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Joanna Kocięcka * and Daniel Liberacki

����������
�������
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Abstract: This review presents the main findings from measurements carried out on cereals using
chitosan, its derivatives, and nanoparticles. Research into the use of chitosan in agriculture is growing
in popularity. Since 2000, 188 original scientific articles indexed in Web of Science, Scopus, and Google
Scholar databases have been published on this topic. These have focused mainly on wheat (34.3%),
maize (26.3%), and rice (24.2%). It was shown that research on other cereals such as millets and
sorghum is scarce and should be expanded to better understand the impact of chitosan use. This
review demonstrates that this chitosan is highly effective against the most dangerous diseases and
pathogens for cereals. Furthermore, it also contributes to improving yield and chlorophyll content, as
well as some plant growth parameters. Additionally, it induces excellent resistance to drought, salt,
and low temperature stress and reduces their negative impact on cereals. However, further studies
are needed to demonstrate the full field efficacy of chitosan.
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1. Introduction

Cereals are one of the most important crops on Earth. They are responsible for feeding
the human population of the world. Cereal grains account for more than half of the world’s
daily caloric intake [1]. It is therefore not surprising that cereals account for as much as
half of the global cultivated area [2]. Nowadays, the biggest challenge for cultivation
is climate change. Increased CO2 concentrations, extreme weather phenomena, rising
temperatures, and droughts can be stress factors for many crops. Consequently, climate
change also directly affects cereal production. One of the factors reducing yields is air
temperature increase. It has been shown that global wheat production decreases by 6% for
every 1 ◦C increase in air temperature [3]. Researchers emphasize that plant tolerance to
higher temperatures may be a key trait for wheat yields in the future. Furthermore, it is
extremely important to achieve drought tolerance [4,5]. This is particularly important for
water-limited areas. It should be noted here that the production of and demand for cereals
is constantly increasing, while the water resources required for cultivation are not rising.
Another problem is the constantly increasing demand for water, for purposes other than
agriculture. This phenomenon will be the main reason for water shortages for agriculture
in the coming decades in China [6]. It is therefore extremely important to take actions in
agriculture to help plants survive and adapt to climate change to guarantee food security.
There are various methods to reduce the impact of climate change on plant physiology
and the yield losses associated with its deterioration. These include improved irrigation,
appropriate use of fertilizers, and increased emphasis on breeding varieties that will be
more resistant to these changes [7]. Furthermore, another solution is to develop varieties
with superior genetic yield potential and stress adaptation [8]. It may also be beneficial
to use special antitranspirant formulations to allow cereals to better use and accumulate
water to survive a drought period. Antitranspirants are chemicals that reduce transpiration
rate. Limiting transpiration through their use on plants is beneficial in the context of
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increasing demand for limited water resources. The application of antitranspirants is
a great opportunity for the proper development especially of those crops that require
irrigation [9]. One of the compounds included in the broad group of antitranspirants
is chitosan.

Chitosan is a derivative of chitin and is considered the second most common polymer
in the world after cellulose [10]. Chitosan, as well as chitin, are classified as polysaccharides
containing randomly distributed β-(1-4)-linked D-glucosamine and N-acetylglucosamine
units. Chitosan is mainly obtained from leftovers obtained from seafood processing such as
crab and shrimp shells, as well as fish scales. Furthermore, the potential to receive it from
waste fungal mycelium is also indicated [11,12]. In agriculture, chitosan is used through
foliar application to plants, seed treatment, or as a direct soil fertilizer.

During studies involving the use of this agent on plants, its antitranspirant properties
have been repeatedly confirmed. Research on peppers has shown that chitosan decreases
transpiration through partial or full closure of stomata [9]. Reduction of transpiration
by the application of chitosan was also observed in the case of Phaseolus vulgaris L. [13]
and after spraying coffee leaves through chitosan oligomers [14]. Moreover, chitosan
has been identified as a growth promoter [15–17]. Furthermore, this product exhibits
properties helping to control diseases and prevent crop pathogens. It affects the elicitation
of defense-related enzymes [18]. It also has fungicidal or fungistatic potential, which is
confirmed by the effect of chitosan on the morphology of microorganisms [19]. Due to its
high efficacy in disease control, and the fact that it is biodegradable and environmentally
friendly, it ought to perform well, not only in conventional farming but also in organic
farming [20]. Worldwide research is increasingly considering the use of chitosan derivatives,
besides chitosan alone, as well as nanoparticles. Moreover, the combination of chitosan
nanoparticles with other elements such as copper (Cu), zinc (Zn), selenium (Se), as well
as silver (Ag) is becoming widely used [21–23]. Researchers suggest that chitosan based
metallic nanoparticles may be even more effective than bulk chitosan in anti-pathogenic
and plant growth-promoting activities [24]. Also in the research, the potential for the use of
chitosan and its derivatives in agriculture and the need to systematize the current state of
knowledge is repeatedly highlighted. This manuscript aims to review published research
findings on the impact of chitosan on cereal production. Moreover, it focuses on the role of
chitosan as a management tool. This paper presents how the application of this product
affects plant parameters and indices. Consolidating knowledge in this area will allow a
comprehensive presentation of the role of chitosan in cereal cultivation.

2. Methodological Framework

The aim of this review is to present, systematize and evaluate the current state of
knowledge concerning the effects of chitosan on the most important plant group in the
world, namely cereals. In the article, significant plant parameters and traits influenced by
chitosan were selected. These are presented in subsections such as yields, growth parame-
ters, chlorophyll content, gas exchange, water-use efficiency (WUE), relative water content
(RWC), pathogen and disease control. This paper presents the results of research conducted
since 2000 with their synthesis and evaluation. Original scientific articles registered in
Web of Science, Scopus, and also Google Scholar were taken into consideration for this
analysis. The search included the phrase: chitosan AND the name of the cereal. Cereals
were defined as wheat, rice, maize, barley, oats, rye, sorghum, and millets. For this review,
studies involving chitosan derivatives and nanoparticles were also eligible. To synthesize
the current state of research, one of the last chapters presents the number of articles found
and current research trends in the application of chitosan on cereals. The number of papers
specified in this review is the final score obtained after filtering the search results in the
Web of Science, Scopus and Google Scholar databases and excluding articles that did not
match the research topic.
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3. Effects of Chitosan on Cereal Yields

