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A diffusion theory-based, all-physical ab initio protein folding simulation is described and applied.Themodel is based upon the drift
and diffusion of protein substructures relative to one another in the multiple energy fields present. Without templates or statistical
inputs, the simulations were run at physiologic and ambient temperatures (including pH). Around 100 protein secondary structures
were surveyed, and twenty tertiary structures were determined. Greater than 70% of the secondary core structures with over 80%
alpha helices were correctly identified on protein ranging from 30 to 200 amino-acid sequence.The drift-diffusionmodel predicted
tertiary structures with RMSD values in the 3–5 Angstroms range for proteins ranging 30 to 150 amino acids. These predictions
are among the best for an all ab initio protein simulation. Simulations could be run entirely on a desktop computer in minutes;
however, more accurate tertiary structures were obtained using molecular dynamic energy relaxation. The drift-diffusion model
generated realistic energy versus time traces. Rapid secondary structures followed by a slow compacting towards lower energy
tertiary structures occurred after an initial incubation period in agreement with observations.

1. Introduction

This work introduces an ab initio physical drift and diffusion-
based protein structure prediction simulation that runs on a
desktop PC. The protein folding dynamic is one of the most
important problems in biology (e.g., see [1, 2]). Given the
numerousmanuscripts, journals, and volumes that have been
dedicated to the techniques, the progress, and the importance
of this work, it is not possible to give fair review here.
That being said, the authors recognize the fantastic progress
made in statistical and homolog based approaches and the
advances these have contributed to all aspects of protein
science. However, there are many cases where appropriate
homologs are not available and/or where protein structure
must be predicted in environments that differ markedly from
those used to obtain homolog experimental structures. Also,
many protein folding simulations such as molecular dynam-
ics (MD) require large amounts of CPU time for protein
structure folding and/or prediction and require templates (or
homologs) for initiation [3]. For cases without appropriate
homologs, an ab initio model with reasonable accuracy is
valuable.

Several methods to assess the performance of protein
structure prediction have evolved. One is the testing of

a sufficient number of cases to demonstrate the performance
of a given approach. Another is the (CASP) Critical Assess-
ment of Techniques for Protein Structure Prediction com-
petition [4]. CASP scores the various models by comparing
experimentally discovered structures to those obtained by
the competition organizers. This work employed CASP9 as
a template-free or ab initio modeling [4] and was ranked
among the middle scoring groups.

Here, a protein folding and structure prediction model
based on the first principle forces (energy gradients) and
physical kinetics including the drift and diffusion of residues
and/or protein substructures relative to one another, is
described.

2. Theoretical Backgrounds

2.1. Multiple Energy Considerations. Physical kinetics and the
near equilibrium descriptions are fundamental to chemical
engineering and materials science (see, e.g., Barratt et al.
[5] and Moore and Pearson [6]). Here, these principles
are applied to the protein folding dynamic and the protein
structure prediction. The underlying assumption being that
the change from one ambient to another is carried out slowly
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enough to justify near equilibrium mechanics. Challenges
include relative subprotein structures motion in two or more
energy fields.

In steady state and near equilibrium, the diffusion-driven
dispersion and force-driven drift must balance to preclude
unnatural energy accumulations. In protein structure, two
or more energy fields almost always simultaneously act.
Resolving particle motion in two or more energy fields
was previously described [7]. The work showed that relative
motion induced in global protein entropy change could be
incorporated into electric field mobility [7]:

𝜇 =
𝐷∇ ln (𝑛𝑝)

∇ {𝑉𝑃 − 𝑆𝑇 + ∑𝑗 𝜙𝐿𝑗
𝑛𝑗} + 𝑘𝑇∇ ln (𝑛𝑝)

, (1)

where 𝐷 is the diffusivity, 𝑘 is the Boltzmann constant,
and 𝑇 is temperature in Kelvin. It was found that only the
largest energy changes (e.g., the product of global entropy
and temperature) made significant contribution to this
mobility where 𝑛𝑝 is an identifiable protein substructural
species or atom concentration and the summation is over
all species 𝑛𝑗 having a related (nonelectrostatic) energy (e.g.,
global entropy-temperature product or stain energy), 𝜙𝐿𝑗 ,
subject to change upon folding.

