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UbiB proteins regulate cellular CoQ distribution in
Saccharomyces cerevisiae
Zachary A. Kemmerer1,2,9, Kyle P. Robinson1,2,9, Jonathan M. Schmitz1,2, Mateusz Manicki3, Brett R. Paulson4,

Adam Jochem1,2, Paul D. Hutchins4, Joshua J. Coon 4,5,6 & David J. Pagliarini 1,2,3,7,8✉

Beyond its role in mitochondrial bioenergetics, Coenzyme Q (CoQ, ubiquinone) serves as a

key membrane-embedded antioxidant throughout the cell. However, how CoQ is mobilized

from its site of synthesis on the inner mitochondrial membrane to other sites of action

remains a longstanding mystery. Here, using a combination of Saccharomyces cerevisiae

genetics, biochemical fractionation, and lipid profiling, we identify two highly conserved but

poorly characterized mitochondrial proteins, Ypl109c (Cqd1) and Ylr253w (Cqd2), that

reciprocally affect this process. Loss of Cqd1 skews cellular CoQ distribution away from

mitochondria, resulting in markedly enhanced resistance to oxidative stress caused by exo-

genous polyunsaturated fatty acids, whereas loss of Cqd2 promotes the opposite effects. The

activities of both proteins rely on their atypical kinase/ATPase domains, which they share

with Coq8—an essential auxiliary protein for CoQ biosynthesis. Overall, our results reveal

protein machinery central to CoQ trafficking in yeast and lend insights into the broader

interplay between mitochondria and the rest of the cell.
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CoQ is synthesized in mitochondria, where it functions as
an essential cofactor in multiple processes including oxi-
dative phosphorylation, fatty acid oxidation, and nucleo-

tide biosynthesis1–3. CoQ is also present in membranes
throughout the cell4, suggesting that it has a more widespread
cellular importance than is currently appreciated. Recently, one
such role for extramitochondrial CoQ in mammalian cells was
identified with the discovery that plasma membrane-localized
FSP1 exhibits CoQ-dependent activity in mitigating ferroptosis5,6,
a form of regulated cell death caused by aberrant iron-dependent
lipid peroxidation. To our knowledge, no proteins have yet been
directly associated with cellular CoQ trafficking from mitochon-
dria, but the extreme hydrophobicity of CoQ suggests that this
process likely requires dedicated machinery.

Here, we demonstrate that two members of the poorly char-
acterized UbiB family of atypical kinases/ATPases influence the
cellular distribution of mitochondria-derived CoQ in the budding
yeast Saccharomyces cerevisiae. We show that disruption of CQD1
and CQD2 diminishes and enhances the levels of mitochondrial
CoQ, respectively, without altering total cellular CoQ abundance.
Our findings help to define the functions of two mitochondrial
proteins and advance our still nascent understanding of how CoQ
is distributed throughout the cell.

Results
Extramitochondrial CoQ combats oxidative stress. We sought
to identify proteins related to CoQ trafficking by exploiting the
extramitochondrial antioxidant role of CoQ6—the major form of
CoQ in S. cerevisiae (hereafter referred to as CoQ). S. cerevisiae
lacking CoQ or phospholipid hydroperoxide glutathione perox-
idases (PHGPx) are sensitive to the oxidative stress conferred by
exogenous polyunsaturated fatty acids (PUFAs), such as ɑ-
linolenic acid (18:3)7,8. PUFAs undergo uncontrolled autoxida-
tion reactions in the absence of these antioxidant factors, leading
to the toxic accumulation of lipid peroxides and peroxyl
radicals7,8. To force cells into relying more heavily on the anti-
oxidant properties of CoQ, we deleted all three PHGPx genes in
W303 S. cerevisiae Δgpx1Δgpx2Δgpx3 (hereafter referred to as
Δgpx1/2/3). We validated that this strain is sensitized to 18:3
treatment and demonstrated that this sensitivity is dampened
when cellular CoQ levels are augmented through supplementa-
tion with the soluble CoQ precursor 4-hydroxybenzoate (4-HB)
(Fig. 1a, b). Importantly, the CoQ analog decylubiquinone was
markedly more effective at protecting against PUFA stress than
its mitochondria-targeted counterpart, mitoquinone, suggesting
that extramitochondrial CoQ is the predominant mediator of
PUFA resistance (Fig. 1c). This is consistent with previous data
showing that exogenous PUFAs are incorporated into endogen-
ous membranes slowly8 and, therefore, likely populate non-
mitochondrial membranes first. Thus, we established a strain
whose survival in the presence of PUFAs is especially dependent
on extramitochondrial CoQ.

Loss of Cqd1 confers PUFA resistance. We reasoned that sup-
pressor mutations that increase extramitochondrial CoQ levels
would enhance PUFA resistance in the Δgpx1/2/3 strain, so we
performed a forward-genetic suppressor screen (Fig. 2a). We
randomly mutagenized this strain with ethyl methanesulfonate
(EMS) and isolated colonies tolerant of 18:3 treatment. From
~20,000 unique mutant colonies, we obtained four hit strains with
substantial PUFA resistance (Fig. 2b). We then performed whole-
genome sequencing that revealed non-synonymous mutations in
442 unique genes across these four strains (Supplementary
Data 1). These mutants were ranked using PROVEAN (Protein
Variation Effect Analyzer), a software tool for predicting

deleterious protein changes9. PROVEAN assigns a disruption
score (D-Score) that reflects the likelihood that a given mutation
is deleterious. In our collective dataset, 99 genes achieved a D-
Score below the strict threshold of −4.1 (Fig. 2c; Supplementary
Data 1). Given the overall limited overlap in hits between mutant
strains, it is likely that our dataset includes multiple genes that
contribute to an enhanced PUFA resistance phenotype.

We chose to focus on mitochondrial proteins for further
examination since, to our knowledge, trafficking machinery at the
site of CoQ synthesis in mitochondria has yet to be identified. Of
the nine mitochondrial proteins harboring likely deleterious
mutations, one, Ypl109c (renamed here as Cqd1, see below), is an
uncharacterized protein that resides on the inner mitochondrial
membrane (IMM), making it an attractive candidate for further
study (Fig. 2c; Supplementary Fig. 1a). Moreover, Cqd1 possesses
the same UbiB family atypical kinase/ATPase domain as Coq8, an
essential protein for CoQ synthesis that resides on the matrix face
of the IMM10–13. Our recent work suggests that Coq8 ATPase
activity may be coupled to the extraction of hydrophobic CoQ
precursors from the IMM for subsequent processing by
membrane-associated matrix enzymes14. Cqd1 resides on the
opposite side of the IMM, facing the intermembrane space11,15

(Supplementary Fig. 1b), physically separated from the other
CoQ-related enzymes but still positioned for direct access to
membrane-embedded CoQ precursors and mature CoQ. Further-
more, a recent study reported that haploinsufficiency of human
CQD1 ortholog ADCK2 led to aberrant mitochondrial lipid
oxidation and myopathy associated with CoQ10 deficiency16.