The parameters that are of most interest from the point of view of grain production
are yield and its indicators. Regardless of its other positive properties, chitosan has no
chance of becoming widely used on cereals if it does not have a positive effect on yield.
Many studies have been carried out in this context. In the case of wheat, the application of
chitosan resulted in a 13.6% increase in yield per hectare in comparison with a control crop.
Furthermore, it had a positive effect on tillers per plant, spikes per plant, and 1000 grain
weight [25]. It was also shown that exogenous use of chitosan on this plant improves
other yield parameters such as a number of grain/spikes, grain index as well as grain
yield. Their increase was also recorded under moderate and severe drought conditions [26].
Moreover, under reduced irrigation conditions, a beneficial effect of chitosan was observed
concerning economical yield. It was also noted that the use of chitosan together with
hydrogel enhances this result [27]. For wheat, the application of chitosan under limited
irrigation conditions slightly improved the biological yield and grain yield, and improved
it significantly for 1000 grain weight. The result for plants without stress could not be
reached [28]. Moreover, research on maize has shown that the application of chitosan under
low-temperature conditions increases the germination index. Furthermore, it also reduces
the average germination time [29]. Similar positive results were obtained in a study on
barley (Hordeum vulgare L.) under semi-arid conditions. A significant improvement of
grain yield per plant, number of spikes per plant and number of grains per spike, and
100-grain weight compared to samples without chitosan was observed [30]. Also after
the application of chitosan with DAP fertilizer (Diammonium phosphate 46% P2O5), an
increase of the same parameters was achieved [31]. Another cereal on which research
was conducted was maize. Tests on this plant also demonstrated that an enhanced grain
yield was obtained after the use of chitosan [32]. Moreover, measurements carried out
on this cereal after application of chitosan and its derivatives: N-succinyl chitosan and N,
O-dicarboxymethylated chitosan (each separately and a mixture of two together) showed
that all these substances increased grain yield and harvest index. However, it was the
highest for the mixture of derivatives [33]. Studies have also been carried out on the effects
of the use of chitosan with plant growth promoting rhizobacteria (PGPR). It was found
that this combination can improve maize production [34]. Application of Cu-chitosan
nanoparticles significantly increased grain yield and 100 grain weight of maize [35]. A
positive effect on grain yield was also observed after using chitosan-silicon nano-fertilizer
on maize (Zea mays L.) [36]. In the case of Zn-chitosan nanoparticles application on maize,
an increase in grain yield from 20.5 to 39.8% was achieved [37]. Studies carried out on
wheat also showed that the foliar application of nano chitosan nitrogen, phosphorus, and
potassium fertilizer enhances yields [38]. The harvest index as well as the crop index also
improved after this treatment compared to the control sample [39]. Additionally, research
has been conductedinto the use of chitosan oligosaccharides on wheat. They showed
that the tillering stage and returning-green stage of plants were the most sensitive to this
application. It was also proven that treatment with chitosan oligosaccharides has the
potential to increase yield components, such as spike number and grains per spike [40].
Moreover, the multifunctional complex ’Vitaplan CL + 0.1% Chitosan’ was also applied
in wheat experiments. After its use, yields were increased by 24.4% compared with the
control [41]. Furthermore, other multifunctional biologics with chitosan have also been
shown to positively affect grain yield and quality [42]. The research was also conducted
under salinity stress conditions on two wheat varieties. It was found that plants treated
with chitosan had better results regarding 1000 grain weight, straw yield, and biological
yield as well as grain yield [43]. Furthermore, a positive effect of chitosan nanoparticles as
well as chitosan nanoparticles loaded with N-acetylcysteine under ozone stress conditions,
was also observed. This treatment was shown to increase the weight of 1000 durum wheat
seeds [44]. In studies on the application of nanochitosan particles to finger millet, an
improvementin yields was noted compared to the control sample [45]. This is in agreement
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with subsequent research, where an increase in grain weight as well as grain yield, was
obtained. However, no significant effect was noticed on the number of inflorescences [46].

Studies on cereal treatment with chitosan have considered not only different varieties
of this antitranspirant, but also various concentrations and application methods. One such
study was the application of varying concentrations (0, 50, 75, 100, and 125 ppm) of chi-
tosan on maize in the early stages of growth. It was found that the greatest seed yields are
obtained at the two highest concentrations [47]. Measurements were also conducted con-
cerning the application of chitosan with different molecular weights (monomer, oligomer,
polymer) and three different methods of application (seed soaking, seed soaking + foliar
spraying, foliar spraying). The potential to obtain higher yields was found after soaking
the seeds before planting rice and then spraying foliar polymeric chitosan four times in
a dose of 20 ppm [48]. Later measurements of the application of different variants of
chitosan on rice confirmed that the maximum yield was achieved after seed soaking and
soil application. The authors indicate that this is because, in soil, chitosan is available
to plants longer than in foliar spray. An increase in seed numbers per panicle was also
noted, but it was not significant [49]. Studies carried out on rice plants in Vietnam also
point to promising yield increases after chitosan [50]. The use of chitosan nanoparticles
on wheat increased grain yield. Interestingly, foliar application had a better effect than
applying chitosan to the soil. This is not fully consistent with the results described above.
An increase in biomass, spike weight, number of grains per spike, and grain yield was also
noted. According to the authors, this improvement is due to several factors such as changes
in transpiration and improvements in the rate of photosynthesis and water status in wheat.
Also, modifications to the leaf organelle ultrastructure and the maintenance of the nutrient
supply have an impact [51]. Moreover, the application of chitosan nanoparticles on barley
(Hordeum vulgare L.) resulted in an improvement of the number of grains per spike, the
grain yield as well as the harvest index. Additionally, the highest 1000-grain weight value
was obtained with the highest nanoparticle dose of 90 ppm [52].

From the above review, it is clear that chitosan has a strong effect on improving
cereal yield. Furthermore, it is effective both as chitosan itself and as its derivatives and
nanoparticles. A trend towards more beneficial results at higher concentrations is noticeable.
However, no clear conclusions can be drawn as to which application method is the most
effective. Certainly, chitosan has a positive effect on yield and yield indices regardless of
the type of grain. The conclusions of the above review are based on a large number of
field studies [25–28,30,31,38,40,42–44,47,50,51]. Moreover, they have also been verified by
experiments conducted under laboratory [36,37], and greenhouse conditions [33–35,45,48].
Furthermore, this review has shown that, chitosan has the potential to reduce the effects of
drought stress, salt stress, and low temperatures, thus improving the yield. The widespread
use of chitosan on cereals, especially in regions of the world particularly exposed to the
negative effects of various types of stressors, would make it possible to mitigate the yield
loss caused by environmental changes. It should be noted that studies have shown that
chitosan can cope with a wide range of conditions. This indicates the potential of chitosan
as a universal tool that can be used worldwide, regardless of climate to improve yields.

4. Growth Parameters

Besides yield, growth parameters are also an important aspect from the point of view
of global grain cultivation. More than half of the articles considered in this review took
into account the effect of chitosan on this group of parameters. For a clearer presentation,
it has been decided to divide this chapter into subchapters on different plants.

4.1. Wheat and Barley

One of the experiments conducted was the application of chitooligomers (COS) on
wheat. An increase in root fresh weight and also in shoot fresh weight of wheat (Triticum
aestivum L. cv. Jimai 22) was observed. Depending on the type of COS, an increase in
root fresh weight of 21.8% to as much as 53.2%, compared to the control sample, was
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achieved [53]. Also, tests on wheat have shown that chitosan hexamers with different
degrees of acetylation improve growth parameters [54]. Moreover, research has been
carried out on a water-soluble form of chitosan, namely chitosan hydrochloride. It has
been shown that this substance stimulates growth and affects germination rate and root
development of durum wheat [55]. Comparative studies were also conducted on the
effect of different concentrations of chitosan as well as chitosan nanoparticles on wheat. It
was shown that the best growth effects occur at 50 µg/mL for chitosan and 5 µg/mL in
the case of nanoparticles. This includes parameters such as seedling length, number of
adventitious roots, seed germination percentage, germination index, vitality index, fresh
weight, the ratio of root/shoot and seedling index. A better effect has been shown with a
lower concentration of nanoparticles than chitosan. This is due to higher adsorption on the
surface of the wheat seeds [56]. Moreover, the studies undertaken on wheat also showed
an increase in root length, shoot length, fresh weight, dry weight after foliar application of
chitosan nanoparticles loaded with nitrogen, phosphorus and potassium [39]. In a study
of the use of chitosan nanoparticles on barley (Hordeum vulgare cv. Reyhan) and wheat
(Triticum aestivum cv. Pishtaz), two application methods of seed priming and direct exposure
were also compared. Positive effects on seedling, root and shoot lengths were observed,
with seeds priming but only at low chitosan nanoparticle concentrations of 30 ppm. At
high values like 90 ppm this treatment had negative effects on growth characteristics in
both application methods [57]. In barley studies, the application of 1, 3, and 6 g/L of
chitosan resulted in a significant improvement in plant height, but not in spike length [30].