As ambient conditions change, the protein energy (or free
energy) becomes greater than that at equilibrium. Relative
energies and forces (gradients of the relative energy) act on
each member of the protein. These forces in turn result in a
drift speed defined by

drift speed = 𝜇𝐹, (2)

where 𝐹 is the force on a particular atom or site and 𝜇 is the
drift mobility (1).

2.2. Force Considerations. While global entropy change was
incorporated intomobility, it is necessary to consider the sev-
eral other energy gradients (force) inducing motion. Forces
were summed and subprotein structures were allowed to
move relative to one another. In this work, the net charge and
hydrophobicity of each side chain of residues were assigned
to the nearest backbone atom (see Figure 4).

Four explicit forces were considered: the electrostatic
(Coulomb’s) force (applied to charges and dipoles), elec-
trostatic displacement force (as defined below), generalized
diffusive force (a thermal force as defined below), and global
entropy change. Summed forces about each alpha carbon (in
pivot bond) were cataloged, and the greatest was chosen to
produce torque andmotion about the identified alpha carbon
atom. After the drift-diffusion determination of tertiary
structure, the molecular dynamics (MD) model was used for
final structure determination via energy relaxation.

The electrostatic force between two charged bodies
(𝑞1 and 𝑞2) is easily determined from Coulomb’s law using
an appropriate dielectric constant (3). This research found
that the dielectric constant of water, 𝜖𝑤, yielded good results,

where 𝜖𝑤 is ∼78𝜖0 (where 𝜖0 is the permittivity of vacuum).
Therefore, the Coulomb force is

𝐹elect =
𝑞1𝑞2

4𝜋𝜖𝑤𝑟
2
. (3)

Kang et al. previously described the electrostatic displace-
ment force in the context as used here [7] and as applied in
neural ionic transport where the electrostatic displacement
force arises from the attraction between mobile (e.g., liquid)
polar media and an electric field [8]. The polar media are
drawn towards an increasing electric field thereby producing
a force that acts to sweep mobile uncharged, nonpolar media
(e.g., fixed ion electric field, liquid water, and a noncharged
residue) producing attraction. The attraction of polar media
produces a corresponding displacement force that always
moves nonpolar protein regions towards a lower electric
field region (i.e., the nonpolar regions are pushed away from
strong electric field by the inrush of water or other polar
media toward strong field).

Simplified models for interaction of water, nonpolar
media, and electric field with respect to protein structure
have been developed. For example, the generalized born (GB)
model [9] has been used to track the electric field energy
and/or solvation energy with respect to protein charge and
partial charge. Since this work follows a folding protein, the
various protein charge and partial charge move with respect
to one another. Therefore, of the cases examined by Bashford
and Case [9], the case in which two proteins moved with
respect to one anothermost closely relates.The kinetic model
(KM) approach enabled a simple physical approach to these
considerations (see Kang et al. [7]).

Water dielectric constant is reasonable for distant charged
species since the predominant media separating these is
water. However, in the case of secondary structure and
collapsed protein structure, the small distances between
charged species are likely to have significant protein content
having a low dielectric constant. Nonetheless, the simulation
produces secondary structure with a high degree of accuracy.
In the secondary structure generating subroutine described
in the next section, parameters are fine-tuned to produce the
best agreement with experiment, and even higher accuracy
is obtained. Typically, the highest accuracy results for the
tertiary structure determinationwere obtained using the fine-
tuned secondary structure subroutine to identify secondary
structure location, followed by a KM simulation collapse of
the denatured protein with secondary structures and finally
a full molecular dynamic relaxation (based on AMBER10)
of the 3D structure in which local dielectric property is
generated and used. As noted elsewhere, the use of AMBER10
(and its more accurate dielectric consideration) increased
accuracy by about 3%.

There is an energy associated with the electric field
imbedded in a dielectricmedia. Forces can be generatedwhen
charge or nonpolar structure motion induces a reduction in
this energy.Therefore, it is necessary to define a displacement
energy and a displacement force described in terms of
the electric field energy, 𝑊, for water-filled regions (with
permittivity 𝜖𝑤) relative to the region filled with a nonpolar
structure (assumed to have the permittivity of vacuum, 𝜖0).
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Figure 1: Displacement force: the electrostatic force (A), the force
map representing direct contact of two nonpolar residues (B), and
extension of displacement force (C) corresponding to conveyance
of the displacement force via equilibrium nonpolar interaction.