In our screen, each resistant strain (mutA-D) possesses more
than 100 protein-coding mutations, a combination of which likely
contributes to the PUFA resistance phenotype. Mutant C (mutC)
contains an early stop codon in CQD1 (Fig. 2c, Supplementary
Fig. 1c). To test whether this CQD1 mutation is important for
mutC’s phenotype, we reintroduced WT CQD1 into this strain
under its endogenous promoter. Indeed, this reintroduction re-
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Fig. 1 Extramitochondrial CoQ combats oxidative stress. a Growth rate of
wild type (WT) and Δgpx1/2/3 yeast in synthetic complete media minus para-
aminobenzoate (pABA−) containing 2% (w/v) glucose (mean ± SD, n = 3
independent samples) and the indicated additives. 4-HB, 4-hydroxybenzoate;
18:3, linolenic acid (PUFA). b Total CoQ from WT and Δgpx1/2/3 yeast
described in (a) (mean ± SD, n = 3 independent samples). c Rescue assay
under the conditions described in (a) comparing the ability of decylubiquinone
(DecylQ) and mitoquinone (MitoQ) to restore growth of Δgpx1/2/3 yeast
treated with 35 µM 18:3 (mean ± SD, n = 3 independent samples).
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conferred PUFA sensitivity (Fig. 2d). Furthermore, deletion of
CQD1 in the parent Δgpx1/2/3 strain, which lacks all other mutC
mutations, was sufficient to enhance PUFA resistance (Fig. 2e, f).
We also confirmed that deletion of CQD1 had no effect in
background strains lacking CoQ (Δcoq2 and Δgpx1/2/3Δcoq2),
establishing that this PUFA-resistant phenotype is CoQ-
dependent (Supplementary Fig. 1d, e). Collectively, these data
demonstrate that disruption of CQD1 is at least partially causative
for mutC’s PUFA-resistant phenotype.

Cqd1 affects CoQ distribution. Our results above suggest that
loss of CQD1 confers cellular resistance to PUFA-mediated oxi-
dative stress by increasing extramitochondrial CoQ. We reasoned
that this was likely rooted either in a general increase in CoQ
production or in its redistribution. To test these models, we first
measured total levels of CoQ and its early mitochondrial pre-
cursor polyprenyl-4-hydroxybenzoate (PPHB) in cells lacking
CQD1 or control genes (Fig. 3a−c). As expected, disruption of
HFD1, which encodes the enzyme that produces the soluble CoQ

precursor 4-HB17,18, led to a loss of CoQ and PPHB, while dis-
ruption of COQ8 caused complete loss of CoQ with the expected
buildup of the PPHB precursor. However, we found no significant
change in CoQ or PPHB levels in the Δcqd1 strain, demonstrating
that Cqd1 is essential neither for CoQ biosynthesis nor the import
of CoQ precursors under the conditions of our analyses.

To next examine CoQ distribution, we fractionated yeast and
measured CoQ levels (Fig. 3d; Supplementary Fig. 2a). We
observed that Δcqd1 yeast had a significant increase in CoQ from
the non-mitochondrial (NM) fraction, consisting of organelles
and membranes that do not pellet with mitochondria, and a
corresponding significant decrease in mitochondrial (M) CoQ.
Deletion of the tricarboxylic acid (TCA) cycle enzyme Kgd1 had
no effect on relative CoQ levels (Fig. 3d) despite causing a
deficiency in respiratory growth (Fig. 3e), indicating that general
mitochondrial dysfunction does not perturb CoQ distribution.
The increased extramitochondrial CoQ in Δcqd1 yeast is
consistent with the observation that deleting CQD1 increases
PUFA resistance (Fig. 2e, f).
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To our knowledge, this is the first example of a genetic
disruption leading to altered cellular distribution of endogenous
CoQ, hence our renaming of this gene CoQ Distribution 1
(CQD1). To further validate this finding, we examined growth in
glycerol, a non-fermentable carbon source, which requires an
intact mitochondrial electron transport chain. We reasoned that a
decrease in mitochondrial CoQ would disrupt respiratory growth
in media depleted of CoQ precursors. Indeed, deletion of CQD1
reduced respiratory growth rate in this medium appreciably
(Fig. 3e). To confirm that this defect is caused by CoQ depletion,
we rescued growth with CoQ of different isoprene tail lengths
(CoQ2 and CoQ4) and with CoQ precursors, which are more
readily delivered due to their solubility (Fig. 3f). Endogenous
expression of CQD1 rescued respiratory growth without affecting
total CoQ levels (Fig. 3g, Supplementary Fig. 2b), further
supporting the hypothesis that CoQ distribution, not biosynth-
esis, is perturbed in Δcqd1 yeast.

We next sought to begin understanding how Cqd1 functions in
CoQ distribution. Our recent work on Cqd1’s UbiB homolog
COQ8 (yeast Coq8 and human/mouse COQ8A) revealed that it
possesses an atypical protein kinase-like (PKL) fold that endows
ATPase activity but occludes larger proteinaceous substrates from
entering the active site13,19 (Supplementary Fig. 2c−e). Unlike
COQ8, Cqd1 is recalcitrant to recombinant protein purification;
therefore, in lieu of direct in vitro activity assays, we examined the

ability of Cqd1 point mutants to rescue the respiratory growth
defect of Δcqd1 yeast. Similar to Coq813,14,19, the ability of Cqd1
to rescue the Δcqd1 respiratory growth deficiency depended on
core protein kinase-like (PKL) family residues20 required for
phosphoryl transfer (Fig. 3g) and on quintessential UbiB motif
residues (Supplementary Fig. 2e–h). Further biochemical work is
required to prove Cqd1’s enzymatic activity; however, these data
support a model whereby Cqd1’s ability to promote CoQ
distribution relies on atypical kinase/ATPase activity (Fig. 3h).

Cqd2 counteracts Cqd1 function. Beyond Coq8 and Cqd1, the S.
cerevisiae genome encodes just one other member of the UbiB
family—Ylr253w (aka Mcp2, and renamed here Cqd2). Cqd2 is
also poorly characterized and resides in the same location as
Cqd1, on the outer face of the IMM11,15,21 (Supplementary
Fig. 1b). Previous studies have identified genetic and physical
interactions connecting Cqd2 to mitochondrial lipid homeostasis,
but not to a specific pathway21–23. Given the similarity between
these three proteins (Supplementary Fig. 2d, e), we anticipated
that Cqd2 might also be connected to CoQ biology.

