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Abstract

Evolutionary game dynamics in structured populations has been extensively explored in

past decades. However, most previous studies assume that payoffs of individuals are fully

determined by the strategic behaviors of interacting parties, and social ties between them

only serve as the indicator of the existence of interactions. This assumption neglects impor-

tant information carried by inter-personal social ties such as genetic similarity, geographic

proximity, and social closeness, which may crucially affect the outcome of interactions.

To model these situations, we present a framework of evolutionary multiplayer games on

graphs with edge diversity, where different types of edges describe diverse social ties. Stra-

tegic behaviors together with social ties determine the resulting payoffs of interactants.

Under weak selection, we provide a general formula to predict the success of one behavior

over the other. We apply this formula to various examples which cannot be dealt with using

previous models, including the division of labor and relationship- or edge-dependent games.

We find that labor division can promote collective cooperation markedly. The evolutionary

process based on relationship-dependent games can be approximated by interactions

under a transformed and unified game. Our work stresses the importance of social ties and

provides effective methods to reduce the calculating complexity in analyzing the evolution of

realistic systems.

Author summary

The outcome of an interaction often relies on not only interactants’ strategic behaviors

but also genetic and physical relationships between interactants, such as genetic similarity

and geographic proximity. Thus when encountering different opponents who use the

same strategy, an individual may derive different payoffs. Social ties, acting as carriers of

such information, are crucial to biological interactions. However, most prior studies sim-

plify social ties as binary states (i.e., either present or absent) and ignore the information

carried. Here we study evolutionary multiplayer games on graphs and introduce different

types of edges to describe diverse social ties. We derive a simple rule to predict when a

strategic behavior is more successful than the other. Based on this rule, we find that the

labor division in eusocial insects could promote prosocial behavior. In addition, when
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payoff structures in different interactions are relationship-dependent, the condition for

the success of one behavior can be obtained by studying interactions described by a uni-

fied payoff structure. Our work not only extends established results on the evolution of

cooperation on graphs, but also shows the possibility to simplify complex and diverse

interactions in real-world systems as simple and unified interactions in theoretical

calculations.

Introduction

Understanding the emergence and persistence of cooperation in the population of egoists is an

enduring challenge that has inspired a myriad of studies from biology to sociology [1]. Evolu-

tionary game theory has been widely employed to investigate this cooperation conundrum at

different levels of living systems [2]. Typically, social dilemmas are depicted by two-player

two-strategy games where each player can choose either to cooperate or to defect [3]. In these

games, mutual cooperation brings each player a reward R while mutual defection a punish-

ment P; when a cooperator encounters a defector, the cooperator obtains a sucker’s payoff S
and the defector gets the temptation T. Different rankings of payoff entries R, S, T, P represent

different social dilemmas [3]. Despite the simplicity of this representation, in the real world,

many interactions occur beyond the dyadic scenarios and often involve more than two indi-

viduals. For examples, in a S. cerevisiae population, a cooperative yeast produces an enzyme to

hydrolyze sucrose into monosaccharides while the most of them diffuse away and are exploited

by nearby yeasts [4] (see Ref. [5, 6] for more examples in microbes and Ref. [7, 8] in human

societies). Interactions in these examples are better modeled by multiplayer games [9]. Gener-

ally, multiplayer games cannot be represented by a collection of two-player games [10] whereas

the latter can always be regarded as the simplest case of the former [9], making the study of

multiplayer games of great importance for the evolution of cooperation [11, 12]. One particu-

lar example is the threshold public goods game [13]. It captures the strategic interactions of

individuals when the provision of public goods needs a threshold surpassed. Such a threshold

can be a minimum amount of funding for building national defense, a minimum height of a

dam for securing the public safety, etc [8]. In this game, each individual has two options—to

contribute an amount of investment to the goods pool or not to contribute. The benefit is pro-

vided only when the total investment exceeds a threshold [13].

Recent advance in exploring interaction patterns of living agents shows that populations

often exhibit structural characteristics, which expands our research interests in evolutionary

dynamics from traditional well-mixed to structured populations [14–25]. Graphs serve as a

good tool to model such a system, where vertices of graphs represent individuals and edges

specify one’s interaction and dispersal neighborhoods. In the case of weak selection where

individuals’ payoffs obtained from games slightly affect their fitness or reproductive rates, evo-

lutionary outcomes on graphs, especially the conditions for one strategy to be favored over the

other, can be tackled analytically. For example, Tarnita et al. derive a simple condition to pre-

dict the evolutionary outcome for two-player two-strategy games [26]. This condition relies on

all the payoff entries R, S, T, P and one “structure coefficient”. As shown in their work, the

structure coefficient summarizes all the effects of a population structure on the condition for

the success of strategies and it is independent of payoff entries. Due to the generality of the

above results, calculating structure coefficients provides a convenient way to quantify the effect

of population structures on the evolutionary outcome [10, 23, 27–31]. Nonetheless, the closed-

form expressions of the structure coefficients are often hard to calculate under multiplayer
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games, even in the simplest well-mixed populations [9]. This becomes even more challenging

when the population structure is taken into account. Even so, there are still a few seminal work

about evolutionary multiplayer games on graphs [10, 31–35]. For example, Peña et al. derive

the structure coefficients for evolutionary multiplayer games on finite ring graphs and infinite

regular graphs [33]. Based on competition between territorial animals, Broom et al. develop a

new modelling framework to investigate collective interactions, which is capable and flexible

to compare and analyze various spatial structures [34]. McAvoy et al. study when a multiplayer

game can be broken down into a sequence of interactions with fewer individuals and show

that a simple population structure can greatly complicate the reduction [10].

Prior studies about games on graphs usually assume that social ties between individuals

only indicate the presence of interactions [10, 20, 31–37]. The other relevant information asso-

ciated with social ties, such as the genetic and physical relationships between interactants, is

often ignored. In such cases, individuals’ strategic behaviors are the only determinant of the

outcome of an interaction. Typically, in two-player interactions, if two distinct individuals

take the same strategy, their common opponent obtains the same payoff when encountering

each of them separately [14, 15]. When engaging in group interactions, one’s payoff relies on

the number of opposing cooperators but is independent of which one is the cooperator [32,

33]. Indeed, this assumption significantly reduces the calculation complexity and thus makes it

possible for many well-known results [38, 39]. However, recent studies show that overlooking

the information of social ties could make theoretical predictions deviate greatly from empirical

observations [40–43]. For example, people possess strong and weak social ties, such as intimate

interpersonal relationships with relatives and tenuous relationships with acquaintance [43,

44]; failing to account for the tie strengths leads to a globally accelerated information diffusion

and a remarkably distinct diffusion direction from that in actual networks [41, 42]. In well-

mixed populations, when distinct frequencies of interactions between pairs are considered,

altruistic traits can flourish whereas neglecting such information on social ties leads to the

extinction of altruism [23]. Here, the second example clearly conveys that the information

associated with social ties can affect the evolution of a certain behavioral trait (strategy) in a

nontrivial way. Besides, we offer two other representative cases. In the example of the division

of labor in colonies of eusocial insects and human societies, the production of collective bene-

fits needs different individuals to cooperatively perform different subtasks [45–48]. When

many individuals assigned one subtask cooperate, cooperation from an individual assigned

another subtask is more crucial to the colony productivity than cooperation from individuals

assigned the same subtask. The other situation is that the payoff structure of an interaction

may be relationship-dependent [49]. It means that an individual may concurrently play vari-

ous types of games with its neighbors, depending on the social tie they are connected with [50,

51]. For instance, individuals can play coordinations games (or even harmony games) with its

friends and prisoner’s dilemma with strangers.