Following Jackson [10], this energy consideration can be
quantified:

𝑊 = −
1

2
∫
𝑉1

(𝜖𝑤 − 𝜖0) 𝐸⃗ ∙ 𝐸⃗0𝑑𝑉, (4)

≈ −
1

2
(𝜖𝑤 − 𝜖0) 𝐸⃗ ∙ 𝐸⃗0Δ𝑉, (5)

≈ −
𝛽
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
2

𝑟4
, (6)

Force = −𝜕𝑊
𝜕𝑟

= −
4𝛽
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
2

𝑟5
, (7)

where the integration is over the volume of the nonpolar
protein region.The nonpolar volume and the other constants
are collected into single term 𝛽 (as seen in (6) and (7))
without loss of accuracy. The magnitude of the displacement
forces acting upon a neutral alpha helix-sized object under
the influence of an electronic point charge at ∼0.1 nm is
comparable to theCoulomb force between twoopposite point
charges at a similar distance. Figure 1 shows the displacement
force values based on the distance between two nonpolar
regions relative to electrostatic force.

The third force considered here is thermal force. Ther-
mal force is related to the average motion or speed of
one part of the protein relative to another arising from
diffusion. There are several possible formulations of the
thermal force. The thermal diffusion speed is ] = √𝐷/𝜏 →

√𝜇𝑘𝑇/𝜏 (since 𝜇 = 𝐷/𝑘𝑇). The force needed to produce

the same speed through drift is √𝑘𝑇/𝜇𝜏 where drift speed =
𝜇∇𝜙eff and ∇𝜙eff is an effective force.

The concept of thermal force can be understood in
the context of generalized force (e.g., see Glicksman [11]),
whereby a concentration gradient and the corresponding
diffusive currents offset an applied force. This principal is
widely applied, for example, in the separation of isotopes,
where the inverse, the force needed to halt a diffusion-driven
concentration change, is considered.

The forth force, global entropy change, was considered.
Here the global entropy is taken to be the aggregate by all
protein entropy terms that change under folding. A change
in global entropy is estimated by considering a proposed
change in protein structure. The global entropy values used
here (generally decreasing on compacting) were determined
by fitting to observation (see Kang et al. [7]). The estimated
entropy change was in turn used to determine a newmobility.
A proposed protein change was computed by allowing a force
to act, producing a speed consistent with the new mobility.
The resultant speed was allowed to act for one time step.

Total force in protein structure can be defined by the sum-
mation of three forces (8). The forth force, global entropy-
temperature product is incorporated into the mobility. The
best structure predictions were obtained when the global
entropy diminished on folding. For example, at room tem-
perature an entropy-temperature gradient (2nd term in the
denominator of (1)) of ≈104 eV/(Kcm) was typical.

The remaining three forces can be expressed as

𝐹 = (
𝑞1𝑞2

4𝜋𝜖𝑟2
) + (

𝛽
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
2

𝑟5
) + √

𝑘𝑇

𝜇𝜏
, (8)

󳨀→ (
𝑞1𝑞2

4𝜋𝜖𝑟2
) + (

𝛽
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
2

𝑟5
) + 𝛾√𝑘𝑇, (9)

where defining the quantity √1/𝜇𝜏 → 𝛾 helps clean up the
equations.

The relation among charge, water, and hydrophobic
residue association is quantified in (9). The first term of
(9) (Coulomb) quantifies the force between charges and/or
charge and polar structure.

It is well known that hydrophobic residues aggregation
and water surface reduction relate to alpha helix formation.
These hydrophobic interactions are characterized in terms of
the aforementioned displacement force. However, in careful
examinations of natural protein structures, there exist many
protein regions containing large numbers of hydrophobic
(nonpolar) residues, which do not bond (aggregation) and
do not form alpha helices. This is understood in terms of
the displacement force whereby charge attracts polar water,
and in turn, the polar water pushes nonpolar hydrophobic
residues apart.

The repulsive force (second term of (9)) is pushing un-
charged nonpolar structures away from the charged regions
(by incoming polar water) causing the hydrophobic residues
to remain separated. Therefore, when sufficient charge exists
in the intervening protein segments (e.g., charged residues),
the repulsive component (second term of (9)) generates
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Figure 2:The probability of a nonpolar region in water as a function
of pressure and electric field (as indicated) is shown. Increasing
electric field significantly reduces the nonpolar region probability.

a repulsive force sufficient to block the more outlying hydro-
phobic residues fromapproaching one another. Figure 2 illus-
trates this electric fieldwith induced blocking. Additionally, it
was found that extremely large residue sizes could also inhibit
alpha helix formation.