Based on research over the last 20 years, it can be concluded that in the case of wheat,
chitosan has a positive effect on growth parameters. This concerns both germination and
root parameters. Nanoparticles, especially in low concentrations, also contribute to the
improvement of many parameters. The number of publications on barley is not as high as
for wheat. However, in papers the positive effect of chitosan on growth parameters has
been noted a few times also for barley.

4.2. Millets

Another cereal type analysed in the context of chitosan application was millet. Tests
carried out using an Elexa preparation containing chitosan for pearl millet demonstrated
improvements of plant height at the vegetative phase, number of tillers, and 1000 seed
weight [58]. A positive effect was also achieved in subsequent studies using chitosan
nanoparticles, increasing seed germination percentage and seedling vigor [59]. Also, in
the case of finger millet, the application of chitosan nanoparticles was shown to increase
the number of leaves, leaf length, and shoot length. Furthermore, an improvement in
dry weight of up to 52% compared with the control sample was observed [46]. In other
studies on the use of nano-chitosan particles on this same plant, no major influence on
the means of leaf length and number was found. However, a significant impact on dry
weight was observed [45]. Also, the effect of the copper-chitosan nanoparticle (CuChNp)
in two different methods of application, as a foliar spray as well as combined application
(involving seed coat and foliar spray), on finger millet (Eleusine coracana Gaertn.) was
studied. In both treatments, an increase in several parameters such as the number of leaves,
leaf length, shoot height, as well as fresh and wet plant weight, was observed. The highest
increase was recorded in the case of dry weight, where it reached 297% in the combined
application and 152% in the foliar treatment [60]. Despite the relatively small number of
studies in relation to other cereals, measurements conducted on millets show that chitosan
nanoparticles contribute to the improvement of many growth parameters. Nevertheless,
more research is desirable, to strengthen the hypothesis of the favourable impact on this
cereal’s growth indices. These results could be extremely valuable, considering that this
cereal is a source of food in many poor countries.
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4.3. Maize

Research has also been conducted on maize. It was shown that the use of chitosan
in the early stages of development improved plant height, leaf number, leaf length and
breadth, and leaf area [47]. In addition to improving plant height and leaf surface, the effect
of the substance on the growth of shoot and root dry weight has also been reported [61].
Furthermore, in the case of maize, chitosan improved root length, root surface, and root
volume also under cadmium stress conditions [62]. Positive results were also obtained in
later studies with foliar application of different concentrations of chitosan nano-fertilizer
(0.01, 0.04, 0.08, 0.12, and 0.16%) on the same plant. Improvement of parameters such as
plant height, root length, root number, and stem diameter was shown. The highest values
were observed at a concentration of 0.16% [63]. It was also found that the application
of an adequate dose of chitosan-based nanoparticle fertilizer increased the fresh and dry
biomass of maize [64]. Moreover, research has been conducted using a nutrient-water
carrier prepared with N, O-carboxymethyl chitosan, among others. Its application had
a positive effect on the root length and seedling height of maize [65]. Also after the use
of nanochitosan on this plant, a growth-promoting effect on plant height and leaf area
was observed [66]. Other studies on rice have also confirmed that chitosan nanoparticles
(ChNP) affect growth parameters. This treatment resulted in a higher number of leaves and
plant length compared to the control sample [67]. It also confirmed that the combination of
moringa and chitosan had a beneficial effect on the index-seed germination and growth
parameters of maize [68]. Furthermore, it has been proven that coating the seeds with
chitosan increases not only the height of maize plants but also of sorghum. An increase in
seed germination was also found for these crops [69].

However, there are also some articles with opposite results [70]. In one of them, no
effect on plant height, root length, leaf surface, shoot and root area and total dry matter
was observed 10 days after chitosan application to maize. Further studies have reported a
positive reaction of chitosan on maize hybrids (DKB 390 and DKB 390 VTPRO) increasing
the percentage of germination. There was no impact on root length, nevertheless, its
anatomy changed [71]. Other measurements show that a chitosan coating on maize did
not affect the rate of seed emergence in comparison with the control sample. Moreover, it
did not contribute to higher seedling germination rates [72]. However, these are not the
only studies showing a reduction in growth parameters. Other measurements showed
negative effects of chitosan on maize (Zea mays L.) seed emergence. This result may
be due to the high concentration of the polymer applied and the simultaneous use of
fertilizers and salicylic acid [73]. Moreover, when using high concentrations of polymeric
chitosan/tripolyphosphate on maize, germination inhibition was reported [74]. Therefore,
the results obtained for chitosan applied on maize are contradictory.

Research involving the use of Cu-chitosan nanoparticles on maize seedlings showed
an increase in germination percent, shoot and root length, root number, seedling length,
fresh and dry weight, and seed vigor index, but only at concentrations of 0.01 to 0.12%. At
a concentration of 0.16%, inhibition of seedling growth was observed. The authors explain
that this is due to excessive Cu content, and thus a decrease in metabolic enzymes [75]. The
growth of plant height, stem diameter, root length, and root number after application of
Cu-chitosan nanoparticle on maize at concentrations of 0.01 to 0.12% was also observed in
later studies [35]. The positive effect of this treatment was also noted for shoot length, fresh
as well as dry weight [76]. The research was also carried out on seed treatment of maize
with salicylic acid-chitosan nanoparticles (SA-CS NPs). These showed an enhancement in
germination percent, shoot-root length, fresh weight, and seedling vigor index with this
use. Interestingly SA-CS NPs showed much better results than bulk chitosan alone [77]. A
positive effect was also demonstrated for Zn-chitosan nanoparticles. It has been proven
that its use increases maize parameters, such as plant height, stem diameter, as well as
root length [37]. Studies were also conducted on the application of chitosan-silicon nano-
fertilizer on maize (Zea mays L.). They showed a significant increase in leaf area, shoot
length, root length as well as root number compared to an untreated control sample [36].
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On the basis of the review carried out, it can be concluded that the results with regard
to maize are not conclusive. There are many studies showing that chitosan or chitosan
varieties have a positive effect on growth parameters, in particular plant height and root
characteristics. However, there are also several articles that show negative or no influence
of this substances on growth parameters. It can therefore be concluded that more research
should be carried out on maize, with close monitoring of the experimental conditions. In
this way, it will be possible to analyse them in detail in relation to the individual factors
influencing the results.

4.4. Rice

In relation to growth parameters, a number of studies have also been carried out on
rice (Oryza sativa L.). In one of these, no effect of chitosan on seedling growth was observed.
The authors believe, the concentration of the substance may justify this result [78]. Measure-
ments were also carried out to cover the application of chitosan with different molecular
weights (monomer, oligomer, polymer) and three different methods of application (seed
soaking, seed soaking + foil spraying, foil spray). No significant changes in the height of
rice plants were noticed. However, it has been shown that the application of the polymer
by seed soaking before planting and then four foliar sprayings with chitosan significantly
increases dry matter accumulation. Therefore, it was concluded that this form of applica-
tion stimulates growth [48,49]. The increase in dry matter is also confirmed by subsequent
studies on the use of chitosan (both oligomeric and polymeric). Moreover, an improvement
in plant height, leaf, and fresh root weight was also obtained. Interestingly, the best results
were obtained for oligomer with an 80% degree of deacetylation at 40 mg/L [79]. Also, the
application of oligochitosan was shown to enhance rice growth [80]. Other studies showed
that chitosan oligosaccharides stimulated the growth of rice roots and stems. Furthermore,
it stimulated metabolic processes and photosynthesis at the seedling stage [81]. Research
has also been conducted into the use of lanthanum-modified chitosan oligosaccharide
nanoparticles (Cos-La) on rice (Oryza sativa L). It has been shown that Cos-La enhances
plant height and fresh weight [82].