To better understand the role of social ties in the evolution of strategic behaviors, we pres-

ent a comprehensive framework of evolutionary multiplayer games on graphs with edge diver-

sity. Each type of edges describes one kind of relationship between two connected individuals,

such as having the same or different task skills [46–48, 52], owning close or distinct consan-

guinity or geographical distance and so on. We investigate both finite and infinite regular

graphs with n types of edges. We provide a simple condition to predict when natural selection

favors one strategic behavior over the other. The condition is validated by Monte Carlo simula-

tions. Applying it to the case of division of labor where cooperation from individuals perform-

ing different subtasks is required for producing benefits (see the example of army ants

retrieving prey items [46]), we find labor division significantly lowers the barrier to establish

cooperative society. Then we explore the scenario where each individual simultaneously
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participates in many multiplayer games and these games can differ in payoff entries or meta-

phors. We find evolutionary dynamics for such diverse interactions can be approximated by

an evolutionary process with a unified payoff structure. This result provides us insights into

simplifying complex and diverse interactions in real-world systems as simple and unified

interactions in theoretical calculations. Our work also covers the evolutionary games on

weighted graphs (see the example of bacterium Escherichia coli [53]). Intriguingly, in our

framework, strong edges do not act as a promoter of cooperation.

Models

Here we briefly introduce the model of evolutionary multiplayer games on graphs with edge

diversity. We first consider the stochastic evolutionary dynamics on a graph-structured popula-

tion with a finite sizeN and later investigate the dynamics in infinite populations. Each individ-

ual occupies a node of a random regular graph with degree k. Note that this graph is determined

randomly and fixed during the process of evolution. On the graph, each node is linked to k
other nodes and each edge is assigned an edge type selected from n types (1� n� k). Among

the k edges connected to a node, the number of type i edges is gi, which means
Pn

i¼1
gi ¼ k. Dur-

ing the evolution, in each generation, every individual obtains a payoff by interacting with k
adjacent individuals in a single game, analogous to the setting of spatial multiplayer game in

prior studies [33, 54]. In the game, each individual chooses either strategy A or strategy B. We

use (s1, s2, � � �, sn) denote a neighborhood state: among gi neighbors connected by edges of type

i, the number of individuals using strategy A is si while the number of those using strategy B is

gi − si. In such a neighborhood, a focal A-player gets a payoff as1s2 ���sn while a focal B-player gets a

payoff bs1s2 ���sn . Fig 1 illustrates an example of the spatial structure and Table 1 presents the payoff

structure for n = 2. Our model can recover the traditional setting by taking n = 1.

After the interaction, individual i’s payoff πi is transformed to its reproductive rate or fitness

by Fi = 1 − ω + ωπi, where ω represents the intensity of selection, i.e., the extent to which the

payoff from games influences the reproductive success. Here we consider the weak selection

(ω� 1). The population evolves according to the death-birth rule [38]. This update rule can

be interpreted in the context of genetic evolution or cultural evolution [16, 23]. In the genetic

context, a random individual such as i is selected to die. After that, one of i’s neighbors is cho-

sen to reproduce an offspring with probability proportional to its reproductive rate. Then this

offspring occupies the vacant site. When the death-birth rule is interpreted as a genetic pro-

cess, different evolutionary outcomes may occur, depending on the meaning of the edge type.

For instance, if the edge type represents genetic similarity, during the evolution, the edge type

may be changed due to the gene replication and dispersal. But if the edge type represents geo-

graphic proximity, the above genetic process does not change the edge types. To avoid the con-

tingency of evolutionary outcomes on the specific meaning of the edge types, in this paper, we

thus interpret the the death-birth rule as a kind of behavior imitation in the cultural evolution.

That is, a random individual i resolves to update its strategy, and it adopts neighbor j’s strategy

proportionally to j’s fitness, i.e., with probability Fj=
P

l2Oi
Fl, where Oi is the set of i’s neighbors.

With this interpretation, for all possible meanings of edge types we considered in this model,

the process of behavior imitation does not change the edge types.

Results

A general condition to predict the success of one strategic behavior

In finite populations, the fixation probability is a well-established measure to quantify the evo-

lutionary success of different traits or strategies [55]. The fixation probability ρA denotes the
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probability that a single A-player starting in a random position propagates and takes over the

whole population of B-players. Analogously, ρB is the probability that a single B-player starting

in a random position propagates and takes over the whole population of A-players. Natural

selection favors strategy A over B if

rA > rB:

Using weak selection, in large random regular graphs with n edge types (k � 3 and 1� gi
� k), we obtain the condition under which A-players are selected over B-players (see S1

File, Section 1), given by

Xg1

s1¼0

Xg2

s2¼0

� � �
Xgn

sn¼0

ss1s2 ���snðas1s2 ���sn � bðg1 � s1Þðg2 � s2Þ���ðgn � snÞÞ > 0; ð1Þ

where ss1s2 ���sn (0 � s1� g1, 0� s2� g2, � � �, 0� sn� gn) is the structure coefficient that relies

Fig 1. Illustration of evolutionary multiplayer games on graphs with edge diversity. (a) The population structure is depicted by a

regular graph, where each node has k = 4 neighbors connected by two types of edges. In detail, in a typical neighborhood (the

highlighted zone), the focal (i.e., centered) node has g1 = 3 edges of type 1 (thin blue lines) and g2 = 1 edge of type 2 (thick olive line).

On the graph, each node is occupied by an individual. The focal individual’s payoff is determined by the state of its neighborhood,

including its own strategy, all its neighbors’ strategies and the types of edges. This is different from traditional models about

multiplayer games on graphs where edges are not distinguished and individuals’ payoffs are solely determined by strategies [22, 33].