The thermal force tends to randomize the net force or
torque acting on any given backbone atom pair. However,
early in the folding, the strong force between nearly spaced
hydrophobic and electrostatic pairs overwhelms the thermal
force. Consequently, the simulation tends to hang up (repeat-
edly returns to move on) a particular strong force generating
pair. After a particular atom pair generates the largest torque
for five sequential time steps, the simulation freezes the
motion about this particular backbone atompair by removing
its force (or torque) from the next time step query. Thereby,
the simulation preserves the structure generated in five time
steps relative to the torques generated by the nearly spaced
hydrophobic and/or electrostatic pairs.

It was found that almost all of the frozen backbone
atomic pairs were part of secondary structures and that these
formed early in the folding process. In this regard, these
structures are related to autonomous folding units [12]. In
turn, the relationship between strong forces on nearly spaced
hydrophobic and electrostatic pairs can be directly correlated
to secondary structure as considered in the next section.

Equation (9) is useful on all size scales. On the smallest
size scale, (9) can be the potential to generate secondary
structure. On larger size scales, the expression guides the gen-
eration of tertiary structures by describing the force between
charged regions andhydrophobic secondary structures. From
the insights provided by this description, a set of rules gov-
erning secondary structure formation were developed.

One of the attributes of the presented physical model
is that the workings that produce structure are open to
inspection and understanding. Accordingly, examination of
secondary structure, in some cases time step by time step,
revealed the nearly balanced interplay of the hydrophobic
versus electrostatic elements of (9). Consequently, two paths
for improved secondary structure were presented. First, the
conceptually simpler is the fine-tuning of the force equa-
tions. The second is that the recognition of nearly balanced
hydrophobic and electrostatic forces imply secondary struc-
ture formation. Therefore, an algorithm was developed to
search for large, nearly balanced force. In this writing, the
second approach (described in the following section) is the
more accurate. Using the second approach requires the use of
a graphic program (such as Pymol) to insert the appropriate
structure into the 3D structure.

3. A Streamlined Secondary Structure
Prediction Model

Historically, secondary structure prediction has advanced
over the past five decades. Secondary structure prediction
introduced in the 1960s and early 1970s [13–15] focused on
identifying alpha helices. Beta sheet identification also relying
on statistical analysis [14, 15] began in the 1970s. Evolutionary
conservationmethods exploited the simultaneous assessment
of many homologous sequences to determine probabilistic
relation between protein sequence and secondary structure
[16, 17]. Larger experimental structure databases and mod-
ern machine learning methods have achieved ∼80% overall
secondary structure prediction accuracy in globular proteins
[18].

In the presented model, the relative location of residues
and the hydrophobic/polar and charge characteristics of
each residue are the only input elements. The hydrophobic
character as a function of ambient can be found in the
literature (see, e.g., [19, page 14, Table 1.2]). Also, amino acid
charge and partial charge can be determined using popular
software suites including the (MOE) Molecular Operating
Environment software package which employs the standard
AMBER 10 parameter set to calculate the force field [20]. In
some cases (not reported here), extreme ambients such as
very low pH require appeal tomore sophisticated commercial
software suites.

The algorithm for secondary structure prediction sys-
tematically steps through an arbitrary amino acid sequence.
When hydrophilic amino acids are encountered, a mechan-
ical set of queries determines if secondary structure is
present. These queries relate to the hydrophilic character of
the following neighboring residues. The simulation used by
this work employs secondary structure search beginning at
the occurrence of a hydrophilic residue after hydrophobic
residue and ending at the next hydrophobic residue. The
charge, size, and polarity of the intervening amino acid
residues determine both a secondary structure region and its
type. A delicate balance of charge, polarity, and hydrophobic
character determines the secondary structures of protein.

Upon encountering a hydrophilic amino acid (𝑛𝑖),
a scan bracket is opened. The following in the sequence
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Table 1: Physical conditions from alpha helix identification.

