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Abstract

Background: Though the gut microbiome has been associated with efficacy of immunotherapy (ICI) in certain
cancers, similar findings have not been identified for microbiomes from other body sites and their correlation to
treatment response and immune related adverse events (irAEs) in lung cancer (LC) patients receiving ICIs.

Methods: We designed a prospective cohort study conducted from 2018 to 2020 at a single-center academic
institution to assess for correlations between the microbiome in various body sites with treatment response and
development of irAEs in LC patients treated with ICIs. Patients must have had measurable disease, ECOG 0–2, and
good organ function to be included. Data was collected for analysis from January 2019 to October 2020. Patients
with histopathologically confirmed, advanced/metastatic LC planned to undergo immunotherapy-based treatment
were enrolled between September 2018 and June 2019. Nasal, buccal and gut microbiome samples were obtained
prior to initiation of immunotherapy +/− chemotherapy, at development of adverse events (irAEs), and at
improvement of irAEs to grade 1 or less.

Results: Thirty-seven patients were enrolled, and 34 patients were evaluable for this report. 32 healthy controls (HC)
from the same geographic region were included to compare baseline gut microbiota. Compared to HC, LC gut
microbiota exhibited significantly lower α-diversity. The gut microbiome of patients who did not suffer irAEs were
found to have relative enrichment of Bifidobacterium (p = 0.001) and Desulfovibrio (p = 0.0002). Responders to
combined chemoimmunotherapy exhibited increased Clostridiales (p = 0.018) but reduced Rikenellaceae (p = 0.016).
In responders to chemoimmunotherapy we also observed enrichment of Finegoldia in nasal microbiome, and
increased Megasphaera but reduced Actinobacillus in buccal samples. Longitudinal samples exhibited a trend of α-
diversity and certain microbial changes during the development and resolution of irAEs.
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Conclusions: This pilot study identifies significant differences in the gut microbiome between HC and LC patients,
and their correlation to treatment response and irAEs in LC. In addition, it suggests potential predictive utility in
nasal and buccal microbiomes, warranting further validation with a larger cohort and mechanistic dissection using
preclinical models.

Trial registration: ClinicalTrials.gov, NCT03688347. Retrospectively registered 09/28/2018.
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Background
For carefully selected patients, the advent of immuno-
therapy opened promising avenues of treatment and ex-
pectations for improved survival. With it arose the
challenges of managing its immune-related adverse ef-
fects (irAEs). Attention has shifted to increasing im-
munotherapy efficacy in addition to mitigating the
development of irAEs [1].
Cancer propagation is largely a result of the body’s

inability to destroy mutated cells bearing aberrant
antigen signatures; the disease can be framed as dys-
regulation of patient immunity [2, 3]. The bacterial
composition of the gut has been theorized to yield car-
cinomodulatory effects [4–6]. Early studies demon-
strated that mice with bacteria-deplete gut
microbiomes were less likely to develop cancer after
compared to those with microbiome intact [7, 8]. Dys-
biosis, similarly, has been linked to carcinogenesis [9].
Atopic pulmonary disorders have been linked to
specific changes in the gut microbiome: this concept
of “crosstalk” may also occur in extrapulmonary organ
systems [5, 10–14]. Pivotally, in a recent study, genet-
ically engineered mice were transplanted with bacteria
provoking intrapulmonary IL-17 inflammatory changes
and shown to facilitate the development of lung
cancer [15].
The influence of the microbiome in chemotherapy and

immunotherapy efficacy has been prolifically documented.
Enteric manipulation of bacteria has been linked to altered
treatment efficacy: antibiotic-treated mice exhibited
blunted immune response to both immunotherapy and ra-
diation therapy [16]. In mouse models, Bacteroides and
Bifidobacterium have been implicated in enhancement of
anti-CTLA-4 activation and response to anti-PD-L1 ther-
apy [17–19]. In human patients, Akkermansia levels posi-
tively correlated with partial response or stable disease,
and in mouse models, repletion of Akkermansia via oral
gavage was able to repotentiate tumor response to CTLA-
4 and PD-L1 therapy [20].
Less evidence exists to support the microbiome’s role

in development of irAEs. Firmicutes enrichment has
been associated with development of immune-related
colitis following treatment with ipilimumab, whereas
corresponding enrichment in Bacteroidetes was