As we can see, the results concerning the influence of chitosan, and also its varieties
and nanoparticles on cereal growth parameters are not unequivocal. Many studies report
improvements for each of the cereals considered. However, there are also some reports em-
phasizing no effect, or even a negative effect of chitosan, specifically for maize. Researchers
emphasize that the differences obtained in plant reactions (concerning growth parameters)
to chitosan application may result from the physicochemical properties of chitosan (deacety-
lation degree, molecular weight, and viscosity), as well as plant type [79,83]. Moreover, it
is suggested that various seed germination reactions with chitosan may result from the
concentration of the substance used, the experimental conditions, and the specific seed
and crop features [72]. To understand the exact influence of chitosan, its derivatives, and
nanoparticles on growth parameters, a more detailed analysis is needed. Such an analysis
would consider each parameter separately, the type of application, its concentration, and
individual factors during the experiment. This topic could be an interesting development
of this review.

4.5. Different Stress Conditions

Studies were also carried out on the use of chitosan under different types of stress
(e.g., drought, salt, temperature). It was decided to describe their results, irrespective of
the type of cereal, in a separate section, as they are a valuable source of knowledge in the
face of climate change.

Under drought conditions, chitosan also promoted improvements in fresh and dry
root weight. Furthermore, it was shown that lower concentrations of chitosan had a
higher efficacy [84]. Also, studies under these conditions on barley indicated that chitosan
improved plant height, number of leaves, and leaf area [85]. Exogenous application of
chitosan on wheat was proven to have a positive effect on plant growth parameters. As
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a result, an increase in flag leaf area and also shoot dry weight was observed. Moreover,
the improvement of these parameters was also observed under conditions of limited
irrigation [26]. This indicates the potential of using chitosan during drought conditions.
Measurements were carried out in rice (Oryza sativa L. ‘Leung Pratew123’) exposed to
osmotic stress. After its rehydration, crops treated with chitosan showed higher fresh
and dry weight [86]. Furthermore, chitosan showed a positive influence on leaf area and
biomass in rice also under difficult conditions of elevated ozone concentration [87]. A
positive effect of chitooligomers (COS) with different degrees of polymerization on wheat
(Triticum aestivum L. Jimai 22) under chilling stress was also observed. The results obtained
indicate that this treatment improved growth parameters such as shoot and root length as
well as fresh and dry weight under stress conditions [88]. Similar results were obtained in
maize where a significant increase in shoot height, dry weight, root dry was recorded under
low temperature conditions [29]. Also under cold stress conditions, chitooligosaccharide
(COS) improved fresh root and shoot weight, as well as rice root vigor [89]. Thus, it
can be concluded that chitosan has potential not only in plant adaptation to drought,
but also to cold. Improvements in growth parameters were also noted after the use
of chitooligosaccharide and also sulfated chitooligosaccharide (SCOS) under salt stress
conditions. An increase in shoot length, root length, wet weight, and dry weight of wheat
(Triticum aestivum L. Jimai 22) was observed [90]. Improvement of growth parameters under
salt stress conditions was also noticed when chitosan was used on the varieties Sakha 94
and Gemmieza 9 [43]. In the case of maize, a reduction in the negative effects of salt stress
on shoot dry weight was also observed after chitosan application [61]. Furthermore, maize
treated with chitosan under this stress condition showed an improvement in parameters
such as root length and plant height [91].

All of these results indicate that chitosan does an excellent job of mitigating the effects
of stress cereal growth parameters. It had beneficial effects under drought, cold, salt stress,
and elevated ozone concentration conditions. This is particularly important, given that
many areas of the world are currently facing increasing stress phenomena. The results of
this review highlight the considerable potential of chitosan for cereal adaptation to climate
and environmental change.

5. Chlorophyll Content

In worldwide research, chlorophyll a, chlorophyll b, as well as total chlorophyll are
among the most frequently determined content of photosynthetic pigments. Chlorophyll
is responsible for the green color of plants. Moreover, chlorophyll content has also been
shown to be an indicator of photosynthetic capacity [92]. Further, it can be used to better
predict biomass and crop productivity [93]. Also, a relationship between midday gross
primary production (GPP) and total crop chlorophyll content has been discovered [94]. In
measurements involving the application of chitosan to cereals, parameters determining
chlorophyll have not been ignored. An attempt has been made to determine how this
product affects the chlorophyll content of plants.

Studies carried out on wheat showed that chitosan improved chlorophyll content.
This had a positive effect on plant growth under drought stress [25]. Also, research con-
ducted under moderate and severe drought conditions showed that wheat treated with
chitosan achieved higher values of total chlorophyll as well as total carotenoid concen-
tration [26]. In studies on rice under drought conditions, an improvement in chlorophyll
a and b were obtained for plants with chitosan [84]. Moreover, after the application of
chitosan at concentrations of 0.01 to 0.12%, an increase in chlorophyll a and b content was
recorded in maize [35]. Similar results were obtained in subsequent studies using different
concentrations of chitosan nano-fertilizer (0.01, 0.04, 0.08, 0.12, and 0.16%) on the same
plant. In all cases, the substance caused an increase in total chlorophyll with the highest
concentration of 0.04% [63]. It has also been shown that the application of chitosan has
a positive effect on increasing the greenness of maize leaves [95]. On the other hand, in
the case of rice, no significant changes were observed in leaf greenness as measured by
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chlorophyll meter [49]. Other measurements carried out on rice (Oryza sativa L. ‘Leung
Pratew123’) immediately before exposure to osmotic stress, noted an increase in Chl a
content. An increase in chlorophyll b and carotenoids was also observed, but was not
significant. After osmotic stress, the results were variable. The cultivar LPT123 maintains
elevated pigment levels but its salt tolerant mutant line (LPT123-TC171) does not [86].
In the case of wheat (Triticum aestivum L. Jimai 22), treatment with chitooligosaccharide
and also with sulfated chitooligosaccharide improved chlorophyll a and b content under
salt stress conditions [90]. An increase in photosynthetic pigments was also recorded in
two other wheat varieties Sakha 94 and Gemmieza 9 under salt stress. Chitosan-treated
plants recorded higher chlorophyll a, chlorophyll b, as well as carotenoids, compared
to the control [43]. Studies on rice noted a slight increase in chlorophyll b/a, which has
the potential to maximize yields. Also, this research suggests that chloroplast is a target
organelle for chitosan action [79]. Furthermore, chitosan reduced the negative effect of
elevated ozone concentrations on chlorophyll in the case of rice. After 7 days of ozone expo-
sure, the chlorophyll values of plants treated with chitosan were similar to the unstressed
control [87].