Case ∑
𝑛

𝑖=1
𝑞𝑖 Π

𝑚

𝑗=𝑘
𝑞𝑗 Other 𝑞𝑖 ∑

𝑛

𝑖=1
ℎ𝑖

𝑛 = 1

0 < 𝑎 < 0.2 >0
< −0.5 =0

𝑞1 > 0.9 < −0.3
1 < 𝑎 < 0.5 <0

𝑛 = 3
>1 𝑞2 ̸= 𝑞3

|𝑎| < 0.5 < −6.0

𝑛 = 5

0.3 < 𝑎 < 0.5

|𝑎| > 1.0

𝑞𝑖 > 0

|𝑞𝑖| > 0.6

𝑞𝑖: partial charge of 𝑡th residue; ℎ𝑖: hydrophobicity of 𝑖th residue.
𝑛: number of residue.

(𝑛𝑖+1, . . . , 𝑛𝑖+6) are queried unless the finding of a hydrophilic
residue ends the search (i.e., the end point (𝑛𝑖+𝑗) occurs at
the next hydrophilic residue). If no hydrophilic residues are
encountered within the 𝑖 + 6 nearest neighboring residues,
the algorithms denote the region as unstructured and then
move on to the next hydrophilic residue in the sequence
where a new search begins. Importantly, in all cases where
a second hydrophilic residue (thus ending a search) is
found within the next six nearest neighbors a secondary
structure alpha helix will form in accordance with the rules
summarized in Table 1.

Determination of the secondary structure type within
a given sequence meeting the six nearest neighbors rule
follows a simple hierarchy. First, if the stringent conditions
for hydrophobic collapse are unopposed by (sufficiently large)
dielectric displacement forces, an alpha helix will form.
Second, whenever alpha helix formation is blocked (e.g.,
by the dielectric displacement force induced by intervening
charged residue), a beta sheet region will form. Therefore,
alpha helix regions can be transformed into a beta sheet by
mutations resulting in one or more charged residue(s) in the
critical areas between hydrophobic residues. The formation
of fibrils in Alzheimer’s patients is an example of a case where
a small mutation causes an alpha helix collapse [21].

The summation of charges (Table 1, column 2) deter-
mines the overall charge, and therefore, the magnitude
of the electric field exerts repulsive force on hydrophobic
residues. Theis force opposes hydrophobic residue aggrega-
tion, and therefore alpha helix cannot form. The product of
charge, column 3 of Table 1, combined with the summation
of charge, relates to the magnitude of electrostatic attrac-
tive (or repulsive) force. The summation of hydrophobic
character (column 5 of Table 1, ∑𝑛

1
ℎ𝑖) is an indication of

the net hydrophobic attractive force operating within the
region. Using the equalities and inequalities shown in Table 1,
very good predictions of secondary structure were obtained
(Table 2). It is apparent that the algorithm is sensitive to
very small changes in charge andhydrophobic characteristics.
The above procedure for determining an alpha helix can be
used to determine whether there is an alpha helix region in
any portion of interest on the given amino acid sequence.

In order to obtain all of the alpha helix regions, the procedure
can be repeated by scanning through the entire amino acid
sequence.Thereafter, the determination of a beta sheet region
can be initiated.

For determining beta sheet, a residue on the amino
acid sequence is first selected. If the residue is denoted
unstructured (i.e., it is not previously determined to belong
to an alpha helix or beta sheet region), the next residue is
selected. The procedure is repeated until an unstructured
residue 𝑛𝑖 is encountered. A scanning bracket is opened
using this unstructured residue as a starting residue, and its
next 4 consecutive residues (𝑛𝑖+1 through 𝑛𝑖+4) are queried
to determine if they are all unstructured. If the answer is
no, the procedure is stopped. Otherwise, a scanning bracket
of residues 𝑛𝑖 through 𝑛𝑖+4 is established. Beta sheet deter-
mination is then performed based on the summation of the
magnitude of charges and the summation of the hydrophobic
character of each residue in the 5-residue bracket. For
example, such a 5-residue bracket is determined to be a beta
sheet when ∑𝑖+4

𝑖
|𝑞𝑖| − ∑

𝑖+1

𝑖
ℎ𝑖 < 0.3 and ∑𝑖+1

𝑖
ℎ𝑖 > 0.1. The

above procedure for beta sheet determination can be repeated
for the entire amino acid sequence to obtain all of the beta
sheet structures on the sequence.