associated with fewer episodes of colitis [21]. Mice
repleted with B. fragilis species were less likely to de-
velop immune-related toxicities after exposure to anti-
CTLA-4 inhibitors [18]. Taken together, these findings
raise the question of a relationship between systemic
and local microbiota in cancer – specifically, whether
microbiome sites both local and distant could be corre-
lated to pulmonary tumorigenesis, immunotherapy re-
sponse or development of irAEs.
We designed a prospective study to address three

specific questions. Our study compares microbiome
composition between LC and HC residing in the
same geographic area. Second, we will evaluate for
longitudinal correlations in the microbiome of three
separate body sites – gut, buccal, and nasal, the lat-
ter two chosen for their proximity to and possible
predictive surrogacy for the respiratory tract. This
surrogacy is of particular interest in lung cancer:
though the microbiome in distant body sites were
previously found not to correlate with immunother-
apy response in melanoma patients [22], it remains
paramount to ascertain whether the respiratory tract
microenvironment correlates to immunotherapy re-
sponse and toxicity for lung cancer, especially con-
sidering aforementioned evidence that respiratory
tract bacteria can facilitate lung cancer progression
[15]. Lastly, we will analyze for associations between
the microbiome and tumor response to immunother-
apy and/or development of irAEs.

Methods
Patients
Patients 18 years or older with histopathologically
confirmed LC whose treatment regimens included im-
munotherapy, either as monotherapy or in combin-
ation with chemotherapy, were eligible for this study.
Exclusion criteria included active pregnancy, active
recreational drug or alcohol abuse, and localized dis-
ease that could be managed definitively with surgery.

Study design and treatments
This prospective, single-center cohort pilot study was
conducted at the University of Iowa Holden Compre-
hensive Cancer Center (HCCC) in Iowa, United States.
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The study was approved by the University of Iowa Hos-
pitals and Clinics Institutional Review Board. Eligible pa-
tients visiting HCCC for LC treatment were screened,
provided written informed consent, and enrolled in the
study immediately prior to beginning immunotherapy or
chemo-immunotherapy (Fig. 1a). Patients were enrolled
between September 2018 and June 2019.
Patients were treated per guidelines for their dis-

ease subtype, overseen by participating oncologists
whose subspecialty covered the patient’s primary
diagnosis. Microbiome sample collection was trig-
gered by the following events: (1) Prior to initiation
of immunotherapy, (2) at the time immunotherapy
was held due to concern for AE/irAE development,

and (3) at improvement of AE/irAE severity to Grade 1 or
less (Fig. 1c).

Assessments
Microbiome sampling, DNA extraction, sequencing and
analyses
Microbiome control comparisons were obtained from 32
previously identified healthy patient samples stored in a
separate repository for a prior study (Cherwin et al.,
Healthy Control for Microbiome, Cytokine, and Immun-
ity Biomarker Analysis, IRB-01, The University of Iowa,
#201902825).
At enrollment, nasal and buccal mucosal swabs, and

fecal samples were obtained. If a fecal sample could not

Fig. 1 Description of patient cohorts and study schema. (a) Study schema showing the collection of microbiome samples from three separate
body sites. Samples undergo 16S rRNA amplicon sequencing followed by taxonomic profiling. The resulting data is correlated to clinical
outcomes such as response to ICI therapy or development of AEs. (b) An abbreviated demographics chart summarizing notable disease and
patient characteristics of LC contributors. For granular individual characteristics, please refer to Supplemental Table 1. (c) Breakdown of patients
belonging to each study cohort. ICI = immune checkpoint inhibitor. Checkpoint inhibitor status (number of patients enrolled – number of fecal
samples that were unable to be analyzed or not submitted – number of nasal/buccal samples that were unable to be analyzed or not submitted
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be obtained at enrollment, the patient received a stool
collection kit to return the sample prior to beginning
immunotherapy.
Fecal samples were collected using a Commode