In addition to chitosan, studies have also been carried out using its derivatives and
nanoparticles. The chlorophyll aspect was not omitted in these either. The impact of
chitosan and its derivatives (N-succinylchitosan and N, O-dicarboxymethylated chitosan)
on maize under water stress conditions was also analysed. The results indicate that the
above treatments affect photosystem II activity. Moreover, after the application of these
substances, the content of chlorophyll, a, and a+b was higher in comparison with the
control sample also subjected to water stress [96]. An increase in chlorophyll content
was also observed after the application of chitosan nanoparticles on wheat. The highest
result was obtained, with the highest tested substance concentration of 90 ppm [51]. Other
studies on wheat have shown that 5 µg/mL chitosan nanoparticles have a positive effect
on chlorophyll and photosynthetic capacity [56]. After the application of copper-chitosan
nanoparticles (CuChNp) on finger millet, the chlorophyll content increased. Foliar applica-
tion increased it by 32%, and combined application (involving seed coat and foliar spray)
by 84% [60]. An increase in chlorophyll content was also demonstrated after the application
of Zn-chitosan nanoparticles on maize [37]. Treatment of maize seeds with salicylic acid-
chitosan nanoparticles (SA-CS NPs) also improved total chlorophyll [77]. Studies have also
been conducted on the effect of chitooligomers (COS) with different degrees of polymeriza-
tion on wheat (Triticum aestivum L. Jimai 22) under chill stress. COS was shown to mitigate
the stress-induced decrease in chlorophyll content [88]. Furthermore, also under water
stress conditions, barley treated with chitosan showed an increase in chlorophyll a and
b [85]. The effect of increasing total chlorophyll content was also found during tests using
Chitosan-silicon nano-fertilizer on maize (Zea mays L.) [36]. Studies were also conducted
using chitosan nanoparticles containing the NO donor S-nitroso-mercaptosuccinic acid.
This agent applied to maize was shown to prevent salt-induced changes in chlorophyll
content and maximum quantum yield of photosystem II [97].

In general, in studies involving both the use of chitosan and its derivatives or nanopar-
ticles, it is possible to observe a beneficial effect on chlorophyll. The impact of antitran-
spirant on this parameter was investigated under both field [25,26,43] and pot condi-
tions [49,63,84]. The results of scientific research show that, regardless of the type of cereal,
chitosan increases chlorophyll content. Furthermore, chitosan also copes well with drought
and salt stress, as well as low temperatures. These results are particularly promising in the
context of ongoing climate change. Perhaps chitosan will be an effective tool for maintain-
ing, and even improving chlorophyll content regardless of adverse plant conditions.

6. Gas Exchange

This chapter considers the parameters directly related to gas exchange. These include
photosynthetic rate (PN), stomatal conductance (gs), and intercellular CO2 concentration
(Ci). The effects of chitosan on all of these components have been reviewed. An experiment
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carried out on maize showed that the net photosynthetic rate (PN) decreased on the first
day after chitosan application. However, on the following days, it increased, but only
on the third day was it statistically significant. Then PN was higher than in the control
fields by 10 and 18% depending on CH5 pentamer concentrations (10−5 and 10−7 M) [70].
Similar results were obtained in subsequent studies, where not only chitosan but also its
derivatives: N-succinyl chitosan and N, O-dicarboxymethylated chitosan were used on
maize. Research conducted under water scarcity conditions has shown that on the first
day of stress the photosynthetic rate (PN) in both the treatment of chitosan and derivatives
decreased. After 15 days of the experiment, PN increased, while after rehydration, it
reached the value of a non-stress (irrigated) control sample [96]. This was also confirmed
by later tests, where after 15 days the chitosan derivatives (each separately), and also their
mix, contributed to an increase in the photosynthetic rate [33]. Pearl millet also showed
a decrease in photosynthesis rate under drought stress. Initially, it was even greater in
chitosan-treated plants than in control plants. However, after 7 days, plants with chitosan
had a much higher photosynthetic rate [98]. Studies carried out on two maize hybrids,
one tolerant of (DKB 390) and the other sensitive to (BRS 1030) drought, showed that
after foliar application of chitosan, higher photosynthesis was present in DKB 390 [99].
Moreover, research conducted on wheat (Triticum aestivum L. Jimai 22) also showed that
the application of chitooligomers can improve photosynthesis [53]. It was also found
that chitosan hexamers with different degrees of acetylation increase the photosynthetic
rate and stomatal conductance of wheat seedlings [54]. Furthermore, chitosan showed a
positive effect on photosynthesis in rice also under difficult conditions of elevated ozone
concentration [87].

Under water deficit conditions on maize, studies were carried out on the effects of
chitosan and two of its derivatives (N-succinylchitosan and N, O- dicarboxymethylated
chitosan). Measurements conducted on leaves showed, on the first day after application, a
decrease in carboxylation efficiency (PN/Ci) in comparison to control tests (both irrigated
and stressed). However, after rehydration, the values in all treatments increased and were
higher than the irrigated sample, in contrast to stomatal conductance (gs) and intercellular
CO2 concentration (Ci), whose values decreased [96]. Scientists highlight the importance
of chitosan in regulating the carbon and nitrogen metabolism in wheat [100]. Also, the
potential of chitosan to regulate the carbon metabolism in rice was noted [79]. In a study
on maize, foliar application of chitosan 140 mg L−1 was found to cause a decrease in gs.
Thus it acts as an antiperspirant, without negatively affecting the PN and the Ci [101].

7. Water-Use Efficiency (WUE)

There are two definitions of water-use efficiency (WUE). The first says that it is the
ratio of photosynthesis to transpiration, also referred to in the literature as transpiration
efficiency. The second describes it as the amount of carbon assimilated as biomass, or grain
produced per unit of water consumed by the crop. For now, one of the key questions is
how climate change (precipitation, temperature, and carbon dioxide) will affect plants and
their WUE [102–105]. Therefore, the effect of antitranspirant use on this parameter is also
important and of interest.

Studies carried out on wheat have shown that, after exogenous use of chitosan, WUE
values improve. Furthermore, for plants treated with chitosan under moderate and severe
drought stress, an increase in WUE was observed compared to untreated wheat and under
normal conditions [26]. Also under salt stress conditions, it was shown that WUE was
higher for wheat treated with chitosan compared to a control sample [43]. The influence of
chitosan and its derivatives (N-succinylchitosan and N, O-dicarboxymethylated chitosan)
under water stress conditions on maize was measured. Results showed that the WUE is
higher for N, O-dicarboxymethyl and chitosan on both the first day of stress and after
rehydration compared to two control samples (one irrigated and one stressed), in contrast
to the values measured in the middle of the study duration, i.e., 15 days of stress, where
results were lower [96].
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Water-use efficiency was not a frequently analysed parameter in research on the
chitosan effect on cereals. It is therefore difficult to draw universal conclusions. There are
only a few studies that have taken this parameter into account. This should be changed, as
WUE has a significant role in the adaptation and productivity of plants in water-limited
areas. This concerns both the present as well as future climate change [106].

8. Relative Water Content (RWC)

The monitoring of water levels in plants is extremely important due to climate change
and the intensification of droughts. One of the parameters used for this purpose is relative
water content (RWC). It is responsible for biological water activity in plant tissues. In
the assessment of the water balance of plants, RWC is one of the most important indices.
Furthermore, RWC is a simple tool for farmers to monitor the water status of a plant to
improve production [107]. Studies on the application of chitosan nanoparticles loaded
with nitrogen, phosphorus, and potassium (NPK) on wheat showed an increased water
content [39]. Also, foliar application of different concentrations of chitosan nanoparticles
contributed to an increase in RWC for wheat. This is most likely due to a lower transpiration
rate. The highest result of RWC was achieved at a level of 90 ppm of the substance [51].
Similar results, and the greatest improvement for the 90 ppm dose were also achieved with
foliar application to barley (Hordeum vulgare L.) [52]. Furthermore, under reduced irrigation
conditions for this plant, chitosan caused an increase in RWC [85]. In measurements on
maize, RWC in plants treated with chitosan 140 mg L−1 for 15 days of drought conditions
remained at the same level as in irrigated plants. At lower chitosan concentrations, a
reduction in RWC during drought was recorded compared to well-watered plants [101].
The positive effect of chitosan on increasing RWC under drought conditions was also
observed in experiments on rice [84]. Higher RWC values after chitosan treatment under
drought stress were also observed in pearl millet [98]. Therefore it can be concluded that
this treatment mitigated the impact of drought on the decrease in relative water content.
In general, the application of chitosan and nanoparticles had a positive effect on RWC.
More importantly, it also improved this parameter under drought conditions for major
cereals such as wheat, maize, and rice. This is extremely important from the point of view
of climate change, the increasing frequency of drought periods, and maintaining global
food security.

