PBS containing 0.5% BSA.

Single microglia isolation by FACS—The single cell suspension was stained by 

incubation for 20 minutes on ice with anti-CD11b-PE conjugated primary antibody 

(Miltenyi Biotec) at a 1:10 dilution. Just before loading on the sorter, cells were stained with 

DAPI (1:5000 final dilution). Cell sorting was performed with a BD FACSAria III (BD 

Biosciences, Franklin Lakes, NJ). Gating was calibrated by running non-stained and single 

stained (anti-CD11b-PE only and DAPI-only) samples. Single live microglia cells (CD11b+/

DAPI−) were sorted into independent wells of a 96-well plate, preloaded with 4 mL of 0.2% 

Triton in Ultrapure water (GIBCO), containing 1 U/μL of RNasinPlus RNase inhibitor 

(Promega, Madison, WI). After sorting, plates were sealed, briefly centrifuged, snap frozen 

on dry ice, and stored at −80°C until further processing.

Single cell mRNA libraries preparation and sequencing—Single cell 

retrotranscription and preparation of sequencing libraries was performed using a modified 

SmartSeq2 protocol (Picelli et al., 2013, 2014; Trombetta et al., 2014) to improve the yield 

of cDNA from single microglia cells. We used 5′-biotinylated primers throughout the 

protocol, oligo-dT and IS-PCR oligos were obtained from Integrated DNA Technologies 

(Skokie, IL), while template-switching oligo (TSO) was from Exiqon (Vedbaek, Denmark). 

First, 96-well plates with single sorted cells were thawed on ice, and we added to each well 

1 μL of 10 mM dNTPs, 0.5 μL of 5 μM oligo-dT, and 0.5 μL of a 1:2660000 dilution of 

ERCC RNA Spike-In mix (ThermoFisher, Waltham, MA). After incubating the plate at 

72°C for 3 minutes, we added to each well a retrotranscription mix (containing 1.5X First 

Strand buffer, 6.1 mM DTT, 1.7 M betaine, 10 mM MgCl2, 0.6 U/μL SUPERase IN, 11.1 U/

μL SuperScript II polymerase, and 1.3 μM TSO oligo). All retrotranscription mix 

components were from the SuperScript II Reverse Transcriptase kit (ThermoFisher), except 

betaine (Sigma, St. Louis, MO), SUPERase IN (ThermoFisher), and the TSO oligo. 

Retrotranscription reaction was carried out for 90 minutes at 42°C, followed by 10 cycles of 

2 minutes at 50°C and 2 minutes at 42°C, and completed by a 15 minutes incubation at 

70°C. Next, we added to each well a preamplification mix containing 1X Kapa HiFi HS 

readymix (Kapa Bio-systems, Wilmington, MA) and 0.2 μM of IS-PCR primer. 

Preamplification was carried out for 23 cycles (98°C for 20 s, 67°C for 15 s, 72°C for 6 

minutes). PCR products were purified using AMPure XP beads (Beckman Coulter, Brea, 

CA) at 1:0.6 ratio and according to manufacturer’s recommendations and eluted in 12 μL of 

EB buffer (QIAGEN, Hilden, Germany). cDNA preparation was checked by analyzing 

several random wells for each plate on an Agilent BioAnalyser DNA High Sensitivity chip 

(Agilent, Santa Clara, CA). We used the Nextera XT kit (Illumina, San Diego, CA) to 

tagment 1.25 μL of 1:15 diluted cDNA per reaction. Tagmentation reactions were assembled 
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at room temperature (RT) using 2.5 μL of TD buffer and 1.25 μL of ATM mix per sample, 

incubated at 55°C for 8 minutes, and then immediately placed on hold at 10°C. We next 

added 1.25 μL of NT buffer (Illumina) and further incubated for 5 minutes at RT. To amplify 

tagmentation products, we added 1.25 μL of appropriate indexed forward and reverse 

primers (Nextera XT Index kit v2, sets A, B, C, or D, all from Illumina), and 3.75 μL of 

NPM mix (Illumina). Amplification reaction was carried out for 12 cycles (95°C for 10 s, 

55°C for 30 s, 72°C for 30 s). Amplified products from each 96 well plate were pooled and 

purified using AMPure XP beads at 1:0.7 ratio. Purified pools were checked on an Agilent 

BioAnalyser DNA High Sensitivity chip, and quantified by quantitative PCR using the Kapa 

Library Quantification kit for Illumina libraries. Four 96-well plate pools with compatible 

indexes were further pooled to yield 384-samples libraries. Each library was sequenced on 

an Illumina NextSeq550 system using single end 75 base pair sequencing kits (Illumina).

Sequencing data analysis—Demultiplexed FASTQ files were aligned to the mouse 

genome (mm10 build) using STAR version 2.5.2 (Dobin et al., 2013) with default options. 

Reads aligned to each gene were counted using featureCounts version 1.5.1 (Liao et al., 

2014) with options -g gene_name -Q10. The count table was imported in R (version 3.4.4) 

for analysis. Data generated from AppNL-G-F and C57BL/6J mice, and data generated from 

APP/PS1, APP/PS1-Apoenull, C57BL/6J and C57BL/6J-Apoenull mice are referred here as 

two separate datasets.

Quality control of cells - step 1: For each dataset, to exclude poorly sequenced cells, 

damaged cells and dying cells, we filtered out cells outside the limits of median ± 4 * 

median absolute deviations for both reads number and genes detected; moreover, we 

excluded cells with more than 10% of reads aligning to mitochondrial genes (Figure S2A 

and Figure S6A). Data was analyzed by principal component analysis (PCA) to identify 

obvious batch effects, in which case we would discard the entire 96-well plate (we excluded 

two plates following this procedure). For the first dataset, the median depth of sequencing 

was 572,294 reads/cell, with an interquantile range of 253,445 reads/cell, while the median 

number of genes detected per cell was 2,250 (interquantile range: 572). After quality control 

(Figure S2A) we retained 11,038 cells for further analysis, with at least 270 cells for each 

experimental condition (Table S1).

Quality control of cells - step 2: For each dataset, we applied a workflow based on the R 

package Seurat (version 2.3.1 (Butler et al., 2018)) to identify and remove non-microglia 

cells before proceeding with analysis. For the first dataset, after data normalization and 

scaling, we performed principal component analysis (PCA) on the 4,687 most variable genes 

detected. Based on a scree plot (i.e., a plot of the PC eigenvalues in decreasing order) of 

standard deviations of the principal components (PCs), we selected the first 17 PCs as input 

for the calculations to identify cell clusters (Seurat FindClusters function). We then 

performed non-linear dimensionality reduction and we visualized cell clusters on a t-SNE 

plot (Figure S3A). We identified 10 major cellular populations, most of them showing a tight 

distribution on the t-SNE plot, with only two clusters (7 and 9) clearly separating (Figure 

S2B). Based on a panel of marker genes (Figure S2C), we had no enrichment for markers of 

brain cells other than microglia, but two clusters (7 and 9, figure S2B–C) showed high 
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expression levels of genes markers of perivascular macrophages (Mrc1) and neutrophils 

(Ccr2 and Pldb1). Indeed, clusters 7 and 9 scored low for a microglial genes signature 

(Figure S2D) and high for a neutrophil genes signature (Figure S2E). We did not find cells 

expressing gene signatures of other brain cells (Figure S2C: neurons (Gria2), astrocytes 

(Aqp4), oligodendrocytes (Olig1)), confirming that 97.9% of cells (10,801/11,038) in our 

post-QC dataset were microglia. Only the 10,801 microglia cells were retained for further 

analysis. For the second dataset, we considered the top 4,711 most variable genes, and we 

used the first 12 PCs for initial clustering. We identified several clusters, with one displaying 

high score for a neutrophil marker genes signature (cluster 12, Figure S6E), which was 

removed prior to subsequent analysis. The other cells scored high for a microglia marker 

genes signatures (Figure S6D), while expression of markers of other brain cell types were 

low or null (Figure S6C).