Specimen Collection System, oral samples were col-
lected using saliva collection tubes (Access-genetics,
Eden Prairie, MN) and nasal samples were collected
using ESwab™ (Copan Diagnostic, Murrieta, CA). All
samples were then stored at − 80 °C prior to process-
ing. DNA was extracted from the fecal, oral and nasal
samples using DNeasy PowerLyzer PowerSoil Kit
(Qiagen, Germantown, MD) 16S rRNA regions (V3–
4) were amplified as previously described [23]. DNA
library for sequencing was prepared for Illumina
MiSeq; we used the Nextera XT Index kit to attach
dual index adapters. Each library was prepared by di-
luting the samples to 5 ng/μL and equal volumes were
mixed to 4 nM. We quantified the DNA concentra-
tion by Qubit (Thermo Fisher Scientific, USA). We
carried out the library preparations according to the
16S library preparation protocol of Illumina (Illumina,
San Diego, Cam USA), and sequenced the libraries
using the MiSeq Reagent Kit v3 (600 cycles) for 300-
bp pair-ends.
Raw reads were quality-controlled, merged, and

mapped to the 16S reference database (SILVA 13.2
[24]) using DADA2 [25] to generate OTU clusters.
When running DADA2, the accepted amplicon
lengths were set to between 240 and 260 bp (with
parameter “truncLen”), followed by trimming the
leading 15 bp low-quality region (with parameter
“trimLeft”). Pair-end reads remaining after each stage
of DADA2 are included in QC and Read Statistics.
The average percent of remaining input reads (non-
chimera) ranged from 68% in the nasal response co-
hort to 93% in the buccal toxicity cohort. The resulting
OTU clusters were then analyzed using Microbio-
meAnalyst to compute α-diversity, β-diversity and
assess differential abundance. When running Micro-
biomeAnalyst [26], OTU count were first transformed
into centered log ratio (CLR); taxa with little variance
between conditions (the lower 0.5% quantile) were
not considered because they are less informative in
comparative studies (by setting the inter-quantile
range to 0.5%). METAGENassist [27] was used to
perform partial least squares-discriminant analysis
(PLS-DA). Excepting adjustments mentioned above,
default parameters for all programs were used across
the entire study.
Fecal microbiome sequencing and analysis were ini-

tially conducted at the Iowa Institute of Human Genetics
and confirmed separately at the University of Kansas.
Nasal and buccal microbiome analysis was conducted at
the University of Kansas.

Toxicity assessment
Toxicities/AEs were evaluated at time of patient presen-
tation to clinic or in the event of acute hospitalization,
documented by the treating oncologist in accordance
with the Common Terminology Criteria for Adverse
Events (CTCAE) Version 5.0. irAEs were defined as AEs
consistent with an immune-mediated mechanism of ac-
tion and requiring management with steroids or other
immunosuppressants, and/or endocrine-targeted therapy
for endocrinopathies [28, 29].

Response assessment
Patients were evaluated for response or progression via
CT or PET/CT imaging. Imaging was obtained after 3
cycles’ therapy if the patient was treated with a single-
agent regimen, and after 2 cycles with a doublet regimen.
Responders were classified as patients who experienced
complete response (CR) or partial response (PR) with a
duration of at least 3 ~ 6months after starting immuno-
therapy; those with stable or progressive disease were
considered non-responders.

Results
Patient demographics
37 patients were consented between September 2018
and June 2019. Patient and disease characteristics are
summarized in Fig. 1b, with individual disease character-
istics listed in Supplemental Table 1, and three with-
drawals prior to initiation of treatment outlined in
Supplemental Table 3 as well as Fig. 2. Data collection
and analysis was locked as of October 05, 2020; median
follow-up was 12.2 months (range 0.33–24.3 months).
Median progression-free survival was 4.1 months (range
1.4–12.2 months). Median overall survival was 10.0
months (range 0.3–19.8 months).

Differences in gut microbiota composition between
healthy controls and lung cancer patients
Comparisons between LC and HC were restricted to
fecal analysis as HC patients did not submit nasal or
buccal samples. At the phylum level, LC samples were
observed to exhibit lower relative abundances of Firmi-
cutes and Bacteroidetes, but higher relative abundance of
Actinobacteria and Verrucomicrobia. α-diversity (ob-
served OTU) was found to be significantly lower in LC
compared to HC samples (p = 9.36 × 10− 04) (Fig. 3a). At
the genus level, notable differences were identified be-
tween HC and LC patients via PLS-DA as well as heat-
map clustering (Fig. 3b). In univariate analysis, a number
of taxa showed enrichment or depletion in the LC group
compared to HC group: as an example, LC patients ex-
hibited enriched baseline relative abundances of
Eggerthella (p = 6.78 × 10− 07, FDR = 2.41 × 10− 05) and
decreased Lachnospira (p = 2.00 × 10− 04, FDR = 1.58 ×
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10− 03). Please see Supplemental Table 4 for full list of
bacteria with p and false discovery rate (FDR) values. As
expected, β-diversity analysis using Bray-Curtis indices
showed the gut microbiome was distinct from nasal and
buccal samples (Fig. 3c).