Figure 3 shows secondary structure prediction to experi-
ment for a wide cross-section of proteins. The experimental
structure was obtained from the Rost and Sander result
[22]. The algorithm found essentially all of the secondary
structures and correctly determined their character. The
accuracy of this procedure has been tested on hundreds of
proteins producing accuracies of ∼70 ± 9% for alpha helix
and ∼66 ± 14% for beta sheet identification (residue-by-
residue comparison between model and experimental for
proper secondary structure assignment). Furthermore, core
secondary structure identificationwas even greater;∼75± 7%
and ∼70 ± 12% for helices and beta sheet, respectively. These
are among themost accurate secondary structure predictions
to date.

Table 2 compares the accuracy of the KM model (the
kinetic model described here) relative to other popular
models described in the literature.The kinetic model demon-
strated state-of-the-art accuracy in overall secondary struc-
ture prediction and excellent alpha helix prediction. The
commercial PSIPRED [23] (is based on a statistical approach)
also predicted secondary structure regions’ size and location
extremely well in some cases but in others failed to identify
the presence of secondary structure. The kinetic model gen-
erally identified the presence of almost all of the structures but
the start and end points varied from those of the experiment.

4. Tertiary Structure

While various forms of backbone atom tagging have been
done previously, for example, in coarse grain models, these
approaches differ from that used here. As stated above, the
tagging used here involves assigning residue hydrophobicity
and charge to the backbone atom bonded to the residue.

In cases where the physical conditions are strongly
indicative of a particular secondary structure (e.g., alpha
helix), the program directly inserts this secondary structure
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Table 2: Comparison between KM and PSIPRED.
KM KM KM PSI PSI PSI

PDB % all %𝛽 %𝛼 % all %𝛽 %𝛼
1hdn 73.8 78.5 82.26 89 88 93
1ubq 76.32 72.73 94.11 82 73 77
1vii 72.2 non 78.95 80 non 100
2nmq 64.18 65.38 non 60 54 non
1pba 74.04 non 73.33 68 non 70
1aps 84.7 80 90 80 83 87
1aey 67.3 77.8 non 44 35 non
1coa 45.31 71.05 61.53 81 60 92
1fkb 61.61 72.97 100 88 90 100
1mjc 71.01 80.64 non 69 70 non
1nyf 59.73 40 70 62 54 0
1pks 65 53.57 64.75 59 48 0
1shg 63.2 61.23 non 42 25 non
1srl 65.56 75 100 53 37 0
1ten 74.44 68 non 80 85 non
1ycc 63.4 58.58 60.01 51 0 53
2ci2 66.26 64.34 79.84 47 28 0
Avg 67.59 67.99 79.98 66.76 55.33 51.69
KM means the developed model and PSI means PSIPRED, which is developed by the University of London. Other names mean the percentage of prediction
of total structure, alpha-helix, and beta-sheet with respect to two different methods. To compute prediction rate, NMR structure of each protein was used.

without wasting computational resource to move atoms to
the correct position one-by-one. That is, the secondary
structure program is used to identify the strong propensity
for secondary structure formation, and where indicated this
structure is directly generated by graphical software, for
instance, Pymol, and inserted into the tertiary structure.
Once a secondary structure is so generated and inserted, it
is assumed immutable. For the purpose of continued tertiary
structure folding, the inserted immutable secondary struc-
ture is tagged with its appropriate summed partial charges
and hydrophobicity of each secondary structure region. The
portion of the protein not belonging to any determined alpha
helix or beta sheet, that is, the unstructured portion, can be
built as a linear chain or in an arbitrary physically permissible
conformation. During tertiary structure simulation, deter-
mined secondary structures inner residues were frozen. Dur-
ing tertiary structure folding simulation, secondary structure
regions are treated as one residue.

As illustrated in Figure 4, the relative motion of one part
of a protein relative to the other parts is determined by
allowing the alpha carbon bond pair having the largest net
torque (sum of actual force and the random effective thermal
force multiplied by the appropriate lever arm length) to move
in each time step.