To test this hypothesis, we disrupted CQD2 in Δgpx1/2/3 yeast
and subjected this strain to PUFA-mediated stress. Surprisingly,
Δgpx1/2/3Δcqd2 yeast exhibited an enhanced sensitivity to PUFA
treatment—the opposite phenotype to that of Δgpx1/2/3Δcqd1
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(Fig. 4a; Supplementary Fig. 3a). This phenotype is also CoQ-
dependent, as deletion of CQD2 likewise had no effect in
background strains lacking CoQ (Supplementary Fig. 1d, e).
Furthermore, Δgpx1/2/3Δcqd1Δcqd2 yeast phenocopied the
parental (Δgpx1/2/3) strain (Fig. 4a; Supplementary Fig. 3a).
Under respiratory conditions, Δcqd2 yeast exhibited no detectable
change in growth. However, deleting CQD2 from Δcqd1 yeast
(Δcqd1Δcqd2) restored this strain’s impaired respiratory growth
rate to WT levels (Fig. 4b, c). Conversely, reintroduction of CQD2
into the Δcqd1Δcqd2 strain recapitulated the respiratory growth
deficiency of Δcqd1 (Fig. 4d). Total cellular CoQ levels remained
unchanged (Supplementary Fig. 3b), again suggesting these CoQ-
related phenotypes are unrelated to CoQ biosynthesis. Similar to
Cqd1 (Fig. 3g), Cqd2 function was dependent on intact canonical
PKL and UbiB-specific residues (Fig. 4d, Supplementary Fig. 3c–e),

suggesting that all three UbiB family proteins in yeast are active
phosphoryl transfer enzymes. Consistent with these results,
subcellular fractionation revealed significantly increased CoQ levels
in the pure mitochondrial fraction from Δcqd2 yeast (Fig. 4e;
Supplementary Fig. 3f). Furthermore, the Δcqd1Δcqd2 strain
possessed mitochondrial and non-mitochondrial CoQ levels
between those of the Δcqd1 and Δcqd2 strains (Fig. 4e). However,
our fractionation approach, which prioritizes high purity over yield,
only detected very low levels of CoQ in the WT and Δcqd2 non-
mitochondrial samples; therefore, a quantifiable loss of CoQ in this
fraction for the Δcqd2 was not detectable (Fig. 4e).

The analyses above, coupled with the submitochondrial
location of Cqd1 and Cqd2, suggest a model whereby these
enzymes may reciprocally regulate the amount of CoQ within the
IMM. To test this directly, we used the amphipathic polymer
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styrene-maleic acid (SMA) to solubilize integral membrane
proteins into detergent-free SMA lipid particles (SMALPs)24

from yeast harboring an endogenously-tagged subunit of
mitochondrial complex II (Sdh4-GFP). Recent work validated
this approach as an effective method for parsing mitochondrial
membranes and isolating pure IMM content25. We reasoned that
purifying lipid patches containing Sdh4, which directly interacts
with CoQ to facilitate succinate dehydrogenase (Complex II)
activity26, would yield a suitable lipid microenvironment to
measure IMM-localized CoQ. After solubilization (Supplemen-
tary Fig. 3g), we isolated native IMM patches that possessed
Sdh4-GFP using a recombinantly purified His-tagged GFP
nanobody (Fig. 4f; Supplementary Fig. 3h, i). We show that
purified Sdh4-GFP IMM patches are largely void of extramito-
chondrial and outer mitochondrial membrane (OMM) protein
contamination (Fig. 4g), making this a reliable sample for
assessing IMM CoQ abundance.

We generated a panel of deletion strains in the Sdh4-GFP
background to investigate how the loss of Cqd1 and Cqd2
impacts CoQ abundance in this IMM microenvironment. These
yeast strains exhibited the same respiratory phenotypes as the
W303 background strains and had similar levels of whole-cell
CoQ (Supplementary Fig. 3j, k). After solubilization and affinity
enrichment (Supplementary Fig. 3l, m), Sdh4-GFP IMM patch
lipids were extracted for targeted CoQ measurements. Consistent
with our respiratory growth and fractionation observations,
Δcqd1 yeast had significantly lower levels of IMM patch CoQ.
Conversely, the Δcqd2 yeast had elevated IMM patch CoQ, while
Δcqd1Δcqd2 yeast had levels similar to the parental strain
(Fig. 4h). These data provide additional evidence of protein-
dependent changes in CoQ distribution, corroborating our
phenotypic observations. Taken together, our results suggest that
Cqd1 and Cqd2 reciprocally regulate the levels of IMM CoQ and
support a model wherein proper cellular CoQ distribution is
dependent on the balance of their activities (Fig. 4i).

Once extracted from the IMM, we expect that subsequent steps
would be required to deliver CoQ to extramitochondrial
membranes (EMM). The multimeric ER-mitochondrial encounter
structure (ERMES) and mitochondrial contact site and cristae
organizing system (MICOS) complexes facilitate interorganellar
lipid and metabolite transfer27,28. Recent work has revealed that
CoQ biosynthetic machinery and MICOS subcomplexes often
colocalize with ERMES29–31, suggesting that these sites could serve
as conduits for CoQ transport. To investigate the role of ERMES
and MICOS in intramitochondrial CoQ trafficking, we disrupted a
key subunit from each protein complex—MDM34 or MIC60,
respectively. Disruption of ERMES or MICOS had no effect on

PUFA resistance observed after subsequent deletion of CQD1,
suggesting neither ERMES nor MICOS is required for the
increased CoQ export in Δcqd1 strains (Supplementary Fig. 4a, b).

To explore this approach more thoroughly, we also deleted
MCP1, a subunit of the vacuolar and mitochondria patch
(vCLAMP) complex32, as well as genes associated with inter-
oganellar (LTC1)33 and intramitochondrial (MDM31)34,35 lipid
homeostasis. Remarkably, none of these deletions blocked the
increased PUFA resistance upon CQD1 knockout, suggesting that
these genes are also not required for mitochondrial CoQ export
(Supplementary Fig. 4c, d). Thus, CQD1 and CQD2 are the sole
genes currently associated with the redistribution of
mitochondrial CoQ.

Discussion
Our work demonstrates that two previously uncharacterized
UbiB family proteins influence the cellular distribution of
mitochondria-derived CoQ. To our knowledge, Cqd1 and Cqd2
are the first proteins implicated in this process, which is essential
for providing membranes throughout the cell with the CoQ
necessary for enzymatic reactions and antioxidant defense. Fur-
ther efforts are needed to establish how these proteins support
CoQ distribution mechanistically; however, their similarity to
Coq8 and the requirement for canonical PKL residues in their
active sites suggests that Cqd1 and Cqd2 may couple ATPase
activity to the selective extraction/deposition of CoQ from/to
the IMM.