Response to immunotherapy
Due to limited sample size, only patients receiving com-
bined chemo-immunotherapy were used to determine
the effect of microbiome on ICI response. Baseline nasal,
buccal and fecal samples from 13 evaluable patients were
included for analysis. Despite a consistent trend of
higher baseline α-diversity among responders across all

microbiome sites (Supplemental Figure 1), no statisti-
cally significant difference was observed.
Nasal microbiome analysis identified statistically sig-

nificant higher relative abundance of Finegoldia (of
phylum Firmicutes), p and FDR < 0.05 (p = 5.21 × 10− 04,
FDR = 0.018), in patients who enjoyed clinical response
to chemoimmunotherapy (Fig. 4a). Anaerococcus, an-
other bacteria of phylum Firmicutes, was significantly
higher in responders (p = 2.93 × 10− 04, data not shown).
In buccal samples, relative abundance of Megasphaera
(phylum Firmicutes) was higher in responders (p = 8.6 ×
10− 03), while Actinobacillus (phylum Proteobacteria) was
lower (p = 9.7 × 10− 03) (Fig. 4b). In fecal samples, rela-
tive abundance of Clostridiales (phylum Firmicutes)

Fig. 2 Flowchart of patients enrolled in the study. Breakdown of number of patients enrolled, were deemed ineligible for the study, as well as
number of samples provided for each stage of analysis
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was higher in responders (p = 0.017875) whereas Rike-
nellaceae (phylum Bacteroidetes) was lower (p =
0.016013) (Fig. 4c). In all three microbiome sites, Fir-
micutes bacteria were enriched in responders.

Adverse effects
13 patients who experienced treatment related adverse
effects provided fecal, buccal and nasal samples for ana-
lysis of irAEs (Supplemental Table 2), along with 11

Fig. 3 Baseline microbiome composition. Bar and heatmap plots comparing baseline gut, nasal and buccal microbiomes in LC compared to HC.
(a) Left: Bar graph showing relative ratios of phyla constitution in LC and HC samples. Right: Box plot showing a statistically significant decrease in
α-diversity when comparing LC to HC patients (p = 9.36 × 10− 04). (b) Left: 2-dimensional PLS-DA graph identifying notable differences in genus
expression when comparing LC vs HC samples. Right: Heatmap showing genus level expression in LC patients (upper half) compared with HC
(lower half). There is a notable difference at the genus level. (c) Principal coordinate analysis (PCoA) comparing the beta-diversity of buccal, nasal
and gut microbiome in LC patients
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patients who did not develop irAEs. Taxonomic analysis
identified multiple differences between microbiota of LC
patients with and without adverse effects. At baseline,
patients who experienced irAEs had a distinctly different
fecal microbiome makeup compared to LC patients with
fewer toxicities. Using stringent criteria, requiring p and
FDR < 0.05 regardless of different grouping methods of
AE severity, enrichment of Bifidobacterium (phylum
Actinobacteria) and Desulfovibrio (phylum Proteobac-
teria) were significantly associated with lower incidence
of irAEs. This observation was consistent irrespective of

irAE severity grouping - i.e., CTCAE grade 0 vs 1 + 2 +
3 + 4 (Desulfovibrio p = 0.0002, Bifidobacterium p =
0.001), grade 0 + 1 vs grade 2 + 3 + 4 (Desulfovibrio p =
0.0077, Bifidobacterium p = 0.0004), or 0 vs 1 + 2 vs 3 + 4
(Desulfovibrio p = 0.0006, Bifidobacterium p = 0.001)
(Fig. 5). Under the same stringent criteria, buccal and
nasal samples did not identify clear associations between
the microbiome and irAEs, though differences in com-
position were observed using various grouping methods
(Supplemental Figure 2). Increasing the sample size by
including patients who provided only nasal and buccal