The protein was allowed to drift and diffuse toward a
lower energy in accordance with the procedures described
above. The Markov simulation used here is summarized
in Figure 5. Starting with linear amino acid sequences, the
protein molecule is allowed to drift and diffuse via rotation
about the torque rotation angle of pivot bonds as seen in
Figure 4. The simulation allows the strongest force (sum of
the actual force and the effective thermal force) to operate on

the protein for a time period, 𝑡, using a mobility consistent
with (1). In cases where the global energy involves density-
dependent entropy, directions that increase entropy proceed
with a higher mobility thanmoves in directions that decrease
entropy.

Figure 6 shows a comparison between simulated 3D
structure of Villin (1VII) and the experiment. The kinetic
model in this example produced near state-of-the-art folded
structure with RMSD values for the backbone atoms of test
proteins while using less than a minute of desktop computer
CPU time. In Table 3, various protein structures ranging
from 30 to 157 amino acids were determined using the
kinetic model. Average RMSD value for this series relative to
experiment was found to be 4.9 ± 1.08 Å.

The largest protein reported here was the human protein
tyrosine phosphatome with 320 amino acids. The kinetic
model produced a RMSD value of ∼8 Å. This value is
reasonable relative to other current ab initio methods for a
protein of this size.

It was found that 2∼3% improved RMSD values could
be attained using a molecular dynamics structure relaxation.
The finalMD relaxation step employed no statistical methods
or templates. This relaxation employed nominal AMBER10
default parameters for dielectric constant and other param-
eters. There was no attempt to optimize these parameters.
Therefore, these energy relaxations could be carried out
quickly (running AMBER on a supercomputer).

The energy reduction acting during folding could easily
be determined by tracking the force and distance (average)
that accompany all folds or motions throughout the sim-
ulation. Figure 7 shows a typical energy versus time trace.
The energy was calculated by assuming an arbitrary initial



BioMed Research International 7

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450

Total structure prediction values

“Total”

Number of residue 

Pr
ed

ic
tio

n 
(%

)

(a)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

Alpha structure prediction

“Alpha helix”

Number of residue 

Pr
ed

ic
tio

n 
(%

) 

(b)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

Beta sheet structure prediction

Beta sheet

Number of residue 

Pr
ed

ic
tio

n 
(%

) 

(c)

Figure 3: The accuracy of the drift-diffusion model secondary prediction accuracy (percent of proteins tested) versus the size in number of
residues. (a) shows the accuracy for total protein core structures versus protein size, (b) shows the accuracy of core alpha helix versus protein
size, and (c) shows the accuracy versus protein size. Also shown in each case is the least mean square best fit to the data sets. Data base size
∼100 proteins.

energy and subtracting the work done, 𝐹 ⋅ 𝜃 ⋅ 𝑟0, in each time
step where 𝐹 is the force applied (the sum of hydrophobic,
electrostatic, and thermal forces), 𝜃 is the calculated angle
change, and 𝑟0 is the average lever arm length of the protein.
Initially, the energy swings are large and random but as the
folding proceeds, these energy fluctuations are diminished.
Since the folding is conducted at room temperature, complete
cessation of motion does not occur.

5. Result

A highly accurate secondary structure method has been
described. The presented physical model predicts secondary

structure at least as well as advanced statistical basedmethods
requiring known template structures. The extension of the
model to tertiary structure dynamics with near state-of-
the-art accuracy has also been described. It was found that
thermal and repulsive electrostatic forces are sufficient to
prevent unrealistic protein collapse.

This high-speed physical model provides folding tra-
jectory in real time with sensitivity to the environment.
Thereby, doors to faster identification of function and a
greater understanding of biological pathways are opened.
While some statisticalmethods canmatch both the speed and
accuracy of the kineticmodel, it is important to recognize that
the relating of structure to function can only be guided by an
accurate physical description of the forces that shape proteins.



8 BioMed Research International

Torque forces

Pivot
bond

applied to 
lever arms

𝜃

R

𝜃 ≈
𝜇𝛁𝜙energy 𝜏

r

Figure 4: Illustrated is the angle rotation (𝜃 or 𝑅) about an
alpha carbon backbone bond pair induced by the resolved torque
operating on the bond. In this figure, each circle represents 𝐶𝛼 atom
for each amino acid and big circles illustrate side chains which have
strong charges and/or large hydrophobic forces.

Table 3: RMSD result for tertiary structures.