Clustering: Cells passing QC were analyzed using functions provided with the Seurat 

package. Data was log normalized and we regressed out the variables of read count and 

percentage of reads aligning on mitochondrial genes. Next, we identified the genes with 

highest variability and performed PCA on such gene set. We identified the most informative 

principal components based on a scree plot and we used these to perform cell clustering. 

Identification of differential expressed genes was performed using the Wilcox test 

implemented by Seurat’s FindMarker. t-SNE plots were prepared using Seurat’s t-SNE 

implementation. For the first dataset, we considered 4,777 highly variable genes for PCA 

and the first 14 PCs for clustering. The second dataset was analyzed similarly as described 

above, by performing PCA on the 4,967 most variable genes and by using the first 10 PCs to 

perform cluster analysis.

Pseudotime analysis: To infer the pseudotime of microglia progression toward response 

development we used functions provided with the Monocle 2 package (version 2.6.4 (Qiu et 

al., 2017a, 2017b; Trapnell et al., 2014)). We performed a semi-supervised identification of 

cell trajectories and states, based on marker genes identified during clustering. Briefly, we 

defined a series of genes (Apoe, Ifit3, H2-Aa, Dkk2), which are selectively expressed in 

each response type (main response and interferon-based) and in the subpopulations 

identified, which we used to build a classifier (CellTypeHierarchy) to assign cell identities in 

terms of microglia states of activation. We then calculated a covariance matrix for these 

marker genes, and we used the top 1000 genes (ranked by p value adjusted) to calculate 

single cell trajectories.

Differential Expression: Differential expression was performed using functions provided 

with the Seurat package; p values were calculated using the Wilcoxon rank-sum test, with all 

Seurat parameters set to default. Genes with adjusted p values (using a Bonferroni 

correction) <0.05, and ln fold changes > |0.2| were considered significantly differentially 

expressed.

Z scores of microglia responses signatures: For Figure 3, signatures were calculated using 

Seurat’s AddModuleScore function using a list of relevant genes identified from GSEA as 

input. For Figure 5, Z scores were calculated by considering the top genes showing 
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differential expression between ARM and homeostatic cells in the AppNL-G-F dataset (n 

genes = 18) or between the IRM and homeostatic cells in the AppNL-G-F dataset (n genes = 

28), respectively. Top genes were defined as being statistically significant after multiple 

testing correction and displaying at least 1 ln fold change. Apoe was excluded from the gene 

signature to avoid skewing the calculations in Apoenull samples.

Human RNaseq data analysis—We analyzed RNaseq data obtained from the AMP-AD 

(Accelerating Medicines Partnership – Alzheimer’s disease) portal (Hodes and Buckholtz, 

2016) for the ROSMAP (Religious Orders Study and Memory and Aging Project) 

(Mostafavi et al., 2018) and MSBB (Mount Sinai Brain Bank) cohorts (Wang et al., 2018). 

The identifiers for these studies on the AMP-AD portal (www.synapse.org) are syn3157743 

for MSBB and syn3388564 for ROSMAP. The reads were trimmed, aligned and mapped to 

the reference genome and the transcript expression levels quantified by their automated 

pipelines. The ROSMAP study provides RNaseq data from the Dorsolateral Prefrontal 

Cortex and the MSBB study has samples from the Prefrontal Cortex (PFC), Inferior Frontal 

Gyrus (IFG), Superior Temporal Gyrus (STG) and Parahippocampal Gyrus (PHG). Genes 

were considered to be microglial of their expression was at least two times the average 

expression in other cell types, according to cell type specific data provided by the “brain 

RNA seq” web portal (https://web.stanford.edu/group/barres_lab/brain_rnaseq.html). 

Sequencing data was analyzed as described in Bihlmeyer et al. (2019), and differential 

expression analysis was conducted using CERAD staging (Mirra et al., 1991) between C3 

and C0 subjects.

Multiplex RNAscope and immunofluorescence staining—Mice were euthanized 

with CO2 and then rapidly perfused with ice cold PBS (10 minutes at 100 mL/h). Brain was 

removed and separated into two hemispheres. One hemisphere was then embedded in molds 

containing Tissue-Tek OCT (VWR, Radnor, PA), snap frozen in a bath of ethanol and dry 

ice, and stored at −80°C to perform RNAscope experiments, while the other hemisphere was 

processed for immunostaining as described below.

OCT-embedded hemispheres were cut into 14 mm sagittal sections using a CryoStar NX70 

cryostat (ThermoFisher), layered on SuperFrost Plus glass slides (ThermoFisher) and further 

stored at −80°C before proceeding with experiments.

RNAscope experiments were performed using the Manual Fluorescent Multiplex kit v1 

(Advanced Cell Diagnostics, Newark, CA) following manufacturer’s recommendations with 

minor adjustments. After fixation in 4% paraformaldehyde (PFA) for 30 minutes, sections 

were dehydrated using a series of ethanol dilution steps; protease digestion was performed 

for 20 min at RT using Protease IV for fresh frozen tissue provided in the kit, and probes 

hybridization was carried out for 2 hours at 40°C. We used the following probe sets (all from 

Advanced Cell Diagnostics): Mm-Slc1a3 (430781), Mm-Itgam-C2 (311491-C2), Mm-Apoe-

C3 (313271-C3). Immediately after the RNAscope amplification steps, the sections were 

rinsed briefly with PBS and blocked for 1 hour at RT in PBS containing 0.3% Triton X-100 

and 5% normal goat serum. Sections were then immunostained with the anti-β-amyloid 1–

16 6E10 primary antibody (BioLegend, San Diego, CA) at 4°C overnight, washed 3 times 

for 5 minutes in PBS, and further stained for 1 hour at RT with an Atto-488-conjugated goat 
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anti-mouse secondary antibody (Sigma-Aldrich, Saint Louis, MO). Sections were then 

incubated for 30 s in a 1X TrueBlack (Biotium, Fremont, CA) solution to reduce lipofuscin 

autofluorescence, washed briefly and stained with DAPI (Sigma-Aldrich). Sections were 

mounted with FluorSave Reagent (Merck Millipore, Burlington, MA). Imaging was carried 

out on a Leica TCS SP8 X confocal microscope (Leica Microsystems, Wetzlar, Germany) 

using a 40X objective, images were analyzed using Fiji ImageJ (Rueden et al., 2017; 

Schindelin et al., 2012).