Fig. 4 Response to immunotherapy. Microbiome changes notable in responders to ICI. Normalized data is presented in log-adjusted relative
abundances. Left panels show PLS-DA graphs from nasal, buccal and gut sites all showing a microbiome separation when comparing ICI
responders vs nonresponders. (a) Taxonomic profiling of nasal samples identified notable enrichment in Finegoldia, of phylum Firmicutes, in
responders to ICI (p = 0.0005). (b) Buccal analysis of ICI responders show enrichment in Megasphaera of phylum Firmicutes (p = 8.6 × 10− 03) and
decrease in Actinobacillus of phylum Proteobacteria (p = 9.7 × 10− 03). (c) In the fecal samples of ICI responders, Clostridiales was enriched (phylum
Firmicutes, p = 0.017875) and Rikenellaceae decreased (phylum Bacteroidetes, p = 0.016013)
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but not stool specimens also did not identify additional
significant bacteria, irrespective of grouping (Supple-
mental Figure 3).

Longitudinal changes in microbiome in relation to
toxicity
For longitudinal toxicity analysis, 11 patients submitted
2 sets of fecal samples; 3 patients submitted 3 sets. 13
patients submitted 2 sets of nasal and buccal samples; 5
patients submitted 3 sets of nasal and buccal samples.
See Supplemental Table 2 for individual reasons for
harvest of subsequent sample sets.
For the 8 and 10 patients who submitted two sets of

stool and nasal/buccal swabs for irAEs respectively, we
found no statistically different changes in α-diversity,
though a trend toward reduction in α-diversity in the
gut microbiome at onset of toxicity was observed
(Supplemental Figure 4). In the 5 patients who pro-
vided all 3 sets of microbiomes, a consistent trend to-
ward either slowed or reversed decrease in α-diversity
with resolution of irAEs was observed (Fig. 6a), though
complete recovery was not exhibited in this cohort.
Individual notable changes in the nasal and buccal

microbiomes are included in Fig. 6b. Though none
reached statistical significance, consistent increases in
the relative abundance of Staphylococcus in nasal micro-
biome at onset of toxicities and concomitant decreases
with resolution of toxicities were detected. In addition,
the relative abundance of Megasphaera decreased in
buccal samples with onset of irAE and increase with
resolution of toxicities (Fig. 6c).

Discussion
In our cohort, LC patients were observed to have at
baseline significantly decreased α-diversity in the gut
microbiome. Decreased α-diversity is suggestive of a cer-
tain degree of dysbiosis, reminiscent of previous studies
linking gut dysbiosis to carcinogenesis partly via leakage
of microbial products that negatively affect the immune
system [30]. Decreased α-diversity has been previously
directly correlated with an active disease state [14, 31].
We had reported in earlier analyses an inversion in the
ratio correlating Firmicutes and Bacteroidetes when
comparing LC to HC samples [32]. This inversion was
not upheld with increased sample size: when we pre-
sented our interim findings in 2019, we had accrued 9
LC patients to compare to 32 HC samples [33]. How-
ever, our sample size for comparison in this publication
includes 28 LC patients, and our findings are concordant
with another study that identified a relative decrease in
Firmicutes abundance with simultaneous increased en-
richment of Bacteroidetes in LC patients [34]. This could
be due to improved elimination of confounders with in-
creased sample size. As seen in Supplemental Table 1,

we performed a medicine reconciliation with patients
prior to undergoing immunotherapy +/− chemotherapy
and identified which of them had been taking antibiotics,
probiotics or proton pump inhibitor therapies, as these
have been shown to at least temporarily influence micro-
biome composition. Taking our small sample size into
account, we were unable to identify any statistically
meaningful signals attributing these variables to our
study outcomes. As a medication reconciliation was a
standard component of our enrollment process, we will
continue to evaluate the potential value of these vari-
ables with future trials.
Multiple bacteria have been associated with potenti-

ation of immunotherapy, including Akkermansia, Faeca-
libacterium, and Bifidobacterium [35]. Prior studies
established that increased diversity in the microbiome is
associated with response to immunotherapy in melan-
oma patients [22, 36, 37]. This correlation appears to
have an amplifying effect on treatment efficacy: in a
2019 study, survival also seemed to increase with in-
creasing α-diversity [37]. Though our study could not
confirm those findings, likely due to underpowered sam-
ple size, this trend was observed.
Buccal and nasal samples yielded an increase in rela-