Proteins No. RES Score for 2D RMSD of 3D
2MHU 30 73.3 3
1VII 35 72.2 4.8
1CBH 36 75.3 4.3
3RNT 54 61.65 4.1
1DUR 55 74.45 3.7
1OVO 56 53.9 5.8
1BW6 56 70 6.1
2NMQ 57 64.18 5.8
2UTG 70 62.85 3.8
1UBQ 76 76.32 5.4
2PCY 99 61.1 4
5CYT 103 68.94 4.7
7RSA 124 73.7 5.1
1PAB 127 74.04 4.2
2CCY 128 81.56 6.3
2SNS 149 54.02 6.7
1AAQ 157 73 6.2
AVG 83.06 69.94 4.94
A tertiary structure prediction result based on the kinetic model. RMSD
values are based on each backbone atom position comparison for tertiary
structure prediction. Also a score of 2D means the matching percentage for
the secondary structure determination.

6. Discussion and Conclusion

The era where protein folding can be tracked as a function
of ambient condition without templates or other a priori
knowledge has begun. The accuracy of the presented all-
physical model rivals the best statistical methods in sec-
ondary structure and secondary core structure prediction.

The fine-tuning of a secondary structure algorithm can be
improved by controlling some environment conditions, for
instance, pH. Tertiary structure predictions do not match the
best statistical and/or the best molecular dynamics models
(when provided with suitable templates). However, the accu-
racy is amongst the best ab initiomethods. Further increased
accuracy (2∼3%) could be obtained using a finishing MD-
based energy relaxation step.

For example, the Villin headpiece, a well-studied mod-
erately small protein, has been studied as a function of
temperature. Hansmann and coworkers [24–26] achieved
very small RSMD values in the range of ∼3.0 Å (∼1.8 Å for the
core region and 3.7 Å for the entire protein) when compared
with the NMR determined structure for this protein. In
comparison, the all-physical model presented here achieved
RMSD values only in the 3.7 Å range.

It is also important to recognize that no model can
exceed the accuracy of the measurements used to determine
the experimental structure. The Villin headpiece protein
experiment has a ∼1.8 Å inherent uncertainty. It is often
challenging to obtain all of the ambient conditions (including
temperature, pH, and process steps that may alter residue
charge) used for a given experimental structure determi-
nation. On the other hand, the model can be used to
track structure change due to small changes in ambient
(e.g., pH or temperature). Some MD-based modelings avoid
this problem by using a seed or template protein structure
obtained under similar experimental conditions. However,
such proceduremay restrict themodeling applications in real
world situations. The kinetic model is expected to continue
to improve and become a useful tool for the investigation
of protein structure especially where there is little a priori
structure knowledge, a need to elucidate the folding pathway,
and/or required high speed.

Owing to the speed of the physical model, the protein
folding dynamic can be traced. Here, the protein energy is
seen to randomly vary initially folioed by secondary for-
mation and finally convergence to a more definite structure
with decreasing energy variations as folding precedes. In
agreement with experiment, the simulations tend toward
definite structure but do not reach complete stasis.

Alternative high-speed computational methods such as
EVFold [27] enablewidespread access to fast prediction based
on statistical analysis of homologous sequences. Even though
the two approaches are based on very different paradigms,
together and with other contributions there is an emerging
and improving ability to predict protein structures without
the need to become experts of a particular approach.

To illustrate guidance provided by the physical model,
consider the mechanisms by which the chaperone-subunit
complex of a diverse group of Gram-negative bacteria [28]
gains passage through the Papc usher channel at the outer
membrane. Here, an approaching chaperone complex trig-
gers a response by which outer membrane usher passage
unblocks. Applying the discussed concepts to the block-
ing structure, it is recognized that the highly hydrophobic
blocking structure (since it is comprised of alpha helices)
always moves towards lower electric field (second term on
the right of (8)). The usher channel interior (beta barrel) is
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Figure 5: Illustrated is a simplified flow chart of the Markov simulation used in physical-kinetic simulation for tertiary structure.

Figure 6: Comparison of a tertiary structure of Villin (1VII) as
determined by experiment (NMR structure: blue) with a model
generated structure (simulation result: black).

highly charged giving rise to the possibility that the blocking
structure is moved to the side of the channel where the
electrical field is smallest and whenever an approaching
charged structure in combination with the channel charge
produces an appropriate small combined electric field. Such
insights may lead to new strategies for drug delivery.
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