RNAscope image analysis and quantification—Three 21–25 months old mice for 

each C57BL/6J and AppNL-G-F strain were used for the quantifications. For each mouse, 

four images of the hippocampus (two of CA1, one of CA2 and one of CA3) and five images 

throughout the isocortex were acquired and stacked in Fiji ImageJ. NIS-elements software 

(Nikon, Amsterdam, Netherlands) was used to detect nuclei, microglia, astrocytes and 

plaques using a custom-made protocol. Nuclei and cell body perimeter were established 

using the DAPI signal; microglia and astrocytes were identified by RNAscope puncta from 

the Itgam and Slc3a1 probes. All parameters were kept constant between images to allow 

unbiased detection. Plaque staining was judged individually in each image, as plaques vary 

greatly in size and intensity of staining. Arbitrary plaques were drawn in the images of 

C57BL/6J mice. Images from C57BL/6J and AppNL-G-F mice were analyzed in the same 

manner, for the latter mice we considered only the dense plaques. Around each plaque, five 

concentric circles of 18.2 mm were drawn, for each circle we counted microglia and 

astrocytes cells, and for each cell we measured the intensity of the signal from the Apoe 
probeset.

Immunofluorescence staining—Mice were sacrificed with CO2 and perfused with ice 

cold PBS (10 minutes at 100 mL/h), and the brain divided into two hemispheres as described 

above. One of the hemispheres was fixed in 4% PFA overnight and then stored in PBS 

containing 0.01% sodium azide at +4°C until sectioning on a vibratome. For sectioning, the 

hemispheres were embedded in UltraPure agarose (Invitrogen, Carlsbad, CA) and cut into 

35 mm sections on a Vibratome Leica VT1000S. Antigen retrieval was performed using 

boiling citrate buffer (Sigma-Aldrich) at pH 6.0. The sections were then blocked in PBS 

with 0.3% Triton X-100 and 5% normal donkey serum for 1h at RT and incubated in 

primary antibody at 4°C overnight. The following day sections were washed with PBS and 

incubated with secondary antibodies for 1 hour at RT. Nuclei were stained with DAPI and 

sections were mounted with Fluorosave (Merck Millipore). The following primary 

antibodies were used: mouse anti-β-amyloid 1–16 6E10 (BioLegend), rabbit anti-Iba1 

(Wako-Chemicals, Neuss, Germany), goat anti-ApoE (Sigma-Aldrich). Secondary 

antibodies were: donkey anti-mouse Alexa 488 (Invitrogen A21202), donkey anti-rabbit 

Alexa 594 (Invitrogen A211207), donkey anti-goat Alexa 647 (Invitrogen A21447).

Amyloid load analysis

Tissue collection and processing: Mice were euthanized by CO2 asphyxiation and the brain 

tissue collected for immunohistochemical analysis. After fixation in 4% paraformaldehyde 

and cryoprotection in 30% glycerol, 40 mm-thick floating sections were cut on a freezing 

microtome. Floating sections were permeabilized in 0.5% triton in TBS, blocked in 5% 
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normal goat serum in TBS, and incubated with primary antibody (mouse anti-amyloid b 

Bam10, Sigma-Aldrich; rabbit anti-Iba-1, Wako) overnight at 4°C. Sections were then 

incubated with appropriate Alexa Fluor 488 or Alexa Fluor 568 conjugated secondary 

antibodies. Sections were mounted onto slides and coverslipped with Vectashield mounting 

medium with DAPI (Vector Labs, Burlingame, CA). For the counterstaining of dense-core 

amyloid plaques, the floating sections were incubated for 15 minutes in a solution of 1 μg/ml 

of Methoxy-XO4 (diluted in TBS) before mounting the slices with Fluoromount-G (No 

DAPI, SouthernBiotech, Birmingham, AL).

Stereology-based quantitative analyses: For the quantification of amyloid load, 

Alexa-568-anti-Amyloid immunolabeled and Methoxy-XO4 positive plaques were imaged 

using a NanoZoomer-XR Digital slide scanner (Hamamatsu Photonics, Shizuoka, Japan) 

under a 20X objective. The total surface of amyloid was determined using a custom-written 

script based on the “Analyze particle” function of Fiji (National Institutes of Health: http://

fiji.sc/), after defining the cortex as region of interest. The total surface occupied by amyloid 

was then reported to the cortical area of each section considered. Stereology-based study of 

amyloid-associated microglia was performed on immunolabeled sections using an Olympus 

BX52 epifluorescent microscope equipped with motorized stage, DP70 digital CCD camera, 

and CAST stereology software (Olympus, Tokyo, Japan). The cortex was outlined and 

microglia counts were made using 20X high numerical aperture (1.2) objective. Using a 

meander sampling of 70% of cortical area, images were captured each time an amyloid 

deposit was encountered. Those images were then analyzed using Fiji, counting the number 

of Iba1-positive microglial cells close to a plaque (< 50 μm) and reporting this number to the 

surface of the plaque considered. All pathology quantification was carried out blinded until 

the last statistical analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments can be found in the respective figure legends and method 

sections. We provide here a brief summary.

Differential gene expression—Differential expression was performed using functions 

provided with the Seurat R package. To calculate p values, we used the Wilcoxon rank-sum 

test with default parameters, and we used a Bonferroni correction to calculate adjusted p 

values for multiple testing. Genes with adjusted p values < 0.05, and with a fold change (ln 

scale) > |0.2| were considered significantly differentially expressed.

RNAscope signal quantification and cell count—Around each plaque, or an 

arbitrary point in C57BL/6J mice, we drew five concentric circles of 18.2 μm. We counted 

microglia (Itgam+) and astrocytes (Slc1a3+) in each ring, and for each cell we measured the 

intensity of the signal from the Apoe probeset using the Fiji software.

Stereological quantification of amyloid burden and microglia density—Sections 

were imaged with a 20X objective and an epifluorescent microscope, and data were 

analyzed using a custom script based on the “Analyze particle” function of Fiji software. 5 

to 7 mice per group werer analyzed, p values were calculated using the Mann-Whitney test.
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DATA AND SOFTWARE AVAILABILITY

Raw and normalized gene expression data have been deposited in GEO (GEO: GSE127893). 