tive abundance of Megasphaera and Finegoldia, respect-
ively, of phylum Firmicutes, in responders to combined
chemoimmunotherapy; and increased Actinobacillus, a
Proteobacterium, in nonresponders. In all three collec-
tion sites, Firmicutes bacteria (Finegoldia in nasal, Mega-
sphaera in buccal, and Clostridiales in gut) were
enriched in responders. Our recent systematic review of
clinical studies suggests enrichment of Firmicutes in the
gut microbiome correlates significantly with increasing
chemoimmunotherapy response across various solid
tumors [38]. Firmicutes bacteria are prominent pro-
ducers of short-chain fatty acids (SCFAs), which have
been linked to major immunoregulatory effects in the
gut [30]. Preclinical studies have demonstrated the po-
tential contribution of various SCFAs in patient immun-
ity, particularly butyrate, which has been theorized at
high concentrations to foster anti-tumor effects via acti-
vation of effector CD4 and CD8 responses [39–41]. The
implications of a nasal or buccal sample being able to
correlate with clinical outcomes in concordance with
fecal samples would lend credence to the concept of im-
mune systemic crosstalk, as well as improve the feasibil-
ity of utilizing the microbiome for predictive purposes.
In our study, patients had a far easier time providing
nasal and buccal swabs than fecal samples – compliance
rate of nasal/buccal sample return was 97% - only one
sample had been excluded due to mislabeling.
The significance of reduced relative abundance of Acti-

nobacillus (phylum Proteobacteria) in the gut micro-
biome of chemoimmunotherapy responders is less clear.
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Increased Proteobacteria has been previously associated
with dysbiosis [42, 43], and enterocolic inflammation
possibly through local induction of intestinal Th17 cell
responses [44]. Helicobacter pylori, a prominent Proteo-
bacterium, has been found to utilize multiple mecha-
nisms to incite local inflammation while simultaneously
evading its own destruction via interleukin-33, which de-
creases interferon-γ production [45–47]. A similar
mechanism may exist for Actinobacillus.
Our study made a novel association between decreased

relative abundance of Rikenellaceae (phylum Bacteroi-
detes) and chemoimmunotherapy response. Current

understanding of Bacteroidetes’ function in response to
ICI is mixed; Bacteroidetes have been demonstrated to
increase regulatory T-cell differentiation as well as in-
crease levels of IL-10 via use of Polysaccharide A, lead-
ing to upregulation of CTLA-4 expression [21]. It is
important to note that certain species of Bacteroidetes,
such as B. thetaiotomicron, and B. fragilis have been
paradoxically shown to improve tumor control with
CTLA-4 therapy [18]. ICI response with these specific
species was theorized to be due to release of outer mem-
brane vesicles containing enzymes that degrade gut
mucin and improve presentation to dendritic cells, thus

Fig. 5 Toxicity analysis. (a) PLS-DA analysis showing significant microbiome differences between LC patients who experienced toxicities and
those who did not using different grouping methods of irAE severities, e.g. grade 0 vs. grade 1 + 2 + 3 + 4; grade 0 + 1 vs. grade 2 + 3 + 4; and
grade 0 vs. 1 + 2 vs. 3 + 4. (b) Normalized abundances of Bifidobacterium (phylum Actinobacteria) and Desulfovibrio (phylum Proteobacteria)
showed enrichment in both bacteria in patients who developed less irAEs. All differences were statistically significant irrespective of
categorization of AE severity
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stimulating a stronger immune response [48]. It is pos-
sible this ability to potentiate immunotherapy is species-
specific, not phylum-specific – this is indeed supported
by findings from multiple studies across various solid tu-
mors [49], and that the overall function of Bacteroidetes,
specifically Rikenellaceae, could be immunosuppressive.
Our study is likely among the first to directly associate

specific bacterial genera with irAE development. Particu-
larly notable is association of Bifidobacterium enrich-
ment with decreased irAEs. Bifidobacterium is a well-
characterized probiotic and has been previously associ-
ated with alleviation of immunologic colitis caused by
anti-CTLA-4 therapy: this effect is hypothesized to in-
volve modulation of existing regulatory T-cells without
major change on influx or distribution [50]. Bifidobacter-
ium was found to reduce pro-inflammatory cytokines

such as IL-17 and TNF, both of which play a critical role
in development of irAEs [5, 49, 51, 52]. Interestingly, we
also found that Desulfovibrio (phylum Proteobacteria)
enrichment was significantly associated with decreased
irAEs. Existing literature regarding its immunomodula-
tory behavior is scarce, and functional intraspecies dif-
ferences have been identified [53]. Between strains, the
rate of sulfate metabolism from SCFAs and thus possible
consequent generation of enterotoxic hydrogen sulfides
can vary dramatically [54, 55]. Whether the strain we
identified in our study specifically dampens inflamma-
tory response to ICI will require more focused analysis.
In addition to development of lung cancer and poor re-
sponse to ICI, Proteobacteria has been correlated with
lower incidence of irAEs [56, 57]. It is unclear why our
gut microbiome toxicity findings were not mirrored in