Our investigations here focused on CoQ; however, it is possible
that Cqd1 and Cqd2 (aka Mcp2) influence lipid transport and
homeostasis more broadly. Previous work has identified an array
of genetic interactions for Cqd1 and Cqd2 with lipid biosynthesis
and homeostasis genes23,36. Moreover, Cqd2 was previously
identified as a high-copy suppressor of a growth defect caused by
loss of the ERMES subunit Mdm1021. More recently, three con-
served Cqd2 active site residues were shown to mitigate rescue of
Δmdm10 yeast growth22, results that we confirm (Cqd2 K210R)
and expand upon with six additional residue mutations.

Interestingly, mitochondrial CoQ export still occurs in the
absence of Cqd1/2, indicating that additional factors can parti-
cipate in this process. This observation is consistent with multiple
other recent studies demonstrating that various aspects of phos-
pholipid transport are highly redundant in yeast28. For example,
ERMES and vCLAMP appear to have overlapping functions while
normally operating under different growth conditions37,38. In the
absence of Cqd1 and Cqd2, CoQ transport between the OMM
and IMM might be achieved by a combination of MICOS and
other lipid-binding proteins. Although our data demonstrate that

Fig. 4 Cqd2 function opposes Cqd1 control of CoQ distribution. a Growth rate of Δgpx1/2/3 and the described yeast strains in pABA– media containing
2% (w/v) glucose and the indicated additives (mean ± SD, n = 3 independent samples). b Growth assay of WT, Δcqd1, Δcqd2, and Δcqd1Δcqd2 yeast in
pABA– media containing 0.1% (w/v) glucose and 3% (w/v) glycerol (mean ± SD, n = 6 independent samples). c Growth rate of yeast strains in b treated
with 0 (colored bars) or 1 µM 4-HB (white bars, superimposed) (mean ± SD; 0 µM 4-HB n = 6 independent samples, 1 µM 4-HB n = 3). d Growth rate of
WT and Δcqd1Δcqd2 yeast transformed with the indicated plasmids (EV, CQD2, or CQD2 point mutants) and grown in Ura–, pABA– media containing 0.1%
(w/v) glucose and 3% (w/v) glycerol (mean ± SD, n = 3 independent samples). Yeast were treated with 0 (colored bars) or 1 µM 4-HB (white bars,
superimposed) to determine recapitulation of respiratory growth defect. e CoQ from subcellular fractions derived fromWT, Δcqd1, Δcqd2, and Δcqd1Δcqd2
yeast (*p = 0.0392 WT CM vs Δcqd2 CM, **p = 0.0081 WT NM vs Δcqd1 NM, **p = 0.0075 WT NM vs Δcqd1Δcqd2 NM, *p = 0.0105 WT M vs Δcqd1
M, *p = 0.0112 WT M vs Δcqd2 M; mean ± SD, n = 3 independent samples). SP, spheroplast; CM, crude mitochondria; NM, non-mitochondrial fraction;
M, enriched mitochondria. f Schematic of Sdh4-GFP styrene-maleic acid (SMA) lipid particle (SMALP) isolation. g Western blot to assess the purity of
SMALP isolation samples from endogenously tagged Sdh4-GFP yeast. SP, spheroplast; CM, crude mitochondria; S, soluble; E, elution (or IMM patch). Kar2,
endoplasmic reticulum; Tom70, outer mitochondrial membrane (OMM); Vdac, OMM; Sdh4-GFP, SMALP target/IMM; Sdh2, IMM; Cit1, mitochondrial
matrix. A representative western blot from three independent experiments. h CoQ from subcellular fractions derived from SMALP isolation described in (f)
for the indicated strains (**p = 0.0026 WT IMM patch vs Δcqd1 IMM patch, *p = 0.0114 WT IMM patch vs Δcqd2 IMM patch; mean ± SD, n = 3).
i Summary model depicting opposing roles for yeast UbiB family proteins in the cellular distribution of CoQ. OMM, outer mitochondrial membrane; IMM,
inner mitochondrial membrane; EMM, extramitochondrial membranes. e, h Significance calculated by an unpaired, two-tailed Student’s t-test.
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MICOS disruption is insufficient to thwart the PUFA resistance
mediated by disruption of CQD1, MICOS alone is often not
sufficient to facilitate lipid movement between these membranes,
which instead relies on dedicated phospholipid trafficking
proteins39. COQ9 is a lipid-binding protein that likely delivers
CoQ precursors to matrix enzymes40, suggesting that other lipid-
binding proteins may indeed exist to shuttle CoQ. Our genetic
screen has nominated several extramitochondrial and cytosolic
proteins as promising leads for these processes, and validating
additional causative mutations for mutants A−D will be a focal
point of our future work. Moreover, our discovery of Cqd1 and
Cqd2 should accelerate the discovery of other proteins in these
pathways (e.g., by performing similar screens in a Δcqd1Δcqd2
background). Of note, although Gpx1-3 are primarily
cytosolic41,42, they have been localized to mitochondria11,15,43.
Thus, our screen may also be equipped to identify genes that
protect against loss of mitochondrial-based Gpx defenses.

Finally, UbiB family proteins are found across all domains of
life44. UbiB homologs in plants (termed ABC1K proteins) are
abundant, with 17 found in Arabidopsis45. Many of these ABC1K
proteins are localized to plastoglobules—plastid-localized lipo-
protein particles that contain various lipid-derived metabolites—
and recent work suggests that ABC1K1 and ABC1K3 may affect
the mobility and exchange of their subcellular plastoquinone-9
pools46, suggesting UbiB proteins might function in quinone
distribution across species. In humans, five UbiB proteins have
been identified, ADCK1-5. While COQ8A (ADCK3) and COQ8B
(ADCK4) have established roles in CoQ biosynthesis and human
disease13,47,48, the biological roles of other ADCK proteins
remain elusive. Genome-wide knockdown studies have impli-
cated these uncharacterized ADCK genes in several cancer disease
states49–52. As novel targets for human disease intervention, it
will be important to determine if functional conservation exists
between Cqd1 and Cqd2 and their putative human orthologs,
ADCK2 and ADCK1/5, respectively. Recently, a crucial new role
for extramitochondrial CoQ was identified in mitigating ferrop-
tosis, a type of cell death stemming from a buildup of toxic lipid
peroxides, suggesting that manipulating CoQ distribution could
provide therapeutic benefits5,6. Notably, we have developed
small-molecule modulators for Coq814 and COQ8A53, indicating
that UbiB proteins are promising druggable targets.

Collectively, our work to de-orphanize these poorly char-
acterized mitochondrial proteins represents the first step in
addressing enduring questions regarding endogenous cellular
CoQ distribution and unlocking the therapeutic potential of
manipulating this pathway.