Data can be browsed interactively at: scope.bdslab.org

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

Work in the De Strooper lab is supported by the Opening the Future campaign of the Leuven Universitair Fonds 
(LUF), the Alzheimer Research Foundation (SAO-FRA; P#16017), the Fonds voor Wetenschappelijk Onderzoek 
(FWO), VIB-KU Leuven, a Methusalem grant from KU Leuven and the Flemish Government, Vlaams Initiatief 
voor Netwerken voor Dementie Onderzoek (VIND; Strategic Basic Research Grant 135043), and the Alzheimer’s 
Association. B.D.S. is supported by the Geneeskundige Stichting Koningin Elisabeth and the Bax-Vanluffelen Chair 
for Alzheimer’s Disease. We were also supported by an anonymous foundation. Work in the Hyman lab is 
supported by a Massachusetts Alzheimer’s Disease Research Center grant (AG05134) and by the JPB Foundation. 
The ROSMAP project was supported by funding from the National Institute on Aging (AG034504 and AG041232). 
The MSBB data were generated from postmortem brain tissue collected through the Mount Sinai VA Medical 
Center Brain Bank and were provided by Dr. Eric Schadt from the Mount Sinai School of Medicine. The authors 
thank Prof. Sarah Teichmann (Wellcome Sanger Institute) and members of her laboratory for helpful and useful 
discussions and Prof. Thierry Voet (KU Leuven) for help in the initial setup of the SmartSeq2 protocol. We thank 
Yannick Fourne (VIB-KU Leuven) and Kristofer Davie (VIB-KU Leuven) for help in the setup of the online data 
browser. Cell sorting was performed at the KU Leuven FACS core facility, and sequencing was carried out by the 
VIB Nucleomics Core.

REFERENCES

Allen M, Carrasquillo MM, Funk C, Heavner BD, Zou F, Younkin CS, Burgess JD, Chai H-S, Crook J, 
Eddy JA, et al. (2016). Human whole genome genotype and transcriptome data for Alzheimer’s and 
other neurodegenerative diseases. Sci. Data 3, 160089. [PubMed: 27727239] 

Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P, Tipton T, Chapman MA, 
Riecken K, Beccari S, et al. (2017). Coupled proliferation and apoptosis maintain the rapid turnover 
of microglia in the adult brain. Cell Rep. 18, 391–405. [PubMed: 28076784] 

Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, 
Blazey TM, et al.; Dominantly Inherited Alzheimer Network (2012). Clinical and biomarker 
changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med 367, 795–804. [PubMed: 
22784036] 

Behl C, and Ziegler C (2017). Beyond amyloid—widening the view on Alzheimer’s disease. J. 
Neurochem 143, 394–395. [PubMed: 29052848] 

Bihlmeyer NA, Merrill EM, Lambert Y, Srivastava GP, Clark TW, Hyman BT, and Das S (2019). 
Novel Methods for Integration and Visualization of Genomics and Genetics Data in Alzheimer’s 
Disease. Alzheimers Dement. Published online March 29, 2019. 10.1016/j.jalz.2019.01.011.

Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, and 
Sisodia SS (1997). Accelerated amyloid deposition in the brains of transgenic mice coexpressing 
mutant presenilin 1 and amyloid precursor proteins. Neuron 19, 939–945. [PubMed: 9354339] 

Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S, Lee 
M, Von Korff A, et al.; Alzheimer Disease Neuroimaging Initiative (2013). CD33 Alzheimer’s 
disease locus: altered monocyte function and amyloid biology. Nat. Neurosci 16, 848–850. 
[PubMed: 23708142] 

Butler A, Hoffman P, Smibert P, Papalexi E, and Satija R (2018). Integrating single-cell transcriptomic 
data across different conditions, technologies, and species. Nat. Biotechnol 36, 411–420. [PubMed: 
29608179] 

Butovsky O, and Weiner HL (2018). Microglial signatures and their role in health and disease. Nat. 
Rev. Neurosci 19, 622–635. [PubMed: 30206328] 

Frigerio et al. Page 19

Cell Rep. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://scope.bdslab.org


Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, 
Wu PM, Doykan CE, et al. (2014). Identification of a unique TGF-b-dependent molecular and 
functional signature in microglia. Nat. Neurosci 17, 131–143. [PubMed: 24316888] 

Calderon D, Bhaskar A, Knowles DA, Golan D, Raj T, Fu AQ, and Pritchard JK (2017). Inferring 
relevant cell types for complex traits by using single-cell gene expression. Am. J. Hum. Genet 101, 
686–699. [PubMed: 29106824] 

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines 
JL, and Pericak-Vance MA (1993). Gene dose of apolipoprotein E type 4 allele and the risk of 
Alzheimer’s disease in late onset families. Science 261, 921–923. [PubMed: 8346443] 

Cruchaga C, and Goate AM (2015a). Cruchaga & Goate reply. Nature 520, E5–E6. [PubMed: 
25832412] 

Cruchaga C, and Goate AM (2015b). Cruchaga & Goate reply. Nature 520, E10. [PubMed: 25832409] 

Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, Harari O, Norton J, Budde J, 
Bertelsen S, et al.; Alzheimer’s Research UK (ARUK) Consortium (2014). Rare coding variants in 
the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505, 550–554. [PubMed: 
24336208] 

De Strooper B, and Karran E (2016). The cellular phase of Alzheimer’s disease. Cell 164, 603–615. 
[PubMed: 26871627] 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, and Gingeras 
TR (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. [PubMed: 
23104886] 

Escott-Price V, Shoai M, Pither R, Williams J, and Hardy J (2017). Polygenic score prediction captures 
nearly all common genetic risk for Alzheimer’s disease. Neurobiol. Aging 49, 214, e7–214.e11.

Fazzari P, Horre K, Arranz AM, Frigerio CS, Saito T, Saido TC, and De Strooper B (2017). PLD3 gene 
and processing of APP. Nature 541, E1–E2. [PubMed: 28128235] 

Ferretti MT, Iulita MF, Cavedo E, Chiesa PA, Schumacher Dimech A, Santuccione Chadha A, 
Baracchi F, Girouard H, Misoch S, Giacobini E, et al.; Women’s Brain Project and the Alzheimer 
Precision Medicine Initiative (2018). Sex differences in Alzheimer disease—the gateway to 
precision medicine. Nat. Rev. Neurol 14, 457–469. [PubMed: 29985474] 

Friedman BA, Srinivasan K, Ayalon G, Meilandt WJ, Lin H, Huntley MA, Cao Y, Lee S-H, Haddick 
PCG, Ngu H, et al. (2018). Diverse brain myeloid expression profiles reveal distinct microglial 
activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep. 22, 
832–847. [PubMed: 29346778] 

Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, Freeman TC, Summers 
KM, and McColl BW (2016). Microglial brain region-dependent diversity and selective regional 
sensitivities to aging. Nat. Neurosci 19, 504–516. [PubMed: 26780511] 

Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, 
Hyman BT, and Tanzi RE (2013). Alzheimer’s disease risk gene CD33 inhibits microglial uptake 
of amyloid beta. Neuron 78, 631–643. [PubMed: 23623698] 

Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe 
JSK, Younkin S, et al.; Alzheimer Genetic Analysis Group (2013). TREM2 variants in 
Alzheimer’s disease. N. Engl. J. Med 368, 117–127. [PubMed: 23150934] 

Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, 
Segel M, Nemesh J, et al. (2019). Single-cell RNA sequencing of microglia throughout the mouse 
lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6. 
[PubMed: 30471926] 

Harrison JR, and Owen MJ (2016). Alzheimer’s disease: the amyloid hypothesis on trial. Br. J. 
Psychiatry 208, 1–3. [PubMed: 26729836] 

Hartl D, May P, Gu W, Mayhaus M, Pichler S, Spaniol C, Glaab E, Bobbili DR, Antony P, 
Koegelsberger S, et al.; AESG (2018). A rare loss-of-function variant of ADAM17 is associated 
with late-onset familial Alzheimer disease. Mol. Psychiatry, Published online July 9, 2018. 
10.1038/s41380-018-0091-8.