9. Pathogen and Disease Control

The research carried out concerning the effect of chitosan on cereal diseases has been
extensive. In this review, many papers were found on the impact of this product on different
types of Fusarium. Studies on wheat and durum wheat (Triticum durum) have shown that
chitosan is an effective tool to reduce the damage caused by the fungal pathogen Fusarium
graminearum [108,109]. Scientists observed a decrease in the growth of F. graminearum at
the lowest tested dose of chitosan 0.5 mg/g [110]. Research has also been conducted on
durum wheat on the effect of hydrochloride chitosan. The results showed a decrease in
the growth of F. graminearum [55]. Furthermore, it has been proven that in the case of
wheat and barley, chitosan and isolates of Pseudomonas spp. cause a decrease in Fusarium
seedling blight [111]. Also, promising effects were obtained when chlorophyllin-chitosan
complex (Chl-CHS) was applied to wheat. Furthermore, in the case of this compound,
no simultaneous reduction in growth and chlorophyll parameters was observed [112].
Also, research was conducted using a combination of chitosan and a plant biostimulant
(liquid seaweed extract) prepared from a brown macroalga Ascophyllum nodosum. After
using this combination, measurements on wheat leaves showed a significant decrease in
the area infected by the F. graminearum pathogen [113]. The fact that chitosan as well as
chitosan nanoparticles can control the disease Fusarium head blight, caused by fungi from
the genus Fusarium, is also confirmed by other studies [114–116]. These results are very
important, because Fusarium head blight disease is one of the important challenges for
wheat cultivation.
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The impact of chitosan on other diseases has also been studied. In other research on
wheat, it was found that this substance suppresses Septoria leaf blotch disease [117]. Benefi-
cial results were also obtained with chitosan hydrolyzate, which contained low-molecular-
weight chitosan and its oligomer. It has been shown that a hydrolyzate concentration
of 200 µg/mL causes total inhibition of Septoria leaf blotch of wheat [118]. Furthermore,
measurements were also carried out on wheat using chitosan and its derivatives (Chit-V) as
well as vanillin-modified chitosan. All these treatments decreased the leaf area infected by
the phytopathogen Cochliobolus sativus. These substances were therefore found to induce
resistance in wheat to C. sativus, which causes dark-brown blotch disease [119]. Moreover,
the multifunctional complex ’Vitaplan CL + 0.1% Chitosan’ proved to be even more effec-
tive in the fight against wheat diseases. The study showed that its use decreased plant
damage caused by brown rust by 20.6%. Also, it reduced the development of root rot, spots
with powdery mildew, and the number of yellow rust strips. It is therefore an effective
tool for decreasing disease incidence [41]. In the case of root rot, powdery mildew and
leaf rust, studies have shown that other multifunctional biologics with chitosan also have
the potential to defend wheat against this disease [42,120]. However, the results obtained
with the application of ChitoPlant (Chitosan 99.9%) on the Edvins winter wheat variety are
not conclusive. In one year of the study, this treatment was not effective against yellow
rust, while in the following year an increase in effectiveness was observed. The authors
state that this may be due to the different application timing and stress the need for further
research [121]. It was also noted that chitosan reduced the percentage of wheat leaves
infected by dark brown spot and also brown rust. In the control sample, leaf infection
was 100%, while with chitosan it was only 25%. Even better results were obtained after
treatment with chitosan in combination with salicylic acid. Leaf infection by dark brown
spot was reduced to 20% and in the case of brown rust to 10% [122].

Furthermore, studies on maize showed that foliar application of chitosan reduced
not only leaf spot disease, but also gray leaf blight, late wilt, and ear rot [123]. It was also
found that chitosan had a positive effect on reducing leaf blight disease in this plant [32].
In addition, the potential of chitosan in fumonisin production by Fusarium verticillioides
and Fusarium proliferatum has been investigated on maize samples. A decrease in growth
of these Fusarium species was observed, using chitosan and water activity (aW) [124]. It
also points to the huge potential of non-toxic chitosan to replace conventional antifungal
agents [55]. A study on maize also found that chitosan in combination with Cuscuta
pedicellata extract has the potential to be protective against Fusarium oxysporum [125]. The
potential to increase resistance to Fusarium oxysporum was also observed in studies on
rice. Chitosan oligosaccharide treatment was shown to reduce the incidence of seedling
blight [126].

Studies also have been carried out on the effect of chitosan on rice crops (Oryza
sativa L.) and their defensive reactions to stress and on the production of anti-fungal
phytoalexins [127]. It has been proven that if rice leaves contain high levels of fibre, soaking
the seeds in chitosan increases the potential for disease control and insect infection [49].
Measurements were also carried out on rice after the application of lanthanum-modified
chitosan oligosaccharide nanoparticles (Cos-La). It was demonstrated that Cos-La induced
resistance to rice blast [82]. Also, the use of chitosan guar nanoparticles may be effective
in controlling rice blast, as well as blight disease [128]. Moreover, it has been observed
that the percentage of rice attacked by brown planthopper after application of chitosan
is reduced. This is very important, because this insect is one of the causes of crop losses
in rice yields [50]. Also, chitosan-magnesium (CS-Mg) nanocomposite have proved to be
effective in inhibiting the growth of two rice pathogens Acidovorax oryzae and Rhizoctonia
solani [129]. For Rhizoctonia solani, chitosan nanoparticles without additives were also
successful in suppressing this pathogen [130]. Also, after the use of chitosan, inhibition of
mycelium development, as well as the occurrence of the disease caused by this pathogen
was observed [131]. These results suggest the potential of chitosan and its derivatives
in combating rice sheath blight. One study even says that chitosan reduced the severity
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of this disease by up to 89% [132]. Moreover, chitosan applied to rice was found to
enhance defense responses against other pathogens. The potential of 0.25% chitosan to
control Aphelenchoides besseyi, the rice pathogen that causes white tip disease, has also been
noted [133]. Moreover, the effectiveness of defense against rice blast pathogen Magnaporthe
grisea has been proven. It has been observed that chitosan with low molecular weight
contributes to higher resistance than with high molecular weight [134]. Studies have also
been conducted on the effect of chitosan-silver nanoparticles combined with trihexad on
rice blast caused by fungus Pyricularia oryzae. The antifungal potential of this chemical
combination has been indicated [135]. It has also been found that N,O-acylchitosan has
the potential to control Botrytis cinerea gray mold and Pyricularia oryza blast mould on rice.
Furthermore, this derivative has shown better results than chitosan treatment alone [136].
The potential to control Pyricularia oryzae has also been demonstrated with the treatment
of chitosan nanoparticles loaded with protocatechuic acid [137]. All these results suggest
that chitosan and its variants can help to effectively combat rice blast. This is extremely
important, as this disease contributes to significant crop damage. Other diseases that reduce
the yield of rice are bacterial leaf blight and leaf streak. Studies have shown that chitosan
has an antibacterial effect and is capable of preventing this disease, too [138]. Furthermore,
biosynthesised chitosan nanoparticles have also shown inhibitory effects on the growth of
Xanthomonas oryzae pv. oryzae (Xoo), a pathogen that causes bacterial leaf blight of rice [139].
Research has also been conducted on the use of COS-OGA, which are formulations of
chitosan oligomers (COS) and pectin-derived oligogalacturonides (OGA). It was shown that
COS-OGA can control root-knot nematode caused by Meloidogyne graminicola on rice [140].