We illustrate this difference by two concrete examples in subgraph (b) and (c). (b) Interacting with an A-player (red circle) and two

B-players (blue circle) linked by edges of type 1, and an A-player linked by an edge of type 2, the focal B-player gains a payoff b11. (c)

Interacting with two A-players and a B-player linked by edges of type 1, and a B-player linked by an edge of type 2, the focal B-player

obtains a payoff b20. In our model, b11 in general differs from b20, which is in stark contrast with the case where no edge diversity is

present. In the latter case, b11 = b20 since the total number of neighboring A-players is the same.

https://doi.org/10.1371/journal.pcbi.1006947.g001

Table 1. Payoffs for A- and B-players in multiplayer games with two types of interaction partners.

Opposing A-players

(Type 1, Type 2)

(0, 0) (0, 1) (1, 0) � � � (s1, s2) � � � (g1 − 1, g2) (g1, g2 − 1) (g1, g2)

Payoff to A a00 a01 a10 � � � as1 s2 � � � aðg1 � 1Þg2
ag1ðg2 � 1Þ ag1g2

Payoff to B b00 b01 b10 � � � bs1 s2 � � � bðg1 � 1Þg2
bg1ðg2 � 1Þ bg1g2

(s1, s2) denotes the neighborhood state: among g1 neighbors connected by edges of type 1, the number of neighbors using strategy A is s1 and the number of those using

strategy B is g1 − s1; among g2 neighbors connected by edges of type 2, the number of neighbors using strategy A is s2 and the number of those using strategy B is g2 − s2.

Within an neighborhood of (s1, s2), a focal A-player derives payoff as1 s2 and a focal B-player gains payoff bs1 s2 .

https://doi.org/10.1371/journal.pcbi.1006947.t001
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on population structures and update rules but is independent of payoff values as1s2 ���sn and

bs1s2 ���sn . There are totally Pn
i¼1
ðgi þ 1Þ structure coefficients for Eq (1). All structure coeffi-

cients here are positive and we can eliminate an extra structure coefficient through dividing

the sigma rule [see Eq (1)] by any one of them. ss1s2 ���sn can be approximated by

ss1s2 ���sn ¼
ðk � 2Þ

ðk�
Pn

j¼1
sjÞ

k2ðkþ 1Þðkþ 2Þ

Pn
j¼1
ð gjsj
Þ

ð k
Pn

j¼1
sj
Þ

Xk

l¼0

ðk � lÞ ½2kþ ðk � 2Þl�C k;
Xn

j¼1

sj; l

 !

þ ½k2 � ðk � 2Þl�F k;
Xn

j¼1

sj; l

 !( )

;

where

Cðk; i; lÞ ¼
�

l
k � 1 � i

�
1

ðk � 2Þðk � 1Þ
l þ

�
k � 1 � l
k � i

�
1

ðk � 1Þ
k� 1� l ;

Fðk; i; lÞ ¼
�

l
k � i

�
1

ðk � 1Þ
l þ

�
k � 1 � l
k � 1 � i

�
1

ðk � 2Þðk � 1Þ
k� 1� l :

as1s2 ���sn � bðg1 � s1Þðg2 � s2Þ���ðgn � snÞ in Eq (1) indicates the “gains from flipping” [33, 35], the change

in payoffs for a focal A-player who interacts with si A-players of type i (1� i � n) in a group

when all individuals change their strategies (from strategy A to strategy B or B to A) simulta-

neously. Considering
Pg1

s1¼0

Pg2
s2¼0
� � �
Pgn

sn¼0
ss1s2���sn ¼ 1, ss1s2 ���sn can be viewed as a probabil-

ity corresponding to term as1s2���sn � bðg1 � s1Þðg2 � s2Þ���ðgn � snÞ. Eq (1) thus indicates that strategy A is

favored over B if the expected gain in payoffs from flipping is positive. When n = 1, our ana-

lytical prediction is in line with a previous study about evolutionary multiplayer games on

graphs [33] (see S1 File, Section 2). To understand the structure coefficient for the case with

n> 1, we set the sum of the number of opposing A-players to be S, i.e.,
Pn

j¼1
sj ¼ S. We find

that ss1s2 ���sn is the product of the structure coefficient corresponding to n = 1 (denoted σS)
and an additional term

Qn
j¼1
ð gjsj
Þ=ð k

Pn
j¼1
sj
Þ. This term represents the probability of the configu-

ration s1 s2� � �sn to occur under a given S. Intuitively, with edge diversity, we distinguish A-

players in the neighborhood by their types. For a given number of A-players S, the probabil-

ity of a specific configuration (si A-players within gi individuals of type i) indeed follows the

multivariate hypergeometric distribution
Qn

j¼1
ð gjsj
Þ=ð kSÞ. Our result shows that the structure

coefficient associated with a specific configuration for diverse edges is simply a product of

the probability for this configuration to occur and the corresponding structure coefficient

without distinguishing edges.

Infinite populations usually serve as a baseline model to investigate the evolutionary

dynamics of a system. Therefore we conduct a consistent investigation in infinite populations.

The evolutionary dynamics of multiplayer games on graphs with edge diversity can be

described in terms of replicator equation [56] (see S1 File, Section 4), given by

_x ¼
oðk � 2Þxð1 � xÞ

k2
f ðxÞ; ð2Þ
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where

f ðxÞ ¼
Xg1

s1¼0

Xg2

s2¼0

� � �
Xgn

sn¼0

Yn

j¼1

� gj
sj

�
xsjð1 � xÞgj � sj

" #

ðLa � LbÞ;

La ¼
Xg1� s1

r1¼0

Xg2 � s2

r2¼0

� � �
Xgn � sn

rn¼0

Yn

j¼1

� gj � sj
rj

�
zrjð1 � zÞgj � sj � rj

" #

Xn

j¼1

�

ðsj þ rjÞaðs1þr1Þðs2þr2Þ���ðsnþrnÞ

þ zsj þ
rj
z

� �
aðs1þr1 � d1jÞðs2þr2 � d2jÞ���ðsnþrn � dnjÞ

�

;

Lb ¼
Xs1

r1¼0

Xs2

r2¼0

� � �
Xsn

rn¼0

Yn

j¼1

� sj
rj

�
zrjð1 � zÞsj � rj

" #

Xn

j¼1

�

ðgj � sj þ rjÞbðs1 � r1Þðs2 � r2Þ���ðsn � rnÞ

þ zðgj � sjÞ þ
rj
z

� �
bðs1 � r1þd1jÞðs2 � r2þd2jÞ���ðsn � rnþdnjÞ

�

;

z = 1/(k − 1). δij equals to 1 if j = i and 0 otherwise. This seemingly complicated Eq (2) could be

greatly simplified when applied to specific examples, from pairwise games [56] to traditional

multiplayer games such as volunteer’s dilemmas [57], multiplayer stag-hunt game [13], and

multiplayer snowdrift game [58].