Methods
Yeast strains and cultures. Unless otherwise described, Saccharomyces cerevisiae
haploid W303 (MATa his3 leu2 met15 trp1 ura3) yeast were used. For SMA-
derived lipid nanodisc work, endogenous GFP-tagged BY4741 (MATa his3Δ1
leu2Δ0 met15Δ0 ura3Δ0) yeast strains54 were used. Yeast deletion strains were
generated using standard homologous recombination or CRISPR-mediated
methods (all primers used in this study are detailed in Supplementary Data 2). For
homologous recombination, open reading frames were replaced with the KanMX6,
HygMX6, or NatMX6 cassette as previously described55. Cassette insertion was
confirmed by a PCR assay and DNA sequencing. CRISPR-mediated deletions were
performed as described in56. 20-mer guide sequences were designed with the
ATUM CRISPR gRNA design tool (https://www.atum.bio/eCommerce/cas9/input)
and cloned into pRCC-K, and 500 ng of the guide-inserted pRCC-K was used per
yeast transformation. Donor DNA was 300 pmol of an 80-nt Ultramer consisting
of 40 bp upstream and 40 bp downstream of the ORF (for scarless deletions) or ~6
µg of PCR-amplified Longtine cassette with flanking homology 40 bp upstream and
40 bp downstream of the ORF (for cassette-replacement deletions).

Synthetic complete (and dropout) media contained drop-out mix (US
Biological), yeast nitrogen base (with ammonium sulfate and without amino acids)
(US Biological), and the indicated carbon source. pABA– (and dropout) media
contained Complete Supplement Mixture (Formedium), Yeast Nitrogen Base
without amino acids and without pABA (Formedium), and the indicated carbon
source. All media were sterilized by filtration (0.22 μm pore size).

Yeast growth assay and drop assay
PUFA growth assays. To assay yeast growth in liquid media, individual colonies
were used to inoculate synthetic complete (or synthetic complete dropout) media
(2% glucose, w/v) starter cultures, which were incubated overnight (30 °C, 230
rpm). Yeast were diluted to 1.1 × 106 cells/mL in pABA– (or pABA– dropout)
media (2% glucose, w/v) and incubated until early log phase (30 °C, 7−8 h, 230
rpm). Yeast were swapped into fresh pABA– media (2% glucose, w/v) at an initial
density of 5 × 106 cells/mL with indicated additives. The cultures were incubated
(30 °C, 1140 rpm) in an Epoch2™ plate reader (BioTek®) in a sterile 96 well
polystyrene round bottom microwell plate (Thermo) with a Breathe-Easy® cover
seal (Diversified Biotech). Optical density readings (A600) were obtained every 10
min, and growth rates were calculated with Gen5 v3.02.2 software (BioTek®),
excluding timepoints from the stationary phase.

Respiratory growth assays. Individual colonies of S. cerevisiae were used to inoculate
synthetic complete media (2% glucose, w/v) starter cultures, which were incubated
overnight (30 °C, 230 rpm). For transformed yeast strains, the corresponding Ura–

media was used. Yeast were diluted to 1 × 106–1.33 × 106 cells/mL in pABA– media
(2% glucose, w/v) and incubated until early log phase (30 °C, 7−8 h, 230 rpm).
Yeast were swapped into pABA– media with glucose (0.1%, w/v) and glycerol (3%,
w/v) at an initial density of 5 × 106 cells/mL with indicated additives. The cultures
were incubated (30 °C, 1140 rpm) in an Epoch2 plate reader (BioTek) in a sterile 96
well polystyrene round bottom microwell plate (Thermo) with a Breathe-Easy
cover seal (Diversified Biotech). Optical density readings (A600) were obtained
every 10 min, and growth rates were calculated with Gen5 v3.02.2 software (Bio-
Tek), excluding time points before the diauxic shift and during stationary phase
growth.

Drop assays. Individual colonies of yeast were used to inoculate pABA-limited
media (2% w/v glucose, 100 nM pABA) starter cultures, which were incubated
overnight (30 °C, 230 rpm). Cells were spun down (21,000 × g, 2 min) and resus-
pended in water. Serial dilutions of yeast (105, 104, 103, 102, or 10 cells) were
dropped onto pABA– media (2% glucose and 1% EtOH, w/v) agar plates with
indicated additives and incubated (30 °C, 2−3 d).

Forward-genetic screen. Individual colonies of Δgpx1/2/3 yeast were used to
inoculate YEPD starter cultures, which were incubated overnight. 1.0 × 108 cells
were pelleted, washed once with sterile water, and resuspended in 2.5 mL of 100
mM sodium phosphate buffer, pH 7.0. Ethyl methanesulfonate (EMS) (80 µL) was
added, and cells were incubated (90 min, 30 °C, 230 rpm). Cells were washed thrice
with sodium thiosulfate (5% w/v) to inactivate EMS. Cells were resuspended in
water, and 1.0 × 104 cells were plated on pABA-limited (2% w/v glucose, 100 nM
pABA) agar plates. After 3 days, cells were replica-plated onto pABA– (2% glucose,
w/v) plates with 0 µM or 25 µM ɑ-linolenic acid (C18:3, Sigma). Colonies that grew
on 25 µM linolenic acid were picked into YEPD overnight cultures and struck on
YEPD plates, and PUFA resistance phenotypes were confirmed with plate reader
growth assays. For mutant strains that grew in the presence of 25 µM linolenic acid,
genomic DNA was isolated with the MasterPure™ Yeast DNA Purification Kit
(Lucigen) and submitted to GENEWIZ for whole-genome sequencing. S. cerevisiae
genome assembly and variation calling were performed with SeqMan NGen 14 and
ArrayStar 14 (DNASTAR Lasergene suite). Variant D-Score predictions were
obtained using the PROVEAN v1.1.3 web server (http://provean.jcvi.org/
seq_submit.php).

Plasmid cloning. Expression plasmids were cloned with standard restriction
enzyme cloning methods. ORF-specific primers (Supplementary Data 2) were used
to amplify Cqd1 (Ypl109c) and Cqd2 (Ylr253w) from W303 yeast genomic DNA.
Amplicons were treated with DpnI to degrade genomic DNA and ligated into the
digested p416 GPD plasmid (Addgene). Cloning products were then transformed
into E. coli 10G chemically competent cells (Lucigen). Plasmids were isolated from
transformants and Sanger sequencing was used to identify those containing the
correct insertion.

Constructs containing Cqd1 and Cqd2 were digested with SalI and BamHI or
HindIII to liberate the GPD promoter. Digested backbones were then combined
with amplified endogenous promoter regions (1000 bases upstream for Cqd1, 500
bases upstream for Cqd2) and ligated to generate endogenous promoter vectors for
Cqd1 and Cqd2.

Site-directed mutagenesis. Point mutants were constructed as described in the
Q5® Site-Directed Mutagenesis Kit (New England Biolabs) and were confirmed via
Sanger sequencing. Yeast were transformed as previously described57 with plasmids
encoding Cqd1 and Cqd2 variants with their endogenous promoters and grown on
uracil drop-out (Ura–) synthetic media plates containing glucose (2%, w/v).