Frigerio et al. Page 20

Cell Rep. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Heilmann S, Drichel D, Clarimon J, Fernández V, Lacour A, Wagner H, Thelen M, Hernández I, 
Fortea J, Alegret M, et al. (2015). PLD3 in non-familial Alzheimer’s disease. Nature 520, E3–E5. 
[PubMed: 25832411] 

Herrup K (2015). The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci 18, 794–799. 
[PubMed: 26007212] 

Hodes RJ, and Buckholtz N (2016). Accelerating Medicines Partnership: Alzheimer’s Disease (AMP-
AD) knowledge portal aids Alzheimer’s drug discovery through open data sharing. Expert Opin. 
Ther. Targets 20, 389–391. [PubMed: 26853544] 

Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, 
McKeel D, Wozniak D, and Paul SM (2000). Apolipoprotein E isoform-dependent amyloid 
deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. 
Sci. USA 97, 2892–2897. [PubMed: 10694577] 

Hooli BV, Lill CM, Mullin K, Qiao D, Lange C, Bertram L, and Tanzi RE (2015). PLD3 gene variants 
and Alzheimer’s disease. Nature 520, E7–E8. [PubMed: 25832413] 

Irizarry MC, Cheung BS, Rebeck GW, Paul SM, Bales KR, and Hyman BT (2000). Apolipoprotein E 
affects the amount, form, and anatomical distribution of amyloid beta-peptide deposition in 
homozygous APP(V717F) transgenic mice. Acta Neuropathol. 100, 451–458. [PubMed: 
11045665] 

Jack CR Jr., Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, 
Wiste HJ, Weigand SD, et al. (2013). Tracking pathophysiological processes in Alzheimer’s 
disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216. 
[PubMed: 23332364] 

Karch CM, Cruchaga C, and Goate AM (2014). Alzheimer’s disease genetics: from the bench to the 
clinic. Neuron 83, 11–26. [PubMed: 24991952] 

Karran E, and Hardy J (2014). A critique of the drug discovery and phase 3 clinical programs targeting 
the amyloid hypothesis for Alzheimer disease. Ann. Neurol 76, 185–205. [PubMed: 24853080] 

Karran E, Mercken M, and De Strooper B (2011). The amyloid cascade hypothesis for Alzheimer’s 
disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov 10, 698–712. 
[PubMed: 21852788] 

Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, 
Baruch K, Lara-Astaiso D, Toth B, et al. (2017). A unique microglia type associated with 
restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17. [PubMed: 28602351] 

Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O’Loughlin E, Xu 
Y, Fanek Z, et al. (2017). The TREM2-APOE pathway drives the transcriptional phenotype of 
dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9. [PubMed: 
28930663] 

Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, 
Beecham GW, Grenier-Boley B, et al.; European Alzheimer’s Disease Initiative (EADI); Genetic 
and Environmental Risk in Alzheimer’s Disease; Alzheimer’s Disease Genetic Consortium; 
Cohorts for Heart and Aging Research in Genomic Epidemiology (2013). Meta-analysis of 74,046 
individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet 45, 1452–
1458. [PubMed: 24162737] 

Lambert J-C, Grenier-Boley B, Bellenguez C, Pasquier F, Campion D, Dartigues J-F, Berr C, Tzourio 
C, and Amouyel P (2015). PLD3 and sporadic Alzheimer’s disease risk. Nature 520, E1. 
[PubMed: 25832408] 

Laws KR, Irvine K, and Gale TM (2018). Sex differences in Alzheimer’s disease. Curr. Opin. 
Psychiatry 31, 133–139. [PubMed: 29324460] 

Liao Y, Smyth GK, and Shi W (2014). featureCounts: an efficient general purpose program for 
assigning sequence reads to genomic features. Bioinformatics 30, 923–930. [PubMed: 24227677] 

Makin S (2018). The amyloid hypothesis on trial. Nature 559, S4–S7. [PubMed: 30046080] 

Marioni RE, Harris SE, Zhang Q, McRae AF, Hagenaars SP, Hill WD, Davies G, Ritchie CW, Gale 
CR, Starr JM, et al. (2018). GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 8, 
99. [PubMed: 29777097] 

Frigerio et al. Page 21

Cell Rep. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Masuda A, Kobayashi Y, Kogo N, Saito T, Saido TC, and Itohara S (2016). Cognitive deficits in single 
App knock-in mouse models. Neurobiol. Learn. Mem 135, 73–82. [PubMed: 27377630] 

Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, Hemberg M, De Jager PL, Ransohoff RM, Regev 
A, and Tsai L-H (2017). Temporal tracking of microglia activation in neurodegeneration at single-
cell resolution. Cell Rep. 21, 366–380. [PubMed: 29020624] 

Mazure CM, and Swendsen J (2016). Sex differences in Alzheimer’s disease and other dementias. 
Lancet Neurol. 15, 451–452. [PubMed: 26987699] 

Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle 
G, and Berg L (1991). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). 
Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41, 
479–486. [PubMed: 2011243] 

Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, 
Ridderstråle M, Laurila E, et al. (2003). PGC-1alpha-responsive genes involved in oxidative 
phosphorylation are coordinately downregulated in human diabetes. Nat. Genet 34, 267–273. 
[PubMed: 12808457] 

Mostafavi S, Gaiteri C, Sullivan SE, White CC, Tasaki S, Xu J, Taga M, Klein H-U, Patrick E, 
Komashko V, et al. (2018). A molecular network of the aging human brain provides insights into 
the pathology and cognitive decline of Alzheimer’s disease. Nat. Neurosci 21, 811–819. [PubMed: 
29802388] 

Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, 
Merkler D, et al. (2018). High-dimensional single-cell mapping of central nervous system immune 
cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e6. 
[PubMed: 29426702] 

Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, and Sandberg R (2013). Smart-seq2 for 
sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098. 
[PubMed: 24056875] 

Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, and Sandberg R (2014). Full-length 
RNA-seq from single cells using Smart-seq2. Nat. Protoc 9, 171–181. [PubMed: 24385147] 

Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, and Trapnell C (2017a). Reversed graph 
embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982. [PubMed: 
28825705] 

Qiu X, Hill A, Packer J, Lin D, Ma Y-A, and Trapnell C (2017b). Single-cell mRNA quantification and 
differential analysis with Census. Nat. Methods 14, 309–315. [PubMed: 28114287] 

Ransohoff RM (2016). A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci 19, 987–
991. [PubMed: 27459405] 

Rebeck GW, Reiter JS, Strickland DK, and Hyman BT (1993). Apolipoprotein E in sporadic 
Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11, 575–580. [PubMed: 
8398148] 

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, and Eliceiri KW (2017). 
ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529. 
[PubMed: 29187165] 

Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, and Saido TC (2014). Single 
App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci 17, 661–663. [PubMed: 
24728269] 

Salih DA, Bayram S, Guelfi MS, Reynolds RH, Shoai M, Ryten M, Brenton J, Zhang D, Matarin M, 
Botia J, et al. (2018). Genetic variability in response to Aβ deposition influences Alzheimer’s risk. 
bioRxiv. 10.1101/437657.

Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, Hardy J, Vassar R, Winblad B, 
and Saido TC (2017). APP mouse models for Alzheimer’s disease preclinical studies. EMBO J. 
36, 2473–2487. [PubMed: 28768718] 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, 
Saalfeld S, Schmid B, et al. (2012). Fiji: an open-source platform for biological-image analysis. 
Nat. Methods 9, 676–682. [PubMed: 22743772] 

Frigerio et al. Page 22

Cell Rep. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Selkoe DJ, and Hardy J (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO 
Mol. Med 8, 595–608. [PubMed: 27025652] 

Serrano-Pozo A, Frosch MP, Masliah E, and Hyman BT (2011). Neuro-pathological alterations in 
Alzheimer disease. Cold Spring Harb. Perspect. Med 1, a006189. [PubMed: 22229116] 

Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, Kunkle BW, Boland 
A, Raybould R, Bis JC, et al.; ARUK Consortium; GERAD/PERADES, CHARGE, ADGC, EADI 
(2017). Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate 
immunity in Alzheimer’s disease. Nat. Genet 49, 1373–1384. [PubMed: 28714976] 

Srinivasan K, Friedman BA, Larson JL, Lauffer BE, Goldstein LD, Appling LL, Borneo J, Poon C, Ho 
T, Cai F, et al. (2016). Untangling the brain’s neuroinflammatory and neurodegenerative 
transcriptional responses. Nat. Commun 7, 11295. [PubMed: 27097852] 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy 
SL, Golub TR, Lander ES, and Mesirov JP (2005). Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 
15545–15550. [PubMed: 16199517] 

Suh J, Choi SH, Romano DM, Gannon MA, Lesinski AN, Kim DY, and Tanzi RE (2013). ADAM10 
missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone 
function. Neuron 80, 385–401. [PubMed: 24055016] 

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen 
TS, and Rinn JL (2014). The dynamics and regulators of cell fate decisions are revealed by 
pseudotemporal ordering of single cells. Nat. Biotechnol 32, 381–386. [PubMed: 24658644] 

Trombetta JJ, Gennert D, Lu D, Satija R, Shalek AK, and Regev A (2014). Preparation of Single-Cell 
RNA-Seq Libraries for Next Generation Sequencing. Curr. Protoc. Mol. Biol 107, 4–22, 1–17. 
[PubMed: 24984854] 

Ulrich JD, Ulland TK, Mahan TE, Nyström S, Nilsson KP, Song WM, Zhou Y, Reinartz M, Choi S, 
Jiang H, et al. (2018). ApoE facilitates the microglial response to amyloid plaque pathology. J. 
Exp. Med 215, 1047–1058. [PubMed: 29483128] 

van der Flier WM, and Scheltens P (2005). Epidemiology and risk factors of dementia. J. Neurol. 
Neurosurg. Psychiatry 76 (Suppl 5), v2–v7. [PubMed: 16291918] 

van der Lee SJ, Holstege H, Wong TH, Jakobsdottir J, Bis JC, Chouraki V, van Rooij JGJ, Grove ML, 
Smith AV, Amin N, et al. (2015). PLD3 variants in population studies. Nature 520, E2–E3. 
[PubMed: 25832410] 

Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, Pepe G, Lolli F, Marcello E, Sironi L, Vegeto E, 
and Maggi A (2018). Sex-specific features of microglia from adult mice. Cell Rep. 23, 3501–3511. 
[PubMed: 29924994] 

Villegas-Llerena C, Phillips A, Garcia-Reitboeck P, Hardy J, and Pocock JM (2016). Microglial genes 
regulating neuroinflammation in the progression of Alzheimer’s disease. Curr. Opin. Neurobiol 36, 
74–81. [PubMed: 26517285] 

Wang M, Beckmann ND, Roussos P, Wang E, Zhou X, Wang Q, Ming C, Neff R, Ma W, Fullard JF, et 
al. (2018). The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in 
Alzheimer’s disease. Sci. Data 5, 180185. [PubMed: 30204156] 

Yeh FL, Wang Y, Tom I, Gonzalez LC, and Sheng M (2016). TREM2 binds to apolipoproteins, 
including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. 
Neuron 91, 328–340. [PubMed: 27477018] 

Zhang B, Gaiteri C, Bodea L-G, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, 
Dobrin R, et al. (2013). Integrated systems approach identifies genetic nodes and networks in late-
onset Alzheimer’s disease. Cell 153, 707–720. [PubMed: 23622250] 

Frigerio et al. Page 23

Cell Rep. Author manuscript; available in PMC 2020 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Exposure to Aβ in AD potentiates a microglia response present during normal 

aging

• This microglia response is heterogeneous with potential synaptotoxic 

subtypes

• Microglia in female mice develop this response faster than in male mice

• Apoe deletion blocks the main response of microglia to Aβ
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Figure 1. Microglia Mount a Heterogeneous Response to β-amyloid, Marked by Apoe 
Overexpression
(A) Dataset presentation. We used male and female AppNL-G-F and wild-type C57BL/6J 
mice from four time points over the course of amyloid pathology and microgliosis as 

indicated. We dissected separately cortex and hippocampal tissues. The tissue from two 

animals for each experimental condition (age, sex, tissue, genotype) was pooled before 

microglia isolation. All procedures were performed on ice. Single live microglial cells were 

isolated by FACS (CD11b+, DAPI), and single-cell RNA-sequencing (RNA-seq) libraries 

were prepared according to the SmartSeq2 and Nextera methods.

(B) t-distributed stochastic neighbor embedding (t-SNE) plot visualizing the 10,801 single 

microglial cells passing quality control after removal of peripheral cells. Cells are colored 

according to clusters identified with Seurat’s k-nearest neighbors (kNN) approach (H1M and 

H2M, homeostatic microglia; TRM, transiting response microglia; ARM, activated response 

microglia; IRM, interferon response microglia; CPM, cycling and proliferating microglia).
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(C) Percentage of cells from each genotype-age group for each cluster identified. AppNL-G-F 

cells are indicated in shades of red, while wild-type cells are indicated in shades of blue.

(D) Violin plots of selected marker genes for each identified cluster. The y axis indicates 

normalized gene expression (ln scale).

(E) t-SNE plots as in (B), colored by the level of ln normalized expression of selected genes. 

Clusters of TRMs and ARMs display increased expression of Apoe and inflammation 

markers (Cst7) and concurrently display a reduction of homeostatic markers (P2ry12). Two 

distinct regions of the ARMs cluster display increased expression of MHC class II genes 

(H2-Aa, H2-Ab1, and Cd74), suggesting the existence of microglial subpopulations. Further, 

a small subset of the ARMs cluster displays an enrichment for tissue repair genes (Spp1, 

Gpnmb, and Dkk2). The ARMs cluster also displays differential expression of several AD-

related genes (e.g., Ctsb, Bin1, and Pld3) compared to clusters of H1Ms and H2Ms. The 

cluster of IRMs is enriched for interferon genes (Ifit3, Oasl2, and Irf7).