Applications

When strategy A represents cooperation and B defection, Eq (1) can effectively predict the

success of cooperation over defection. In the following, we apply Eqs (1) and (2) to four repre-

sentative examples and organize them as follows. Example 1 describes two-player games. Dif-

ferent from previous studies, here each type of edges are endowed with an independent payoff

matrix. Example 2 presents the scenario where every individual participates in different multi-

player games concurrently. Example 3 discusses the evolutionary multiplayer games on

weighted graphs, where edge weights represent interaction rates. In example 4, we study the

prevailing collective activity in social insects and human societies—division of labor.

Example 1. Evolutionary two-player games on graphs with edge diversity. In each gen-

eration, an individual plays a two-player game with each neighbor to derive a payoff and accu-

mulates its payoffs from all interactions. We endow each type of edges with an independent

payoff matrix. The payoff matrix for interactions occurring in edges of type i is

A B

A

B

ai bi

gi yi

 !
;

where each value corresponds to the payoff assigned to the individual adopting a strategy in

the row against its partner taking a strategy in the column. Transforming the payoff to multi-

player interactions through as1s2 ���sn ¼
Pn

i¼1
½siai þ ðgi � siÞbi� and
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bs1s2 ���sn ¼
Pn

i¼1
½sigi þ ðgi � siÞyi�, we have the sigma rule from Eq (1)

Xn

i¼1

�siai þ
Xn

i¼1

ðgi � �siÞbi �
Xn

i¼1

ðgi � �siÞgi �
Xn

i¼1

�siyi > 0;

where

�si ¼
Xg1

s1¼0

Xg2

s2¼0

� � �
Xgn

sn¼0

ss1s2 ���sn si:

Applying (see S1 File, Section 3)

Xg1

s1¼0

Xg2

s2¼0

� � �
Xgn

sn¼0

ss1s2���sn si ¼
giðkþ 1Þ

2k
;

we have the sigma rule for evolutionary two-player games on graphs with edge diversity

Xn

i¼1

½giðkþ 1Þai þ giðk � 1Þbi� >
Xn

i¼1

½giðk � 1Þgi þ giðkþ 1Þyi�:

Since
Pn

i¼1
gi ¼ k, dividing both sides of the above condition by k(k − 1), we obtain the sim-

plified condition

kþ 1

k � 1
�a þ �b > �g þ

kþ 1

k � 1
�y;

where �a ¼ ð1=kÞ
Pn

i¼1
giai, �b ¼ ð1=kÞ

Pn
i¼1
gibi, �g ¼ ð1=kÞ

Pn
i¼1
gigi, and �y ¼ ð1=kÞ

Pn
i¼1
giyi.

The above condition suggests that for pairwise games contingent on the edges, it suffices to

study a unified game with its payoff entries averaged over all the games. Note that for the uni-

fied game, the associated structure coefficient is (k + 1)/(k − 1), which coincides with that with

n = 1 [26, 38]. Moreover, if all the games are in the form of donations games, i.e., ai ¼ Bi � Ci,
bi ¼ � Ci, gi ¼ Bi, and θi = 0, the condition for natural selection favoring cooperation over

defection is

�B
�C
> k; ð3Þ

where �B ¼ ð1=kÞ
Pn

i¼1
giBi and �C ¼ ð1=kÞ

Pn
i¼1
giCi. This equation thus extends a well-known

B=C > k rule (B and C are respectively the benefit and cost of the donative behavior) [38] to a

general �B=�C > k rule where �C means the average cost for cooperative behavior on all possible

types of edges and �B is the average benefit [59].

Example 2. Diverse multiplayer games. Next we consider the case that each individual is

involved in many multiplayer games concurrently and these games can differ in payoff struc-

tures (game metaphors and payoff values). To model this situation, we let individuals linked

by the same type of edges form a group to play a multiplayer game and thus each focal individ-

ual participates in nmultiplayer games. We assume that any two games are independent and

each individual accumulates its payoffs from all interactions, i.e.,

as1s2 ���sn ¼ a
ð1Þ
s1
þ að2Þs2 þ � � � þ a

ðnÞ
sn
;

bs1s2 ���sn ¼ b
ð1Þ
s1
þ bð2Þs2 þ � � � þ b

ðnÞ
sn
;

where aðiÞsi (bðiÞsi ) represents the payoff assigned to an A-player (a B-player) in the interaction with

Games on graphs with edge diversity
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individuals linked by edges of type iwhen there are si opposing A-players. If g1 = g2 = � � � = gn = g,
Eq (1) can be simplified as (see S1 File, Section 3)

Xg

s¼0

~ss

Xn

j¼1

aðjÞs �
Xn

j¼1

bðjÞg� s

 !

> 0; ð4Þ

where ~ss ¼
Pg2

s2¼0

Pg3
s3¼0
� � �
Pgn

sn¼0
sss2 ���sn . For such a system, we just need g + 1 structure coeffi-

cients to describe the effects of population structures on the evolution of two traits. If designating

�as ¼
1

n

Xn

j¼1

aðjÞs ;

�bs ¼
1

n

Xn

j¼1

bðjÞs ;

we have the condition for ρA> ρB, given by

Xg

s¼0

~ssð�as � �bg� sÞ > 0: ð5Þ

Note that �as (�bs) corresponds to the payoff averaged over all games when there are s oppos-

ing cooperators. This further supports that while payoff structures are diverse in different

interactions, the evolutionary outcome can be predicted by assuming that all interactions are

governed by a unified payoff structure, i.e., the ‘average’ over all structures. Alternatively, we

can rewrite Eq (4) as
Pn

j¼1
½
Pg

s¼0
~ssðaðjÞs � b

ðjÞ
g� sÞ� > 0. Note that

Pg
s¼0

~ssðaðjÞs � b
ðjÞ
g� sÞ presents

the results when all interactions described by the single payoff structure, i.e., aðjÞs and bðjÞs .

Therefore, the evolutionary outcome under diverse multiplayer games can be viewed as the

sum of results obtained when all interactions are governed by a single payoff structure. Both

the two interpretations significantly simplify the calculation complexity when the payoff forms

are relation-dependent. We also confirm the above findings in infinite populations (see S1

File, Section 3).

We illustrate a few examples in Fig 2, including nonlinear multiplayer game like volunteer’s

dilemmas [57] and linear public goods games. In a volunteer’s dilemma, once an individual

volunteers by bearing a cost Cv, each participant obtains a benefit Bv. In Fig 2a, each individual

participates in two volunteer’s dilemmas in each generation. When Bv ¼ 1:05 and Cv ¼ 1 in

one interaction and Bv ¼ 10:05 and Cv ¼ 1 in the other, the evolutionary dynamics can be

approximated by the case where all interactions are described by a unified volunteer’s dilemma

with Bv ¼ ð1:05þ 10:05Þ=2 and Cv ¼ ð1þ 1Þ=2. Alternatively, dynamics for the case with

half Bv1 ¼ 1:05 and half Bv2 ¼ 10:05 (blue) can be viewed as the average over that with full

Bv1 ¼ 1:05 (red) and that with full Bv2 ¼ 10:05 (green). In the public goods game, each coop-

erator makes an investment Cp to yield a benefit Bp and then the benefit is evenly distributed

over all participants. Panels Fig 2b and 2c confirm above findings in linear public goods games

and mixed games (half volunteer’s dilemmas and half linear public goods games).