Homology model generation. Amino acid sequences of Cqd1 and Cqd2 were
threaded through COQ8A apo crystal structure (PDB:4PED) via the online I-
TASSER webserver58. Superimposed homology models were visualized in the
PyMOL Molecular Graphics System (Version 2.0, Schrödinger, LLC). Color
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schemes depicting protein domain organization were chosen according to the
previous work19.

Subcellular fractionation. Individual colonies of S. cerevisiae were used to
inoculate synthetic complete media (2% glucose, w/v) starter cultures and were
incubated for 14−16 h (30 °C, 230 rpm). Yeast were diluted to 5 × 106 cells/mL in
50 mL pABA– media (2% glucose, w/v) and incubated until mid-log phase (30 °C,
16 h, 230 rpm). Yeast were swapped into 2 L of pABA– media with glucose (0.1%,
w/v) and glycerol (3%, w/v) at an initial density of 2.5 × 106 cells/mL and incubated
until early log phase (30 °C, 16 h, 230 rpm). 1 × 108 cells were collected for whole-
cell (WC) analyses. The remaining culture was pelleted by centrifugation (4,500 × g,
7 min) and weighed (2−3 g). Pellets were then fractionated using previously
described methods59. To isolate crude mitochondria, samples were pelleted by
centrifugation (15,000 × g, 10 min, 4 °C) and the supernatant was collected
(25−30mL). Crude mitochondria were resuspended in SEM buffer (10mMMOPS/
KOH pH 7.2, 250mM sucrose, 1 mM EDTA) containing 10 µg trypsin (sequencing
grade, Promega) and rotated end-over-end overnight (16 h, 4 °C) to disrupt pro-
teinaceous organelle contact tethers60. Collected supernatant material was then
subjected to ultracentrifugation (106,000 × g, 1 h, 4 °C) to pellet microsomes (non-
mitochondrial fraction; NM). The post-spin supernatant was immediately removed,
and pelleted material was resuspended in 300 µL SEM. On the following day,
digested samples were pelleted by centrifugation (15,000 × g, 10 min, 4 °C) and the
supernatant was collected. Pelleted material was resuspended in 900 µL SEM buffer
containing 1 mM phenylmethylsulfonyl fluoride (SEM+PMSF) to deactivate tryp-
sin. Resuspended material was pelleted (15,000 × g, 10 min, 4 °C) and this was
repeated once more. Pelleted crude mitochondria were resuspended in 700 µL SEM
+PMSF and then added to a freshly prepared sucrose gradient (bottom to top: 1.5
mL 60% sucrose, 4 mL 32% sucrose, 1.5 mL 23% sucrose, and 1.5 mL 15% sucrose)
for separation by ultracentrifugation (134,000 × g, 1 h, 4 °C). Enriched mitochon-
drial samples were recovered at the 32−60% interface and diluted with 30mL SEM.
Mitochondria were pelleted (15,000 × g, 10 min, 4 °C) and resuspended in fresh
SEM (150 µL total). The protein concentration of all subcellular fractions (spher-
oplasts, SP; crude mitochondria, CM; non-mitochondrial fraction, NM; enriched
mitochondria, M) was determined using the Pierce™ BCA Protein Assay Kit
(Thermo) before western blot (4 µg) analyses and lipid extractions.

GFP nanobody
Recombinant purification. pCA528-His-SUMO-GFP nanobody (GFPnb) con-
structs were transformed into RIPL competent E. coli cells for protein expression.
GFPnb was overexpressed in E. coli by autoinduction overnight61 (37 °C, 4 h; 20 °C,
20 h). Cells were isolated by centrifugation (4,500 × g, 12 min, RT), flash frozen in
N2(l) dropwise, and stored at −80 °C. For protein purification, cells were added to a
Retsch® mixer mill MM 400 screw-top grinding jar pre-equilibrated with N2(l).
The cells were lysed by cryogenic grinding (−196 °C, 30 Hz, 120 s × 3). The ground
cell pellet was collected and resuspended end-over-end for 1 h in lysis buffer (160
mM HEPES pH 7.5, 400 mM NaCl, 0.25 mM PMSF, 1 Roche cOmplete™ Protease
Inhibitor Cocktail tablet, 500 U Benzonase® Nuclease) at 4 °C. The lysate was
clarified by centrifugation (15,000 × g, 30 min, 4 °C). Clarified lysate was added to
pre-equilibrated TALON® cobalt resin (Takara Bio) and incubated end-over-end
for 1 h at 4 °C. TALON® resin was pelleted by centrifugation (700 × g, 2 min, 4 °C)
and washed twice with equilibration buffer (160 mM HEPES pH 7.5, 400 mM
NaCl, 0.25 mM PMSF) and twice with wash buffer (160 mM HEPES pH 7.5, 400
mM NaCl, 0.25 mM PMSF, 20 mM imidazole). His-tagged protein was eluted with
elution buffer (160 mM HEPES (pH 7.5), 400 mM NaCl, 0.25 mM PMSF, 400 mM
imidazole). The eluted protein was concentrated to ~600 µL with an Amicon® Ultra
Centrifugal Filter (10 kDa MWCO) and exchanged into equilibration buffer.
Concentrated protein elution was centrifuged (15,000 × g, 5 min, 4 °C) to pellet the
precipitate and filtered through a 0.22 μM syringe filter. Concentrated protein
elution was separated via size exclusion chromatography on a HiLoad™ 16/600
Superdex™ 75 pg. Fractions from the size exclusion chromatography were analyzed
by SDS-PAGE, and the fractions containing GFPnb were pooled and concentrated
to ~1mL. The concentration of GFPnb was determined by Bradford assay (Bio-
Rad Protein Assay Kit II) and was diluted with equilibration buffer and glycerol to
a final concentration of 20 mg/mL protein (160 mM HEPES pH 7.5, 400 mM NaCl,
10% glycerol). The final protein was aliquoted, flash-frozen in N2(l), and stored at
−80 °C. Fractions from the protein preparation were analyzed by SDS-PAGE.

Differential scanning fluorimetry. The differential scanning fluorimetry method
(thermal shift assay) was performed as described previously62. Purified recombi-
nant GFPnb was diluted to a final concentration of 4 μM with DSF buffer (100 mM
HEPES pH 7.5, 150 mM NaCl) and 1:1250 SYPRO® Orange Dye (Life Tech).
Thermal shift data were collected with QuantStudio Real-Time PCR v1.2 software
and analyzed with Protein Thermal Shift v1.3 software.