Fig. 6 Longitudinal changes in microbiome with development and resolution of toxicities. (a) Analysis identified five patients who had submitted
multiple samples during development and resolution of irAE. JZLC-24 and JZLC-6 did not have stool samples available for analysis but did submit
all three sets of nasal and buccal samples. On the x-axis, sample collections are listed: V1, prior to initiation of immunotherapy; V2; at onset of
toxicity, and V3, at resolution of irAE. The y-axis denotes the logarithmic (base 10) relative change in α -diversity compared to the previous visit,
trended by the line plots, overlaid. Across nearly all sets of microbiome samples, a drop in microbiome α-diversity is observed at onset of irAE. At
resolution of irAE to grade 1 severity or better, a third set of samples exhibit a trend toward either slowed rate of decrease in α-diversity or a
reversal altogether toward baseline. (b) A consistent trend in increase of Staphylococcus at onset of toxicity and decrease with resolution of
toxicity was also observed in the nasal samples (left), with a similar trend in buccal samples (right). (c) Megasphaera, a bacterium belonging to
Firmicutes, was previously identified as being enriched in responders to immunotherapy. Here, it is also shown to decrease in buccal samples of
patients who developed irAEs, then increasing in abundance with resolution of toxicity
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nasal or buccal sets as they were with response data. We
speculate irAEs are primarily a systemic response to
which the gut microbiome wields significant influence
given a much larger commensal bacteria mass, whereas
ICI response is primarily determined by the tumor im-
mune microenvironment and hence is likely modulated
by local (e.g. nasal and buccal) microbiota as well.
Longitudinally collected samples appeared to show

consistent loss of α-diversity in buccal, nasal and gut
microbiomes with onset of irAEs, with a trend toward
either decreased rate of diversity loss or outright im-
provement at resolution of toxicity. The lack of statis-
tical significance here may simply be a matter of sample
size. It is possible that patients who experience irAEs
eventually recover baseline microbiome composition
with longer follow-up: future studies designed to obtain
samples far after resolution may confirm recovery of
baseline microbiome diversity. It also remains unclear
whether increased biodiversity in HCs is reflective of
bio-reductive activity by malignancy or a baseline trait of
the host in general, which could also reflect better over-
all health and performance status and thus prolong sur-
vival [58].
We identified two specific phenomena with longitu-

dinal sampling. First, we noted an increase in Staphylo-
coccus relative abundance in nasal samples at onset of
irAE. Staphylococcus has been implicated as an active
regulator of competitive bacterial growth, and was also
significantly upregulated in the nares of patients with
autoimmune disease [59, 60]; further testing could clarify
its role as a surrogate marker of irAE changes. The rela-
tive abundance of Megasphaera was also found to de-
crease and increase, respectively, with onset and
resolution of toxicities in buccal samples. Firmicutes
genera, enriched in the baseline gut microbiome of LC
patients, has been previously associated with develop-
ment of CTLA-4 mediated colitis [21, 61]. Firmicutes-
produced SCFAs have been demonstrated to activate
multiple types of G-protein coupled receptors, stimulat-
ing either proinflammatory (via MAP kinase) or anti-
inflammatory (via β-arrestin 2) responses [14]. Thus,
Megasphaera’s decrease with onset of toxicity may be
indicative of this Firmicutes bacteria instigating its
own immunologic reaction. Further investigation is
needed to confirm.
The patient population of our pilot study contained

both NSCLC and SCLC patients. Four SCLC patients
were included in different stages of analysis, with three
patients who underwent first-line chemoimmunotherapy
and one patient with second-line ICI monotherapy; the
latter patient progressed on second-line therapy and the
three treatment-naïve patients exhibited response. Re-
peat analysis with removal of SCLC patients slightly de-
creased significance of but did not fundamentally change