We highlight above rules can be further extended to more general cases. When each collec-

tive interaction is endowed with an independent payoff structure (payoff structures in any two

interactions centered on player x are independent; besides, payoff structures in any interaction

centered on player x and those centered on y are uncorrelated), the collective behavior still can

be predicted by an ‘average’ case over all interactions (see panels Fig 2e and 2f). Furthermore,

if the numbers of participants in different collective interactions are not identical, interactions

with the same number of participants can be described by their ‘average’ case. That is, if

Games on graphs with edge diversity
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Fig 2. Average change (ΔpA) in the frequency of A-players (pA), in volunteer’s dilemmas (VD), public goods games (PGG),

diverse multiplayer games (VD/PGG), and diverse two-player games (PD/SG). The population structure is a random regular

graph with N = 1000, n = 2, and g1 = g2 = 3. In (a-c), the cost to cooperate is fixed to 1 and benefits are shown in the legend of each

panel. In (d), under PD, a cooperator bears a cost 1 to provide its opponent with a benefit BPD. Under each SG, the total cost for

cooperators is 1 and the benefit for each player is BSG. Three cases are investigated in each panel of (a-d). For example, in (a), benefits

in all multiplayer interactions are Bv1 ¼ 1:05 (red dots), Bv2 ¼ 10:05 (green dots), or designated at equal proportions (blue dots). In

(ef), both benefits and costs in each interaction are sampled according to a Gaussian distribution, with mean �Bv ¼ 5:05, variance 1.5

for benefits and mean �C v ¼ 1:0, variance 0.25 for costs (e), mean �Bp ¼ 5:1 and variance 1.5 for benefits and mean �C p ¼ 1:0 and

variance 0.25 for costs (f). Dots represent the simulation data and lines are analytical predictions based on unified interactions with

average payoffs (see S1 File, Section 6 for simulation details).

https://doi.org/10.1371/journal.pcbi.1006947.g002
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gl1 ¼ gl2 ¼ � � � ¼ glu 6¼ gm1
¼ gm2

¼ � � � ¼ gmv , interactions with individuals linked by edges of

type l1, l2, � � �, lu can be resolved as uniform interactions with payoff matrix �aðlÞs ¼
Plu

j¼l1
aðjÞs =u

and �bðlÞs ¼
Plu

j¼l1
bðjÞs =u. Interactions associated with edges of typem1,m2, � � �,mv can be treated

as uniform interactions with payoff matrix �aðmÞs ¼
Pmv

j¼m1
aðjÞs =v and �bðmÞs ¼

Pmv
j¼m1

bðjÞs =v, appli-

cable to sufficiently large finite and infinite populations. Generally, if there arem different

game sizes among nmultiplayer games, i.e., g1, g2, � � �, gm, satisfying gi 6¼ gj if i 6¼ j (1� i, j�
m), the number of structure coefficients needed to describe the effects of population structures

decreases to
Pm

i¼1
ðgi þ 1Þ. Therefore, in the absence of edge diversity (thusm = 1 and g1 = k),

the number of structure coefficients is k + 1, in line with a previous study [33]. If game sizes

for all multiplayer games are different (thusm = n), we need
Pn

i¼1
ðgi þ 1Þ structure coeffi-

cients to predict the evolutionary outcome. Table 2 summarizes the number of structure coeffi-

cients in various cases.

Example 3. Evolutionary multiplayer games on weighted graphs. Interactions between

individuals often differ in capacity, frequency, and strength [60]. Weighted graphs well incor-

porate these factors where weights of edges are proportional to interaction frequencies. Partly

due to the simple and intuitive understanding of weighted edges, most studies about games on

weighted graphs so far are based on pairwise interactions [23, 29, 61–63]. Although collective

interactions can also occur at different interaction rates like two-player versions, few studies

explore it. The framework proposed in this paper is also applicable to investigate the multi-

player games on weighted graphs, where different group interactions occur at different rates.

Concretely, individuals linked by the same type of edges are engaged in a group interaction

and these edges are endowed with a uniform weight which represents the frequency of this

group interaction. Thus, a larger value of edge weight means the more frequent contact [23,

29, 61–63] or more diffusible public goods between interactants [53, 64]. Counter-intuitively,

we show that strong social ties do not change the evolutionary fate of cooperation, irrespective

of based on multiplayer or two-player games (see S1 File, Section 4). As shown in Fig 3a, in

finite populations, strong social ties just amplify the difference in fixation probabilities (ρA −
ρB) while keep the critical condition B=C for ρA> ρB unchanged. Analogously, in infinite pop-

ulations, strong social ties accelerate the evolutionary rate while they do not change the interior

equilibria at all (Fig 3b). We can make this clear by virtue of conclusions in Example 2. In vol-

unteer’s dilemmas, the payoff structure for interactions with individuals linked by edges of

type j is aðjÞs ¼ BðjÞv � CðjÞv for any s, bðjÞs ¼ BðjÞv for s> 0, and bðjÞs ¼ 0 for s = 0. We take BðjÞv ¼

zjBv and CðjÞv ¼ zjCv, where zj denotes the weight of edges linking individuals of type j. From

Example 2, the evolutionary dynamics can be approximated by unified interactions with

Table 2. The number of structure coefficients to predict the evolutionary outcome.

general payoff structure payoff structure of diverse multiplayer games

general spatial structure
Pm
i¼1

� gi þ ni
ni

� Pm
i¼1
ðgi þ 1Þ

gi = g for any 1� i� n � g þ n
n

� g + 1

gi 6¼ gj for any i 6¼ j Pn
i¼1
ðgi þ 1Þ

Pn
i¼1
ðgi þ 1Þ

In the general spatial structure, there arem different values among all gis (1� i� n). We denote g1, g2, � � �, gm these

values and ni the number of value gi, i.e., k ¼
Pm

i¼1
nigi. Note that we can further eliminate an extra structure

coefficient through dividing the sigma rule [see Eq (1)] by a positive structure coefficient.

https://doi.org/10.1371/journal.pcbi.1006947.t002
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payoff structure �as ¼ �Bv �
�Cv for any s, �bs ¼ �Bv for s> 0, and �bs ¼ 0 for s = 0, where

�Bv ¼
Pn

j¼1
BðjÞv =n ¼ Bv

Pn
j¼1
zj=n and �Cv ¼ Cv

Pn
j¼1
zj=n. Combining Eq (5), we have the

critical condition

Bv

Cv

� ��

¼
1

~sg

above which ρA> ρB. Note that ðBv=CvÞ
�

is independent of edge weights
Pn

j¼1
zj.