Native nanodisc isolation. Individual colonies of S. cerevisiae (BY4741) were used
to inoculate synthetic complete media (2% glucose, w/v) starter cultures, which
were incubated for 14−16 h (30 °C, 230 rpm). Yeast were diluted to 5 × 106 cells/
mL in 50 mL pABA– media (2% glucose, w/v) and incubated until mid-log phase

(30 °C, 16 h, 230 rpm). Yeast were swapped into 2 L of pABA– media with glucose
(0.1%, w/v) and glycerol (3%, w/v) at an initial density of 2.5 × 106 cells/mL and
incubated until early log phase (30 °C, 16 h, 230 rpm). Yeast cultures were pelleted
by centrifugation (4,500 × g, 7 min) and weighed (2–3 g). Pellets were then frac-
tionated using previously described methods59. For preparative scale affinity pur-
ification, crude mitochondria were resuspended in 50 µL BB7.4 (0.6 M sorbitol,
20 mM HEPES-KOH pH 7.4), diluted in 950 µL ice-cold BB7.S (20 mM HEPES-
KOH pH 7.4), vortexed for 10 s (medium setting 8, Vortex Genie), and incubated
on ice for 30 min. Swollen mitochondria were then sonicated briefly (1/8” tip, 20%
amplitude) for 2–5 s pulses with 60 s between pulses. Mitoplasts with osmotically
ruptured outer membranes were recovered by centrifugation at (20,000 × g, 10 min,
4 °C). After removing the supernatant, each pellet was resuspended with 1 mL of
Buffer B (20 mM HEPES-KOH pH 8.0, 200 mM NaCl) containing 2% (w/v)
styrene-maleic acid copolymer (SMA, Polyscope SMALP® 25010 P) by repeat
pipetting and rotated end-over-end (4 h, 4 °C). Soluble SMA extracts were sepa-
rated from non-extracted material by centrifugation at 21,000 × g for 10 min at 4 °
C. Soluble material was then added to NTA nickel resin (400 µL slurry, Qiagen),
which was pre-charged (overnight at 4 °C, end-over-end) with recombinant His-
tagged GFPnb (12.5 µL, 20 mg/mL). This mixture of soluble SMA extracts and
charged nickel resin was rotated end-over-end (24 h, 4 °C).

Nickel resin was pelleted by centrifugation (700 × g, 2 min, 4 °C) and the
supernatant fraction was carefully collected. Nickel resin was washed twice with
Buffer B and twice with 500 µL Wash Buffer [Buffer B containing 20 mM
imidazole]. Native nanodiscs bound to His-GFPnb were eluted with Buffer B
containing 250 mM imidazole by rotating end-over-end for 20 min at 4 °C. Due to
the presence of GFP nanobody in the elution samples, relative target abundance
was determined by western blot analysis and anti-GFP band quantification. Protein
concentrations of all other samples were quantified by Pierce™ BCA Protein Assay
Kit (Thermo).

Lipid extraction
CHCl3:MeOH extraction. 1 × 108 yeast cells were harvested by centrifugation
(4,000 × g, 5 min, 4 °C). The supernatant was removed, and the cell pellet was flash-
frozen in N2 (l) and stored at −80 °C. Frozen yeast pellets were thawed on ice and
resuspended in 100 µL cold water. To this, 100 µL of glass beads (0.5 mm; RPI) and
CoQ10 internal standard (10 µL, 10 µM) were added and bead beat (2 min, 4 °C).
900 µL extraction solvent (1:1 CHCl3/MeOH, 4 °C) was added and samples were
vortexed briefly. To complete phase separation, samples were acidified with 85 µL
6M HCl (4 °C), vortexed (2 × 30 s, 4 °C), and centrifuged (5,000 × g, 2 min, 4 °C).
The resulting aqueous layer (top) was removed and 400 µL of the organic layer
(bottom) was transferred to a clean tube and dried under Ar(g). Dried organic
matter (lipids) were reconstituted in ACN/IPA/H2O (65:30:5, v/v/v, 100 µL) by
vortexing (2 × 30 s, RT) and transferred to an amber vial (Sigma; QSertVial™, 12 ×
32 mm, 0.3 mL) for LC–MS analysis.

Petroleum ether:MeOH extraction. For yeast whole-cell measurements, 1 × 108 cells
were collected by centrifugation (4,000 × g, 5 min) and layered with 100 µL of glass
beads (0.5 mm; RPI). Whole-cell samples and all other fractions were then sus-
pended in ice-cold methanol (500 µL; with 1 µM CoQ8 internal standard) and
vortexed (10 min, 4 °C). ~500 µL of petroleum ether was added to extract lipids,
and samples were vortexed (3 min, 4 °C) and centrifuged (17,000 × g, 1 min) to
separate phases. The petroleum ether (upper) layer was collected, and the extrac-
tion was repeated with another round of petroleum ether (500 µL), vortexing (3
min, 4 °C), and centrifugation (17,000 × g, 1 min). The petroleum ether layers were
pooled and dried under argon. Lipids were resuspended in 2-propanol (15 µL) and
transferred to amber glass vials (Sigma; QSertVial™, 12 × 32 mm, 0.3 mL). Sodium
borohydride (15 µL of 10 mM in 2-propanol) was added to reduce quinones, and
samples were vortexed briefly and incubated (5−10 min). Methanol (20 µL) was
added to remove excess sodium borohydride, and samples were vortexed briefly
and incubated (5−10 min). Samples were briefly flushed with nitrogen gas.

Lipidomic analysis
Targeted LC-MS for yeast CoQ6 and PPHB6. LC-MS analysis was performed on an
Acquity CSH C18 column held at 50 °C (100 mm × 2.1 mm × 1.7 µm particle size;
Waters) using a Vanquish Binary Pump (400 µL/min flow rate; Thermo Scientific).
Mobile phase A consisted of 10 mM ammonium acetate and 250 µL/L acetic acid in
ACN:H2O (70:30, v/v). Mobile phase B consisted of IPA:ACN (90:10, v/v) also
with 10 mM ammonium acetate and 250 µL/L acetic acid. Mobile phase B was
initially held at 50% for 1.5 min and then increased to 99% over 7.5 min and held
there for 2 min. The column was equilibrated for 2.5 min before the next injection.
10 μL of each extract was injected by a Vanquish Split Sampler HT autosampler
(Thermo Scientific) in a randomized order.

The LC system was coupled to a Q Exactive Orbitrap mass spectrometer (MS)
through a heated electrospray ionization (HESI II) source (Thermo Scientific).
Source conditions were as follows: HESI II and capillary temperature at 350 °C,
sheath gas flow rate at 25 units, aux gas flow rate at 15 units, sweep gas flow rate at
5 units, spray voltage at +3.5 kV/−3.5 kV, and S-lens RF at 90.0 units. The MS was
operated in a polarity switching mode acquiring positive and negative full MS and
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MS2 spectra (Top2) within the same injection. Acquisition parameters for full MS
scans in both modes were 17,500 resolution, 1 × 106 automatic gain control (AGC)
target, 100 ms ion accumulation time (max IT), and 200−1600 m/z scan range.
MS2 scans in both modes were then performed at 17,500 resolution, 1 × 105 AGC
target, 50 ms max IT, 1.0m/z isolation window, stepped normalized collision
energy (NCE) at 20, 30, 40, and a 10.0 s dynamic exclusion.