our findings. Considering NSCLC and SCLC are cancers
of the same organ and carry overlapping environmental
risk factors, such as smoking exposure, and that our in-
tent is to identify which members of the respiratory
microbiome may be associated with ICI response, we re-
ported results from analysis performed on the aggregate
cohort. Given that our findings are similar to those
found in microbiome studies of melanoma [19, 22, 48,
62] and renal cell carcinoma [20] patients, it is also rea-
sonable to consider that the microbiome compositions
portending response to immunotherapy may also be dis-
ease agnostic.
Our study has several limitations that will benefit prin-

cipally from a larger patient pool. One patient was lost
to follow-up shortly after achieving a partial response.
Due to follow-up difficulties, several patients were un-
able to obtain second and third sets of samples for tox-
icity evaluation. The trends we identified with respect to
longitudinal microbiome changes with AEs were drawn
from a subset of 5 of 34 possible patients, trends which,
albeit interesting, require further validation. Some of the
treatment arms, such as LC patients treated with ICI
monotherapy, could not be investigated due to small
sample size. Based on our current cohort and effect size
calculations, we were able to detect 2.16- and 1.23-fold
changes in taxa abundance for the ICI response and
irAE analyses, respectively [63]. Given that all patients
included in ICI response analysis had been treated with
chemoimmunotherapy, it is possible that chemotherapy
could also have contributed to response rates as well as
microbiome alteration. We are currently accruing pa-
tients to a subsequent study that will specifically delin-
eate patients treated only with immunotherapy, or are
immunotherapy-naïve, for evaluation (ClinicalTrials.gov
identifier: NCT04636775, NCT04680377). HC samples
used in this analysis also differed from the patient popu-
lation – controls were relatively younger, though from
the same geographic region, and were only able to pro-
vide stool samples for comparison. We felt disclosing
the LC/HC fecal sample comparison valuable for two
specific reasons: first, it is important to confirm that in
concordance with other studies the patient population
and healthy population have markedly different micro-
biota at baseline, and second, we feel it important to
have two baselines for comparison – a healthy control
and a lung cancer baseline control – given that over the
course of therapy, many external factors, including
chemotherapy, may further perturb that balance. The
potential value of such a corroboration, as identified in
prior studies [15, 64–66], is that changes in the micro-
biome may be associated with carcinogenesis as well as
with poorer responses to therapy.
Our initial exploratory study may help answer

which patients may be at highest risk of developing
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life-threatening irAEs with use of ICI. More import-
antly, we hope to identify associations between micro-
biome constitution and increased immunotherapy
efficacy. The potentiation of immunotherapy carries
broad implications, including in cancers for which im-
munotherapy is not currently indicated. A larger co-
hort to account for confounding factors will further
elaborate this: a study focusing on immunotherapy
naïve advanced/metastatic NSCLC receiving single
agent anti-PD-1/L1 has opened at the University of
Kansas Medical Center (due to PI Dr. Jun Zhang’s re-
location, ClinicalTrials.gov identifier: NCT04636775).
In addition, a separate trial studying the role of the
microbiome in predicting toxicity of the anti-PD-L1
agent durvalumab following concurrent chemoradia-
tion in locally advanced NSCLC patients is open to
accrual (ClinicalTrials.gov Identifier: NCT04680377;
PI Dr. Jun Zhang).
Our research is the first to comprehensively com-

pare oral, nasal and fecal samples among LC patients
and report correlations between them with respect to
immunotherapy response. It is also notable for being
the first to associate Bifidobacterium and Desulfovi-
brio with decreased development of irAEs, and fur-
ther, for being the first to attempt a longitudinal
study to evaluate dynamic microbiome changes from
various body sites – all these findings will benefit
from further investigation in continued preclinical
and clinical studies.

Conclusions
Our study identified multiple promising associations
between microbiome alterations and outcomes follow-
ing ICI therapy in LC patients. Though development
of irAEs have been classically associated with treat-
ment response, our findings show that shifts in abun-
dance of specific species may affect only one of these
phenomena, potentially decoupling them. Lastly, our
study suggests shared correlations between treatment
outcomes and disparate microbiome sites in LC pa-
tients, which could hold promising predictive value.
Our findings warrant further validation with a larger co-
hort and mechanistic dissection using preclinical models.
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