Example 4. Multiplayer public goods game with division of labor. In above examples,

we assume that each individual participates in many independent games and its payoff is the

linear accumulation of payoffs derived in different games. But in more complicated situations,

different types of neighbors affect the focal individual in a nonlinearly coupling way. It is an

oversimplification if we treat the interaction between one player and different types of neigh-

bors as the sum of several independent games. The activity of labor division in colonies of

eusocial insects and human societies is a typical example. We consider a team of army ants

retrieving prey items. They can do this successfully only if different kinds of ants coordinate to

perform corresponding subtasks [46]. In other words, cooperation from each kind of individu-

als is required to produce public goods. We consider the simplest case with two kinds of indi-

viduals and the production of benefits requires at least one cooperator within each kind. We

use two types of edges on graphs to model this case: edges of type 1 link the same kind of indi-

viduals and edges of type 2 link different kinds of individuals. A player obtains benefits only if

in its neighborhood there are cooperative individuals along two types of edges. We consider

the evolution of individuals’ behaviors (cooperation and defection) and we assume that indi-

viduals’ subtasks are fixed throughout the evolutionary process. Payoff values are given by

as1s2 ¼

(
ðs1 þ s2 þ 1ÞB � C s2 � 1;

� C otherwise;
ð6Þ

Fig 3. Evolutionary multiplayer games on weighted graphs. Each individual participates in two volunteer’s dilemmas and both

group sizes are 3. Benefits and costs are Bv1 and Cv1 for one dilemma, Bv2 and Cv2 for the other. (a) Difference in fixation probability

ρA−ρB as a function of benefit-to-cost ratio ðB=CÞ. (b) Average change (ΔpA) in the frequency of A − players (pA). Arrows in (a) mark

the analytical benefit-to-cost ratio ðB=CÞ� and solid lines in (b) represent analytical change in pA. Dots represent the simulation data

(see S1 File, Section 6 for simulation details). Heterogeneous weights of edges do not change the critical benefit-to-cost ratio ðB=CÞ�

in the finite population (a) or the inner equilibria (black point) in the infinite population (b).

https://doi.org/10.1371/journal.pcbi.1006947.g003
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bs1s2 ¼

(
ðs1 þ s2ÞB s1 � 1; s2 � 1;

0 otherwise;
ð7Þ

where C means the personal cost for each cooperator and B is the benefit to each participant.

Note that a01 is not necessarily identical to a10. The public goods increase linearly with the

number of cooperators, inasmuch as the number exceeds the corresponding threshold, termed

accumulative effects of payoffs. Substituting Eqs (6) and (7) into Eq (1), we have the critical

benefit-to-cost ratio ðB=CÞ� above which cooperation is favored over defection, given by

ðB=CÞ� ¼
1

Pg1
s1¼0

Pg2
s2¼1
ðs1 þ s2 þ 1Þss1s2 �

Pg1 � 1

s1¼0

Pg2 � 1

s2¼0
ðk � s1 � s2Þss1s2

:

Then we consider the scenario without division of labor. That is, benefits are produced as

long as the total number of cooperators reaches a threshold. For comparison, we set the thresh-

old to be 2. Payoffs are thus as ¼ ðsþ 1ÞB � C if s� 1 and as ¼ � C otherwise; bs ¼ sB if s� 2

and bs = 0 otherwise. ðB=CÞ� derived from Eq (1) is

ðB=CÞ� ¼
1

Pk
s¼1
ðsþ 1Þss �

Pk� 2

s¼0
ðk � sÞss

:

Furthermore, we explore the case that the public goods remain fixed as the number of coop-

erators increases, inasmuch as the number exceeds the corresponding threshold (thus without

accumulative effects of payoffs). Payoffs are given by

as1s2 ¼

(B � C s2 � 1;

� C otherwise;

bs1s2 ¼

(B s1 � 1; s2 � 1;

0 otherwise:

We thus have

ðB=CÞ� ¼
1

Pg1
s1¼0

Pg2
s2¼1

ss1s2 �
Pg1 � 1

s1¼0

Pg2 � 1

s2¼0
ss1s2

:

Analogously, in the counterpart with no labor division, if we set a single threshold 2, payoffs

are as ¼ B � C if s� 1 and as ¼ � C otherwise; bs ¼ B if s� 2 and bs = 0 otherwise. We have

ðB=CÞ�

ðB=CÞ� ¼
1

Pk
s¼1
ss �

Pk� 2

s¼0
ss
:

Panels Fig 4a and 4c show that analytical predictions of fixation probabilities are in good

agreement with results by Monte Carlo simulations for the whole range of benefit-to-cost

ratios and for different parameters of g1 and g2. In Fig 4b, we show that with division of labor,

ðB=CÞ� is a monotonous function of g1. Surprisingly, for small g1, i.e., g1 = 1, ðB=CÞ� is much

lower than that without introducing division of labor. Furthermore, for large g1, i.e., g1 = 39,

ðB=CÞ� is far larger than that without introducing division of labor. Therefore, the introduc-

tion of division of labor could significantly lower the barrier to establish a cooperative society,

Games on graphs with edge diversity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006947 April 1, 2019 13 / 22

https://doi.org/10.1371/journal.pcbi.1006947


given a small number of individuals assigned the same subtask. These findings are further

confirmed when the increasing cooperation does not lead to the increasing productivity

(see Fig 4d).

To make these explicit, we consider a case with a sufficiently large k and without accumula-

tive effects of payoffs. With no division of labor (abbreviated to “ndol”), payoffs of A- and B-

players are respectively given by

pndol
A ¼ ½1 � rkð1 � pAÞ

k
�B � C;

pndol
B ¼ ½1 � ð1 � rpAÞ

k� 1
ð1þ kpA � 2pAÞ�B;

where r = (k − 2)/(k − 1) and pA is the fraction of A-players. With division of labor (abbreviated

to “dol”), payoffs of A- and B-players are

pdol
A ¼ ½1 � rg2ð1 � pAÞ

g2 �B � C;

pdol
B ¼ ½1 � ð1 � rpAÞ

g1 �½1 � ð1 � rpAÞ
g2 �B:

Fig 4. Difference in fixation probability ρA-ρB and critical benefit-to-cost ratio ðB=CÞ� for ρA > ρB as a function of g1. (ab)

Division of labor with accumulative effects of payoffs (the increasing number of cooperators leads to the increasing productivity).