See also Figure S5.
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Figure 2. Microglia Diversify into Two Cell State Branches during Response to β-amyloid 
Plaques
(A) Plot of cell trajectories for all microglial cells, obtained by a semi-supervised 

pseudotime ordering with Monocle 2. Microglia are grouped into three stages (red: stage 1; 

blue: stage 2; green: stage 3). Homeostatic microglia (red) progress toward two separate 

fates: either the multifunctional ARMs response (green) or the IRMs response (blue).

(B) Percentage of cells from each cluster (Figure 1B) per state. The majority (>80%) of 

homeostatic microglia (clusters of H1Ms and H2Ms) are in state 1, the majority of interferon 

response cells (cluster of IRMs) are in state 2, and the majority of the activated response 

cells (cluster of ARMs) are in state 3.

(C) Expression levels of selected marker genes are plotted over a plot of cell trajectories, as 

in (A).
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(D) Pseudotime progression plot of homeostatic AppNL-G-F microglial cells to the ARMs 

branches, presented separately for each age-gender experimental condition. Box represents 

the interquantile range, and the thick bar represents the group median.

(E) Pseudotime progression plot from homeostatic to ARMs for each wild-type microglial 

cell.

(F) Pseudotime progression plot from homeostatic to IRMs response for each AppNL-G-F 

microglial cell.

(G) Pseudotime progression plot from homeostatic to IRMs response for each wild-type 

microglial cell.
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Figure 3. Enrichment Analysis of AD Genes Highlights Substructures of ARMs
(A) Bar plot showing the significance (−log10 p value adjusted for false discovery rate; padj) 

of enrichment of AD GWAS genes among the genes differentially expressed in each of the 

three reactive microglial clusters (IRMs, TRMs, and ARMs) compared to the homeostatic 

microglia (H1Ms + H2Ms), calculated using GSEA. A significant enrichment indicates that 

more AD GWAS genes than expected are found among genes most strongly affected in the 

differential expression analysis for each comparison. We tested a number of different AD 

GWAS sets using different p value cutoffs: the numbers in the parentheses indicate the 

number of genes for that specific cutoff. The numbers in the bars indicate the size of the 

GSEA-predicted leading edge (core enrichment genes), which can be interpreted as the 

genes responsible for the observed enrichment. The enrichment for the p < 1e−5 cutoff 

yielded the lowest padj.
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(B and C) Of the 7 core enrichment genes for the p < 1e−5 cutoff, 3 (Apoe, H2-Ab1, and H2-
Eb1) were upregulated in ARMs compared to homeostatic microglia, while 4 genes 

(Siglech, Inpp5d, Bin1, and Ms4a6b) were downregulated. For each set of up- and 

downregulated core enrichment genes, we calculated a signature score (i.e., a composite 

expression score of a set of genes) using Seurat’s AddModuleScore function. Each cell’s 

score for either the upregulated (B) or downregulated (C) gene set is visualized on a t-SNE 

plot (as in Figure 1B). In both cases, cells of the two genotypes are plotted separately, as 

indicated in the titles, with cells of the other genotype plotted in gray. In (B), the AppNL-G-F 

cells clearly display a strong signature score for AD GWAS genes showing in the ARMs 

cluster. The two green arrowheads on the left in (B) indicate two areas with particularly 

strong expression of these genes.

(D) Boxplots of gene expression across CERAD stages in the parahippocampal brain region 

from the MSBB cohort. The adjusted p values of CERAD score C3 (Alzheimer’s disease) 

versus C0 comparisons are displayed next to the gene names. Similar results were found in 

the ROSMAP dataset (data not shown).
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Figure 4. Microglia Are the Major Contribu tors of Apoe Expression in the Vicinity of β-amyloid 
Plaques
(A–F) Combined RNAscope and immunofluorescent analyses of Apoe expression by 

microglia and astrocytes in the vicinity of β-amyloid plaques. Expressions of Apoe, the 

microglia marker Itgam (A–C), and the astrocyte marker Slc1a3 (D and E) were visualized 

using RNAscope probes, while plaques were visualized by staining with the anti-Aβ 
antibody 6E10. Nuclei were visualized with DAPI. Photos are representative of three mice 

per genotype. (A and D) are representative images of AppNL-G-F CA1 stained for microglia 

(Itgam) and astrocytes (Slc1a3), respectively. (B) Zoom-in of the boxed area in (A), taken as 

a separate image with a higher magnification lens. Similarly, (E) is a zoom-in of the boxed 

area in (D). (C) and (D) are representative images of male wild type C57Bl/6J CA1, stained 

for microglia (Itgam) and astrocytes (Slc1a3), respectively. Scale bars in (A), (C), (D), and 

(F) represent 50 μm, while in (B) and (E) represent 20 μm.
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(G) Quantification of Apoe staining intensity per cell, classified based on the genotype 

(AppNL-G-F or C57BL/6J), cell type (microglia [mglia] or astrocyte [astro]), and distance 

from a plaque (ring). For wild-type mice, measurements were made by selecting random 

regions of interest (ROIs) in the same brain areas as in AppNL-G-F. Measurements were 

made from at least 25 plaques or ROIs for each condition (AppNL-G-F mglia, C57BL/6J 
mglia, AppNL-G-F astro, and C57BL/6J astro), collected from 3 mice per genotype.

(H) Number of microglia and astrocytes next to plaques. As in (G), cells were classified 

based on genotype and distance from plaques (AppNL-G-F) or random ROIs (C57BL/6J).
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Figure 5. Apoe Deletion Prevents the Estab lishment of a Main Inflammatory Response to β-
amyloid Plaques
Analysis by single-cell RNA-seq of single live microglial (CD11b+/DAPI−) cells, prepared 

as described in Figure 1A, from APP/PS1 and APP/PS1-Apoenull mice and their respective 

wild-type control strains C57BL/6J and C57BL/6J-Apoenull.

(A) Middle: t-SNE plot visualizing the 1,880 single microglial cells passing quality control 

after removal of peripheral cells. Cells are indicated according to clusters identified with 

Seurat’s kNN approach (H1/2M, homeostatic microglia; TRM, transiting response 

microglia; ARM, activated response microglia; IRM, interferon response microglia). Left: t-

SNE plot as in the middle, colored by the Z-score of gene signatures for the interferon 

response (IRM). Right: t-SNE plot as in the middle, colored by the Z score of gene 

signatures for the activated response (ARM).

(B) Violin plots of selected marker genes for each identified cluster. The x axis indicates 

normalized gene expression (ln scale).
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(C) Percentages of cells from each mouse genotype in the IRMs cluster.