Parallel reaction monitoring (PRM) in positive polarity mode was utilized to
monitor for two primary adducts, [M+H]+ and [M+NH4]+, of each CoQ species.
For CoQ6, we targeted the mass to charge ratio of 592.449 and 609.475; for CoQ8,
728.574 and 745.601; and for CoQ10, 864.7 and 881.727. PRM MS settings were:
automatic gain control (AGC) target at 5 × 105, Maximum IT at 100 ms, resolving
power at 35,000, loop count at 2, isolation window at 3.0m/z, and collision energy
at 35. Another experiment performed in tandem with PRM used targeted single ion
monitoring (t-SIM) in negative mode to determine the primary adduct, [M-H]−, of
CoQ intermediates. For PPHB6, we targeted the mass to charge ratio of 544.908
and used the following t-SIM MS settings: AGC target at 5 × 105, Maximum IT at
100 ms, and resolving power at 140,000 with an isolation window of 4.0m/z.

Data analysis. The resulting LC-MS data were manually processed using a custom
TraceFinder 4.1 (Thermo Scientific) method using a mass precision of 4 and mass
tolerance of 10 ppm to detect and identify the different species and adducts of
CoQ6 and CoQ8 and intermediates.

Targeted HPLC-ECD for yeast CoQ6. For yeast whole-cell measurements, 5 × 108

cells were collected by centrifugation (4,000 × g, 5 min) and layered with 100 µL of
glass beads (0.5 mm; RPI). Lipids from whole-cell samples and other fractions were
extracted according to the “Petroleum Ether:MeOH Extraction” section above.
Samples were analyzed by reverse-phase high-pressure liquid chromatography with
electrochemical detection (HPLC-ECD) using a C18 column (Thermo Scientific,
Betasil C18, 100 × 2.1 mm, particle size 3 µm) at a flow rate of 0.3 mL/min with a
mobile phase of 75% methanol, 20% 2-propanol, and 5% ammonium acetate (1 M,
pH 4.4). After separation on the column, the NaBH4-reduced quinones were
quantified on ECD detector (Thermo Scientific ECD3000-RS) equipped with
6020RS omni Coulometric Guarding Cell “E1”, and 6011RS ultra Analytical Cell
“E2” and “E3”. To prevent premature quinone oxidation, the E1 guarding electrode
was set to −200 mV. Measurements were made using the analytical E2 electrode
operating at 600 mV after complete oxidation of the quinone sample and E3
electrode (600 mV) was used to ensure that the total signal was recorded on the E2
cell. For each experiment, a CoQ6 standard in 2-propanol was also prepared with
sodium borohydride and methanol treatment, and different volumes were injected
to make a standard curve. Quinones were quantified by integrating respective peaks
using the Chromeleon 7.2.10 software (Thermo) and normalized to CoQ8 internal
standard.

Antibodies and western blots
Antibodies. Primary antibodies used in this study include anti-Kar2 (SCBT sc-
33630, 1:5000; RRID: AB_672118), anti-Cit163 (custom made at Biomatik, 1:4000),
anti-Tom7064 (1:1000, a gift from Nora Vogtle, University of Freiburg), anti-Vdac
(Abcam ab110326, 1:2000; RRID: AB_10865182); anti-GFP (SCBT sc-9996, 1:1000;
RRID: AB_627695), anti-Sdh265 (1:5000, a gift from Oleh Khalimonchuk, Uni-
versity of Nebraska). Secondary antibodies include goat anti-mouse (LI-COR 926-
32210, 1:15000; RRID: AB_621842) and goat anti-rabbit (LI-COR 926-32211,
1:15000; RRID: AB_621843).

SMA solubility western blot. Mitoplasts were recovered and solubilized in styrene-
maleic acid-containing buffer as described above in “Native Nanodisc Isolation.” To
determine the extent of GFP target solubilization, equal amounts of “input” (IP)
and soluble supernatant (S) were obtained, along with the total pellet (insoluble,
IS). Seventy-five microliters of the input sample was collected immediately after
SMA solubilization. After separating soluble SMA extracts from non-extracted
material via centrifugation (21,000 × g, 10 min, 4 °C), the supernatant was trans-
ferred to a clean tube for an additional 5-min spin. Seventy-five microliters of the
soluble sample was then transferred to a new tube. The resulting pellet was washed
with 1 mL of Buffer B and centrifuged (21,000 × g for 5 min at 4 °C). The resulting
supernatant was aspirated and 75 µL of Buffer B was added to the insoluble (IS)
fraction. From each sample, proteins were extracted by standard chloroform-
methanol procedures. Precipitated protein was reconstituted in 75 µL 0.1 M NaOH.
25 µL 4× LDS sample buffer containing beta-mercaptoethanol (BME) was added
and samples were incubated (95 °C, ∼10 min). Proteins were analyzed with 4–12%
Novex NuPAGE Bis-Tris SDS-PAGE (Invitrogen) gels (1 h, 150 V). The gel was
transferred to PVDF membrane at 100 V for 1 h with transfer buffer (192 mM
glycine, 25 mM Tris, 20% methanol [v/v]). The membrane was blocked with 5%
nonfat dry milk (NFDM) in TBST (20 mM Tris pH 7.4, 150 mM NaCl, 0.05%
Tween 20 [v/v]) (1 h with agitation). Antibodies were diluted in 1% NFDM in
TBST and incubated with the PVDF (overnight, 4 °C with agitation). The PVDF
was washed three times in TBST and the secondary antibodies were diluted
1:15,000 in 1% NFDM in TBST (1.5 h, r.t.). The membrane was washed three times
in TBST and imaged on a LI-COR Odyessey CLx using Image Studio v5.2 software.

SMALP fractionation western blot. Fractions described above in “Native Nanodisc
Isolation” and “SMA solubility western Blot” were collected and used for western
blot analysis. Four micrograms of spheroplasts (SP) and crude mitochondria (CM)
were loaded, along with equal volumes of extracted soluble (S) and final elution (E)
samples. Western blots were performed as described above.

Statistical analysis. All experiments were performed in at least biological tripli-
cate, unless stated otherwise. In all cases, “mean” refers to the arithmetic mean, and
“SD” refers to sample standard deviation. Statistical analyses were performed using
Microsoft Excel. p-values were calculated using an unpaired, two-tailed, Student’s t-
test. In all cases, n represents independent replicates of an experiment. For all
western blot, Coomassie gel, and drop assay data, a representative blot from three
independent experiments is displayed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The next generation sequencing data generated in this study (Fig. 2c, Supplementary
Fig. 1c) have been deposited to NCBI SRA (BioProject: accession PRJNA679831). Source
data for Figs. 1–4 and Supplementary Figs. 1−4 are provided in the Source Data file. All
other data supporting the findings of this study are available from the corresponding
authors on reasonable request. Source data are provided with this paper.
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