(cd) Division of labor without accumulative effects of payoffs (the productivity remains unchanged as the increasing number of

cooperators). In (a) and (c), we consider n = 2 and different parameters of g1 and g2. Dots presents simulation data (see S1 File,

Section 6 for simulation details) and lines are analytical predictions. ρA − ρB is analytically predicted by the product of the left side of

Eq (1) and the selection intensity ω. In (b) and (d), dash lines correspond to ðB=CÞ� for the case with no division of labor and solid

lines ðB=CÞ� for the case with division of labor, where g2 = 40 − g1.

https://doi.org/10.1371/journal.pcbi.1006947.g004
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For 0< pA < 1, we have pdol
A < pndol

A and pdol
B < pndol

B . Thus division of labor transiently

reduces the average payoffs of both A- and B-players. This result is understandable since with

the labor division the condition of producing benefits becomes more stringent. However, in

terms of the long-term development and stable states, the labor division is beneficial to the

evolving system. The labor division actually influences the competition between different strate-

gic behaviors and ultimately contributes to a cooperative society, which appears to be more

prosperous. To evaluate how the division of labor influences the competition between A- and

B-players, we compare pdol
A =p

dol
B with pndol

A =pndol
B . If pdol

A =p
dol
B > pndol

A =pndol
B (pdol

A =p
dol
B < pndol

A =pndol
B ),

division of labor enhances (weakens) the advantage of A-players relative to B-players compared

with that under no division of labor. For g1� k, pdol
A approaches to pndol

A , indicating the impact

of division of labor to A-players is negligible (see Fig 5a). pdol
B is the product of two terms

(except B). One term, 1 � ð1 � rpAÞ
g2 , corresponds to the probability that there are cooperators

among players belonging to a different type, roughly approximating to pndol
B =B. The other term,

1 � ð1 � rpAÞ
g1 , is the probability that there exist cooperators among players whose types are

Fig 5. Average payoffs as a function of pA with no division of labor (dash lines) and with division of labor (solid lines). Here the

increasing number of cooperators does not lead to increasing productivity, inasmuch as the number exceeds the threshold. (a) For g1

= 5 and g2 = 35, division of labor does not affect the average payoff of A-players (πA) much while it reduces the average payoff of B-

players (πB) significantly. This increases πA/πB for the whole range of pA (b), and thus weakens the advantages of defectors over

cooperators. (c) For g1 = 35 and g2 = 5, division of labor reduces both πA and πB remarkably. Nevertheless, the impact to πA is more

noticeable than to πB (d) and thus reinforces the advantages of defectors over cooperators. We take B ¼ 2 and C ¼ 1.

https://doi.org/10.1371/journal.pcbi.1006947.g005
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the same as the focal player. For g1� k, this term dominates the loss to B-players and weakens

the advantages of defectors over cooperators. The form of pdol
B implies that the division of labor

essentially transforms a many-player game into two coupled fewer-player games, i.e., one game

in which all participants show the same type as the focal player and one game in which partici-

pants’ types are different from the focal player. When the focal player belongs to a smaller

group, it is harder to free-ride on others, which makes clear positive effects of division of labor

on cooperation thriving. Scenarios for g2� k can be analyzed analogously (see panels Fig 3c

and 3d). This conclusion is still true with n> 2 types of edges (see S2 Fig). Our results suggest

that the more specialized individuals are, namely, the less individuals are of the same type, the

more cooperation will be achieved. This may explain the flourishing cooperation in the highly

specialized human societies.

Discussion

Due to variations in environment or gene, individuals own distinct social status or play differ-

ent roles in colonies [65, 66]. Typically, individuals with geographic proximity and genetic

similarity tend to establish closer social ties than those separated by remote geographic space

or distinguished by large genetic difference. Encountering different types of individuals, one

may be affected differently. Here we model the heterogeneous influence by different types of

edges and develop a framework of evolutionary multiplayer games on graphs with edge diver-

sity. Since the two-player game is the simplest multiplayer game, our findings are applicable to

pairwise interactions. We make a thorough investigation in both finite and infinite popula-

tions. We provide the analytical formula of structure coefficients for random regular graphs

with n types of edges, which effectively predicts when natural selection favors one strategic

behavior over the other.

Our framework is able to address the situation where individuals concurrently face diverse

social dilemmas. This is in stark contrast with the ideal assumption in most previous studies

where all interactions are described by a unified game metaphor [19–22, 31–33]. In the real

word, an individual may be caught in a volunteer’s dilemma with its colleagues and meanwhile

it engages in public goods games with its neighbors. The tragedy of commons suggests that

cooperation is often hard to persist in the public goods game. Fortunately, the public goods

game is merely one of the many types of social dilemmas individuals encounter. Our work

reveals that leveraging the distinct nature of diverse social dilemmas can entail an evolutionary

outcome where cooperators are rescued and are able to coexist with defectors. In addition, a

seminal work by McAvoy et. al. tells that under asymmetric two-player games the evolutionary

processes behave macroscopically like that governed by symmetric games [59]. Here we con-

firm that irrespective of two-player or multiplayer games, the evolutionary dynamics with

diverse interactions can be approximated by that governed by a single game. For more compli-

cated cases where sizes of group interactions are different, we also provide an efficient method

to simplify it. Our work greatly reduces the complexity when investigating the evolutionary

dynamics in real-world systems.

Besides, multiplayer games on weighted graphs can be considered. We find that the pres-

ence of strong social ties does not always provide an evolutionary advantage to cooperators,

which seems to coincide with recent findings under aspiration dynamics [63]. This contrasts

with the conclusion in Ref. [23] where they show that strong ties boost cooperation most. The

main difference between our work and theirs is that we do not couple the strength of interac-

tions and the probability of replacement along an edge. In their work, a strong social tie indi-

cates not only a higher frequency of interactions but also a more probable path for strategy

dispersal. Simultaneously enhancing the strength of interactions and the likelihood of dispersal
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leads to a strong strategy reciprocity between individuals and thus facilitates the clustering of

cooperators. However, if strong ties merely indicate frequent interactions as in our work, we

show that they fail to promote cooperation, irrespective of group or pairwise interactions.

Note that in our model, individuals derive payoffs only from interactions with their nearest

neighbors [33, 54]. When individuals can interact with both the nearest and second-nearest

neighbors, the impact of social ties on the evolution of cooperation are more complicated [64].

A further investigation along this direction may generate new insights. A prior study has con-

sidered that players’ social influence affects the strategy dispersal, which in turn modifies play-

ers’ social influence [67]. Such a coevolution actually corresponds to a dynamic structure for

strategy dispersal, different from the static structure in this paper.