(D) Percentages of cells from each mouse genotype in the ARMs cluster.
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Figure 6. Lack of Apoe Prevents Migration of Microglia toward Plaques
(A–D) Immunofluorescent staining of microglia (Iba1, green), ApoE (red), and Aβ plaques 

(6E10, white) in sagittal sections of AppNL-G-F (A), APP/PS1 (B), C57BL/6J (C), and APP/
PS1-Apoenull (D). Images are zoomed on the dentate gyrus (DG) region. Scale bars 

represent 20 μm.

(E–G) Analysis of amyloid burden in 18- to 20-m.o. APP/PS1 and APP/PS1-Apoenull mice. 

Total amyloid burden as detected by anti-Aβ immunostaining (E), dense core plaque burden 

identified by Metoxy-XO4 staining (F), and the ratio between total amyloid burden and 

dense core plaques (G) are presented as boxplots (boxes represent the 25%–75% quartile 

range; whiskers represent the ±1.5 interquantile range; each experimental point is 

represented by a gray dot; n = 5–7 mice per group; *p < 0.05, Mann-Whitney test).

(H) Stereological evaluation of the density of Iba-1 reactive microglia around amyloid 

deposits in APP/PS1 and APP/PS1-Apoenull mice; boxplot is as in (E), n = 5–7 mice per 

group. **p < 0.001, Mann-Whitney test.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-CD11b-PE, clone: M1/70.15.11.5 Miltenyi 
Biotec

130-113-797; RRID: 
AB_2726320

anti-β-amyloid 1–16 6E10, mouse BioLegend 803004; RRID: 
AB_2715854

anti-IBA1, rabbit Wako-
Chemicals

019–19741; RRID: 
AB_839504

anti-ApoE, goat Sigma-Aldrich AB947; RRID: 
AB_2258475

atto-488-conjugated goat anti-mouse Sigma-Aldrich 62197–1ML-F; RRID: 
AB_1137649

Alexa 488 donkey anti-mouse Invitrogen A21202; RRID: 
AB_1137649

Alexa-594 donkey anti-rabbit Invitrogen A211207

Alexa-647 donkey anti-goat Invitrogen A21447

anti-β-amyloid BAM10, mouse Sigma-Aldrich A5213-.2ML; RRID: 
AB_476742

Alexa-568 goat anti-mouse Thermo Fisher A-11004

Chemicals, Peptides, and Recombinant Proteins

Hibernate A without phenol red Brain Bits HAPR

D-PBS Life 
Technologies

14287072

MACS BSA stock solution Miltenyi 
Biotec

130-091-376

RNasin Plus RNase Inhibitor Promega N2615

TrueBlack Biotium 23007

Critical Commercial Assays

Adult Brain Dissociation kit Miltenyi 
Biotec

130-107-677

Nextera XT kit Illumina FC-131–1096

Nextera XT Index Kit v2 Set A (96 indexes, 384 samples) Illumina FC-131–2001

Nextera XT Index Kit v2 Set B (96 indexes, 384 samples) Illumina FC-131–2002

Nextera XT Index Kit v2 Set C (96 indexes, 384 samples) Illumina FC-131–2003

Nextera XT Index Kit v2 Set D (96 indexes, 384 samples) Illumina FC-131–2004

RNAscope ACD 320850

Mm-Slc1a3 RNAscope probe ACD 430781

Mm-Itgam-C2 RNAscope probe ACD 311491-C2

Mm-Apoe-C3 RNAscope probe ACD 313271-C3

Deposited Data

Raw data This paper GEO: GSE127893

Analyzed data This paper scope.bdslab.org

Human RNaseq data (AMP-AD) Allen et al., 
2016

MSBB synapse ID: 
syn3157743 ROSMAP 
synapse ID:syn3388564
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

AppNL-G-F Saito et al., 
2014

Available from the Saido 
lab.

C57BL/6J (control for AppNL-G-F) Janvier C57BL/6J@Rj

APPswe/PS1dE9 (APP/PS1) Borchelt et al., 
1997

Available from The 
Jackson Laboratory, stock 
34829-JAX

APP/PS1-Apoenull Hudry et al., in 
preparation

Available from the Hyman 
lab.

C57BL/6J The Jackson 
Laboratory

000664

C57BL/6J-Apoenull The Jackson 
Laboratory

002052

Oligonucleotides

5′-biotinylated template switching oligo: /5Biosg/
AGCAGTGGTATCAACGCAGAGTACATrGrG+G

this paper Exiqon/QIAGEN

5′-biotinylated oligo-dT: /5Biosg/
AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

Picelli et al., 
2013

IDT

5′-biotinylated IS-PCR oligo: /5Biosg/AAGCAGTGGTATCAACGCAGAGT Picelli et al., 
2013

IDT

Software and Algorithms

STAR RNA-seq aligner, v. 2.5.2 Dobin et al., 
2013

https://github.com/
alexdobin/STAR

Subread/Featurecounts, v. 1.5.1 Liao et al., 
2014

http://
subread.sourceforge.net/

R, v. 3.4.4 R core team https://www.R-project.org/

Seurat, v. 2.3.1 Butler et al., 
2018

https://github.com/
satijalab/seurat

Monocle, v. 2.6.4 Qiu et al., 
2017a

https://github.com/cole-
trapnell-lab/monocle-
release

Fiji Schindelin et 
al., 2012

https://fiji.sc/

Cell Rep. Author manuscript; available in PMC 2020 July 07.

https://github.com/alexdobin/STAR
https://github.com/alexdobin/STAR
http://subread.sourceforge.net/
http://subread.sourceforge.net/
https://www.r-project.org/
https://github.com/satijalab/seurat
https://github.com/satijalab/seurat
https://github.com/cole-trapnell-lab/monocle-release
https://github.com/cole-trapnell-lab/monocle-release
https://github.com/cole-trapnell-lab/monocle-release
https://github.com/cole-trapnell-lab/monocle-release
https://fiji.sc/

	SUMMARY
	Graphical Abstract
	In Brief
	INTRODUCTION
	RESULTS
	Aging and Aβ Deposition Induce Similar Responses in Microglia
	Microglia Differentiate into Mutually Exclusive Response States
	ARMs Display Distinct Subpopulations Enriched for GWAS AD Risk Genes
	Apoe-Expressing Microglia Cluster around β-amyloid Plaques
	Deletion of Apoe Suppresses the Microglial Responseto β-amyloid

	DISCUSSION
	STAR★METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODELS DETAILS
	Mice

	METHOD DETAILS
	Single cell suspension preparation
	Single microglia isolation by FACS
	Single cell mRNA libraries preparation and sequencing
	Sequencing data analysis
	Quality control of cells - step 1
	Quality control of cells - step 2
	Clustering
	Pseudotime analysis
	Differential Expression
	Z scores of microglia responses signatures

	Human RNaseq data analysis
	Multiplex RNAscope and immunofluorescence staining
	RNAscope image analysis and quantification
	Immunofluorescence staining
	Amyloid load analysis
	Tissue collection and processing
	Stereology-based quantitative analyses


	QUANTIFICATION AND STATISTICAL ANALYSIS
	Differential gene expression
	RNAscope signal quantification and cell count
	Stereological quantification of amyloid burden and microglia density

	DATA AND SOFTWARE AVAILABILITY

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table T1