Tests carried out in both greenhouse and field conditions on pearl millet showed
that chitosan seed priming protects crops from downy mildew. Furthermore, the effect of
chitosan on the regulation of resistance gene analogue RGPM213 to infection by downy
mildew pathogen was also investigated in pearl millet [141]. The use of this substance
causes systemic and durable resistance to this type of infection [58,142,143]. This has
also been confirmed by later studies of seed treatment with nanochitosan particles [59].
The results of these research works are extremely significant, because this is the most
devastating disease with pearl millet. This plant is resistant to drought and heat, and is
grown mainly in Asia and Sub-Saharan Africa, where it is one of the basic foods for poor
people [144,145]. The second plant in this group, on which the influence of nanochitosan
particles was studied, was finger millet. The measurements showed that they inhibit
the development of Pyricularia grisea, which causes blast disease. Moreover, the use of
this substance resulted in a lower frequency of the disease [45]. It has also been shown
that the application of copper-chitosan nanoparticles (CuChNp) on finger millet causes
protection against blast disease [60]. The same conclusions were obtained for the treatment
of oligochitosan on rice [80]. Moreover, the potential after treating seeds with chitosan
and hydrolyzed chitosan for defense reactions to Pyricularia grisea (Cooke) Sacc. was also
shown by research on the same plant [146]. Similar conclusions were reached for chitosan
nanoparticles [147]. All of the above-mentioned results indicate that both chitosan and its
varieties are effective tools in the fight against blast disease in cereal crops.

The potential of this product to control powdery mildew on barley (Hordeum vulgare L.)
plants was also analysed and it was noted that it could slow the spread of the fungus [148].
Experiments with the use of chitosan on winter wheat (Triticum aestivum L.) indicate that
there is a need for further research into the impact of this measure on pink snow mould
(Microdochium nivale) [149]. Also, it has been shown that under the abiotic stress of maize,
the use of chitosan reduces the development of the fungi A. flavus and F. moniliforme [150].
Subsequent studies on maize and sorghum confirmed that the application of chitosan had
a fungistatic effect against A. flavus and a fungicidal effect against Rhyzopus spp. [69]. In
studies involving the use of Cu-chitosan nanoparticles on maize, it has been shown that this
substance can act as an antifungal preparation for Curvularia leaf spot (CLS) disease [35]. It
has been proven that Zn-chitosan nanoparticles (NPs) also have such properties and cause
higher mycelial growth inhibition [37]. Furthermore, it has been shown that Cu-chitosan
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nanocomposites are an effective antifungal agent against post-flowering stalk rot disease on
maize [151]. Research on the same plant using salicylic acid-chitosan nanoparticles (SA-CS
NPs) has also shown positive results for controlling this disease [77]. Scientists also note the
need to consider chitooligosaccharides with different degrees of acetylation in the context of
the use of protective preparations containing chitosan and the regulations for their use [152].
Therefore, research has also been carried out into the effect of chitooligosaccharides as well
as chitooligosaccharides with different degrees of acetylation on reducing root rot in wheat
and changes in the level of gene expression of pathogens [153,154]. It has been shown that
the use of this derivative of chitosan stimulates defensive reactions to the necrotrophic
fungus Bipolaris sorokiniana, which is responsible for the rot [153]. It has also been proven
that this treatment strengthens the resistance of wheat calli to the bunt fungal pathogen
Tilletia caries (DC) Tul. [155]. However, the researchers still stress the need for further
studies on chitosan to increase data on its impact on crop diseases [156].

Based on the above overview, chitosan is highly effective in reducing the spread of
cereal diseases. Its application is very broad. It has a beneficial influence, regardless of
the crop type. This is particularly important for cereals, which are largely responsible
for feeding the world’s population. Chitosan and its nanoparticles have proven to be
effective against rice diseases such as blast and sheath blight. These diseases are the main
factors preventing stable rice production in the world [157]. However, the researchers also
emphasise that despite promising results in disease control, chitosan nanoparticles have
not yet found widespread application in rice cultivation [130]. In the case of finger millet,
chitosan showed effective protection against not only blast disease but also downy mildew.
It also affected many other pathogens occurring in barley or maize crops. Moreover, it
reduces the most important wheat diseases such as rusts, blotches, and head blight. This is
particularly significant considering that fungal diseases can cause yield losses of 15–20%
per year [158]. Furthermore, cereal diseases also affect harvest quality and safety in terms
of toxins [159]. Based on this review, it can be concluded that cereal disease damage can be
reduced by the widespread application of chitosan during cultivation.

10. State of Knowledge and Research Trends

Since 2000, 188 original scientific articles on the use of chitosan, its derivatives,
nanoparticles, or chitosan fertilizers on cereals have been published. All papers considered
for this article were found in the Web of Science, Scopus, or Google Scholar databases. This
review includes not only articles describing the field application of chitosan on cereals
but also laboratory studies covering the effects of the antitranspirant on plant traits and
disease reduction. All the papers found in the databases during this review are listed in
Table 1. Most of the studies focused on the use of chitosan, chitooligosaccharides (COS), or
nanoparticles. Among nanoparticles, Zn-chitosan nanoparticles, Cu-chitosan nanoparticles,
chitosan-silver nanoparticles, and also chitosan-La nanoparticles were found. Applica-
tions also included irradiated chitosan, chitosan hydrochloride, chitosan nanoemulsion, or
chitosan fertilizers.

Table 1. Summary of papers on chitosan, its derivatives and cereals published since 2000.

Chitosan Type Cereal References

Chitosan

Barley [30,31,85,111,114,148,160–163]
Maize [29,32,33,47,61,62,69–74,91,95,96,99,101,110,123–125,150,164–167]

Pearl millet [141–143,168]
Rice [48–50,78,79,84,86,87,127,129,131–134,138,146,161,169–178]

Sorghum [69,179]
Wheat [25–28,43,100,108–111,113–117,119,121,122,149,161,167,169,180–186]

Chitooligosaccharide (COS)/
chitosan oligomer/

chitooligomer

Barley [187,188]
Rice [80,81,89,126,189–191]

Wheat [40,53,88,90,100,152–155,185,192–194]
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Table 1. Cont.