Within this framework, we consider how the division of labor affects the evolution of coop-

eration. As well known, the division of labor prevails in colonies of social insects, hunting

groups of lions, and human societies [45–48, 52], where individuals are born or trained to per-

form specialized subtasks. Such specialization not only makes them more productive on their

own subtasks but also results in synergistic effects on the overall productivity when they coop-

erate with each other. We here model the strategic interactions under the division of labor as a

multi-threshold public goods game. The public goods are provided only when individuals of

distinct types cooperate. We find that the division of labor could promote the evolution of

cooperation. The reason lies in that task specialization transforms a many-player interaction

into several coupled fewer-player interactions. Such a transformation helps to reduce the free-

riding behaviors.

Our work also extends the research scope about the interplay between the evolution of a

population and the diversity. The two basic elements of a population are individuals and social

ties. Most prior studies about diversity focus on individuals’ attributes, such as the number of

social ties they have, the ability to influence their opponents, etc [68, 69]. Such diversity high-

lights that two individuals are different when possessing different attributes. Here we stress the

diversity of social ties. Social ties not just establish the connections between separated individ-

uals. They carry a massive amount of information about two connected individuals, such as

the intimacy of the interpersonal relationships, the frequency of physical contact, and even the

history about previous interactions. All these are unlikely to be captured by individuals’ attri-

butes. The example of division of labor also proved that the diversity of social ties (or edge

diversity) could catalyze cooperation. Our recent work about interactive diversity is pertinent

to this topic [24, 70]. Interactive diversity describes that each individual adopts independent

strategies in different interactions. Thus even facing an identical strategy by two different

opponents, the focal individual could be influenced differently due to its own behavior. Never-

theless, the influence difference fully depends on strategies between interactants and is unre-

lated to other information like genetic similarity or geographic proximity. Thus, interactive

diversity does not essentially capture diverse social ties explored in this paper [37]. We wish

our work could attract more work into the evolutionary dynamics along edges.

Here we stress that edge diversity proposed in this paper is different from edge multiplexity,

an important terminology in social networks [71]. Although both edge multiplexity and edge

diversity describe the association between individuals rather than individuals’ attributes, they

have different implications. Edge multiplexity means that the relationship between two indi-

viduals is multiplex when they interact in multiple social contexts. For example, two individu-

als can be both friends and colleagues. But edge diversity, simply speaking, means that edges

are different. Specifically, in our work, it means that different edges may carry different social,

physical or genetic information between individuals, such as the interaction frequency (or

rate), geographic distance or genetic similarity. It highlights the differences between edges

rather than the multiplexity of the associated relationship. For example, even if an individual
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shares the same multiplex relationship with two other partners, due to the distinct interaction

rates, the two social ties are still interpreted as different edges in terms of edge diversity.

In this paper we constrain that each social tie has symmetric effects on connected individu-

als. For example, if Alice is close to Bob in consanguinity or geographic sites, Bob is close to

Alice. Thus the benefit that cooperative Alice brings to Bob is identical to that of cooperative

Bob to Alice. A promising and challenging extension is the interactions with asymmetric social

ties, such as the relationship between leaders and followers. In such case, each individual

should be endowed with an independent payoff function [10, 72]. Despite much complicity in

analytical calculations, we expect a further research into this realistic situation, which is bound

to provide fruitful insights. We point out that our theoretical results are based on assumption

of weak selection, as used by most previous theoretical studies [19–22, 32, 33, 35]. Although

the assumption of weak selection is reasonable in many cases and also make this conundrum

accessible to analytical calculation [73], other situations routinely encountered in social or nat-

ural science are better captured by strong selection. Thus, a further investigation with strong

selection is necessary to enrich our understanding to the collective behavior in complex sys-

tems [36, 74]. Finally, in this paper, we assume that the types of edges remain unchanged

throughout the evolution. This is natural in many cases, like when types of edges indicate

the geographic proximity. Nevertheless, when edges’ types represent the genetic difference

between linked individuals and the population evolve based on individuals’ reproduction,

edges’ types evolve as well [59]. A study into the coevolution of individuals’ traits and edge

types is expected.

Supporting information

S1 Fig. Analytical fixation probability is in good agreement with simulation results. Solid

lines present the analytical fixation probability of cooperators (ρA) and dash lines show the

analytical fixation probability of defectors (ρB). Dots show results by computer simulations

(see S1 File, Section 6 for simulation details). Parameters in (a) follow Fig 2a and parameters in

(b) follow Fig 2c.

(TIF)

S2 Fig. Division of labor could reduce the free-riding behaviors for n> 2. On graphs with n
types of edges, the production of benefits requires cooperation from players linked by each

type of edges. Note that the focal player and its neighbors linked by edges of type 1 play the

same role in producing benefits. Here the increasing number of cooperators does not lead to

the increasing productivity, inasmuch as the number exceeds the threshold. (a) Difference

between r� with division of labor (“dol”) and with no division of labor (“ndol”). n = 3 and g1 +

g2 + g3 = 40. The upper right zone is invalid given a positive g3. The block dots present the con-

figurations of g1 and g2 for which r�s with division of labor and those with no division of labor

are nearly equal. (b) r� as a function of n. We fix ∑1�i�n gi = 40, gi = 5 for 2� i� n − 1, and

vary g1. Both (a) and (b) show that a small value of g1 facilitates cooperation.

(TIF)

S3 Fig. Analytical results qualitatively predict the evolutionary outcomes in a real-world

friendship network. The details about this network are provided in S1 File, Section 5. This

network consists of 2539 nodes and two types of edges, i.e., type 1 and type 2. On average, each

node is linked to 4.3 other nodes by edges of type 1 and 4 other nodes by edges of type 2. In

each generation, each player plays a volunteer’s dilemma with neighbors linked by edges of

type 1 and it also plays a public goods game with neighbors linked by edges of type 2. Dots rep-

resent the simulation data (see S1 File, Section 6 for simulation details). Lines are analytical
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predictions based on Eq (2) in the main text. Cv ¼ 1 and Cp ¼ 1. Other parameter values: Bv ¼

1:1 and Bv ¼ 2 (a); Bv ¼ 8 and Bv ¼ 2 (b); Bv ¼ 8 and Bv ¼ 8 (c). We use g1 = 4 and g2 = 4 in

the theoretical calculations.

(TIF)

S1 File. Theoretical deviations. Calculations of fixation probabilities and structure coeffi-

cients for evolutionary multiplayer games on graphs with n types of edges in finite populations.

Derivations of the replication equation for evolutionary multiplayer games on graphs with n
types of edges in infinite populations.

(PDF)

S2 File. Software code and data.

(RAR)
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16. Szabó G, Fáth G. Evolutionary games on graphs. Physics Reports. 2007; 446(4-6):97–216. https://doi.

org/10.1016/j.physrep.2007.04.004

17. Fu F, Wang L, Nowak MA, Hauert C. Evolutionary dynamics on graphs: Efficient method for weak selec-

tion. Physical Review E. 2009; 79:046707. https://doi.org/10.1103/PhysRevE.79.046707
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