Chitosan Type Cereal References

Chitooligosaccharide (COS)/
chitosan oligomer/

chitooligomer

Barley [187,188]
Rice [80,81,89,126,189–191]

Wheat [40,53,88,90,100,152–155,185,192–194]

Chitosan nanoparticles

Barley [52,57]
Finger millet [46]
Pearl millet [45,59]

Rice [67,130,139]
Wheat [51,56,116]

Cu-chitosan nanoparticles Finger millet [60]
Maize [35,75,76,151]

Zn-chitosan nanoparticles Maize [37]
Wheat [195–198]

Chitosan nanoparticles loaded with
nitrogen, phosphorus and potassium

(NPK)
Wheat [38,39]

Irradiated chitosan Barley [199,200]

N-succinylchitosan and
N,O-dicarboxy-methylated chitosan Maize [33,96]

N,O-acylchitosan (NOAC) Rice [136]

Oligochitosan Wheat [201]

Deacetylated chitosan Wheat [202]

Vanillin-modified chitosan Wheat [119]

Chitosan nanoemulsion
Pearl millet [98]

Wheat [203]

Chitosan hydrochloride Wheat [55,204]

Chitosan-La nanoparticles,
lanthanum-modified chitosan
oligosaccharide nanoparticles

(Cos-La)

Rice [82]

Chitosan silver-nanoparticles Rice [135]

Moringa with chitosan and iron
(MHCFe) nanoparticles Maize [68]

Chitosan nanoparticles containing
S-nitrosomercaptosuccinic acid

(S-nitroso-MSA)
Maize [97]

Salicylic acid-chitosan nanoparticles Maize [77]

Sepiolite-chitosan nanocomposites Maize [205]

Chitosan nanoparticles loaded with
N-acetylcysteine Wheat [44]

Chitosan nanoparticles loaded with
protocatechuic acid (PCA) Rice [137]

Chitosan guar nanoparticle Rice [128]

Chitosan nanoparticles encapsulated
with Cymbopogon martinii essential oil Maize [206]
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Table 1. Cont.

Chitosan Type Cereal References

Aqueous commercial formulation
containing 4% chitosan name Elexa Pearl millet [58]

Chitosan and PUSA hydrogel Wheat [28,186]

Chitosan and plant biostimulant
made from A. nodosum (liquid

seaweed extract or LSE)
Wheat [113]

Chitosan and hydrogel Wheat [27]

Chlorophyllin-chitosan complex
(Chl-CHS) Wheat [112]

Chitin and chitosan hexamers,
homogeneous chitosan hexamers

[(GlcN)6]
Wheat [54]

Vitaplan, CL + chitosan Wheat [41,42,120]

Chitosan hydrolyzate Wheat [118]

Formulations of chitosan oligomers
(COS) and pectin-derived

oligogalacturonides (OGA),
COS-OGA

Rice [140]

Modified chitosan (MCTS),
gibberellin, glutamic acid, sodium Rice [207]

Modified chitosan (MCTS),
gibberellin, glutamic acid, sodium
α-naphthalene acetic acid, sodium

bentonite, polyvinyl acetate
(PVAc), potato dextrose agar (PDA),

emulsifier (OP-10), ethylene
glycol (EG), polyethylene glycol 1000

(PEG-1000)

Maize, Barley,
Wheat [208]

Chitosan/sodium alginate hydrogel
rings loaded with chlorantraniliprole

(CLAP)
Maize [209]

Chitosan/tripolyphosphate
nanoparticles loaded with paraquat

herbicide
Maize [210]

Gel of chitosan and ZnO
nanoparticles, CH-ZnO4

chitosan-ZnO nanoparticles
Maize [211]

Paraquat-loaded
pectin/chitosan/tripolyphosphate

nanoparticles
Maize [212]

Carboxylated graphene
oxide-chitosan spheres Wheat [213]

Chtiosan/nanochitosan with plant
growth- promoting rhizobacteria

(PGPR)

Pearl millet [214]
Maize [34,66]
Rice [215]

Fertilizer/nanofertilizer with chitosan
Maize [36,63–65,216]
Wheat [217]

Quitomax® bioproduct based on
chitosan

Rice [218]
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This review showed that wheat is the most popular cereal in the study, which accounts
for 34.3% of all measurements (Figure 1). The second most frequent cereal in published
papers is maize (26.3%) and the third is rice (24.2%). The percentage of research on barley is
8.6% and pearl millet only 4.0%. Studies on the use of chitosan on sorghum or finger millet
are very rare. Their percentage contribution to the total is 1.0% and 1.5% respectively. This
review indicates the need for more measurements on these crops to better understand the
impact of chitosan on cereals. Furthermore, excluding studies on grain storage and further
food processing, no publications on the use of chitosan on either oats or rye as plants
have been found since 2000. This indicates a clear tendency for researchers to consider
the most popular cereals and omit from their studies those with smaller cultivated areas
worldwide. However, it should not be forgotten that to better identify the effect of chitosan,
less common plants belonging to the cereal group should be considered.

Figure 1. Share of each cereal in original scientific papers on the use of chitosan.

This does not change the fact that the enormous potential of the application of chitosan,
its derivatives, or nanoparticles on cereals is being increasingly recognized worldwide.
Consequently, the application of chitosan-based products in agriculture is growing in
popularity. In China alone, there are more than 50 different chitosan-based bioproducts
with officially issued certificates [100]. Scientific research is also increasingly taking into
account the use of this product. This has been particularly evident in recent years. Since
2016, the number of research papers focusing on the use of chitosan and its derivatives or
nanoparticles on cereals has increased dramatically (Figure 2).

In 2020, a total of 32 articles were published, which is four times more than in 2013.
Moreover, in 2000 there was not a single paper on this topic. The noticeable increasing
trend of interest in this topic is very positive, because antitranspirants including chitosan
can be an excellent tool for adaptation of cereals to climate change due to their high-stress
tolerance. Also, the measurements and cell analyses carried out indicate that chitosan is
not toxic.
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Figure 2. Number of original scientific articles on the use of chitosan and its derivatives and
nanoparticles on cereals published between 2000 and 2020.

It should be emphasised that this also includes high concentrations of this sub-
stance [71]. It has also been noted that the application of chitosan is environmentally
friendly and reduces production costs [50]. The significant increase in scientific research in
this area allows valid and accurate conclusions to be drawn and will contribute to a faster
implementation of the widespread use of chitosan on cereals.

11. Conclusions

Based on this review, a marked increase in interest regarding the use of chitosan on
cereals has been noted in recent years. Since 2000, 188 papers have been published on
the use of chitosan and its derivatives and nanoparticles on cereals. The most popular
were articles on wheat, maize, and rice. The need to expand the number of measurements
on less popular cereals such as finger millet, pearl millet rye, oats, and sorghum has also
been noted. Thanks to increased research activity in recent years, the state of knowledge
on the effects of antitranspirants has improved considerably. It is clear from the review
that chitosan, as well as its derivatives and nanoparticles, are non-toxic and have positive
effects on cereals. Their application contributes to increased yields, not only under normal
conditions but also during drought stress, salt, or low temperatures. Most studies also
show positive effects on certain growth parameters. However, a more detailed analysis,
taking into account the application method, concentration, and individual factors during
the measurements is needed to formulate specific conclusions on cereal. Moreover, there
is a tendency to alleviate the effects of stress and to improve growth parameters under
unfavourable conditions. Regardless of the type of cereal, this antitranspirant also has a
positive impact on chlorophyll content. Furthermore, this review has shown that chitosan
is highly effective against pathogens and cereal diseases such as fusarium seedling blight,
blast disease, septoria leaf blotch, downy mildew, and many others. It significantly reduces
damage caused by the most threatening diseases to maize, wheat, rice, barley, and millet. Its
application is effective regardless of the type of cereal and, more importantly, it covers a very
wide range of pathogens. This demonstrates the enormous application value of chitosan in
agriculture. Effective control of diseases, which is currently one of the biggest challenges in
cereal cultivation, will significantly limit harvest losses. Chitosan, with its environmentally
friendly composition and high effectiveness, can be an excellent alternative to synthetic
fertilizers, pesticides and chemicals for disease control. Also, treating cereals with this
product will reduce the negative effects of drought, salt, and low temperature stress on
crops and contribute to higher yields. This shows the enormous potential of chitosan as a
universal product for improving cereal yields regardless of environmental conditions.
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