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Abstract

Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are known to trigger an innate immune response against microbial
infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs), little is
known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the
functions of human umbilical cord blood-derived MSCs (hUCB-MSCs). The genes of TLR2, TLR4, NOD1, and NOD2 were
expressed in hUCB-MSCs. Stimulation with each agonist (Pam3CSK4 for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for
NOD2) led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay
revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists
affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam3CSK4 and Tri-DAP strongly enhanced
osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126
(MEK1/2 inhibitor) restored osteogenic differentiation enhanced by Pam3CSK4. Tri-DAP and MDP inhibited adipogenic
differentiation of hUCB-MSCs, but Pam3CSK4 and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists
could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as
well as TLRs are involved in regulating the differentiation of MSCs.
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Introduction

Toll-like receptors (TLRs) are type I transmembrane proteins

and composed of extracellular leucine rich repeats (LRRs) domain

that are responsible for recognition of pathogen-associated

molecular patterns (PAMPs) and intracellular Toll/IL-1R (TIR)

domain, which is essential for downstream signaling. TLRs

recognize microbial molecules including lipoprotein (TLR2),

LPS (TLR4), flagellin (TLR5), dsRNA (TLR3), ssRNA (TLR7/

8), and CpG DNA motif (TLR9), and subsequently activate NF-

kB and MAPK to trigger inflammatory process [1]. In addition to

microbial molecules, a variety of endogenous agonists such as heat

shock proteins, high mobility group box 1 (HMGB1), hyaluronan

fragments, heparin sulphate, and fibronectin are recognized by

TLR2 or TLR4 [2].

As another PRRs family, Nod-like receptors (NLRs) are

intracellular, cytoplasmic sensor for microbial components and

danger signals [3,4]. There are 23 NLR family members in humans

and at least 34 genes in mice [4]. NLRs are expressed in

nonimmune cells including epithelial cells and mesothelial cells as

well as immune cells. As first identified NLRs, NOD1 and NOD2

consist of N-terminal caspase recruitment domain (CARD),

intermediate nucleotide-binding oligomerization domain (NOD),

and C-terminal leucine-rich repeats (LRRs) domain. NOD1 and

NOD2 recognize peptidoglycan (PGN) derivatives, meso-diamino-

pimelic acid (meso-DAP) and muramyl dipeptide (MDP), respec-

tively. After stimulation by their specific bacterial molecules, NOD1

and NOD2 associate with an adaptor molecule, RICK/Rip2/

CARDIAK, through CARD-CARD interaction, which leads to

activation of NF-kB and MAPK and induction of numerous genes

involved in inflammatory process [5,6].

Mesenchymal stem cells (MSCs) are multipotent adult progen-

itor cells that can differentiate to various cell types including

osteoblasts, adipocytes, chondrocytes, cardiomyocytes, fibroblasts,

and endothelial cells [7,8,9]. MSCs are thought to be excellent

candidate tools for the field of regenerative medicine, because of

their differentiation potential. In addition, MSCs were found to

suppress proliferation, differentiation, and activation of immune

cells including T cells, B cells, NK cells, and dendritic cells [10,11].

The isolation of MSCs have been described in several species

and from different tissues, including bone marrow (BM),

peripheral blood, adult fat, umbilical cord blood (UCB) and

skeletal muscle. Among MSCs, the most commonly used for

clinical purposes are isolated from BM or adipose tissue. Stem cells
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from UCB have many advantages because of the immature nature

of newborn cells compared to adult cells. In our previous study, we

showed that hUCB-MSCs express OCT4A and REX1, a well-

known transcription factors that are characteristic markers of

pluripotent stem cells, and REX1 expression in hUCB-MSCs was

nearly five-fold greater than in hBM-MSCs [12,13]. Moreover,

hUCB-MSCs provide no ethical barriers for basic studies and

clinical applications [14,15].

Recent studies showed that TLRs regulate MSCs functions such

as proliferation, differentiation, migration, and immunomodula-

tion [16,17,18]. Although van den Berk et al [19], recently

reported the involvement of TLRs in the regulation of the

functions of cord blood MSCs, most studies have focused on BM-

or adipose tissue-derived MSCs (ASC). In addition, little is known

about the role of NLRs on MSCs functions. This study was

performed to clarify the role of NOD1 and NOD2 on the

proliferation and differentiation of hUCB-MSCs. We show here

that NOD1 and NOD2 as well as TLRs are involved in regulating

the differentiation of hUCB-MSC.

Materials and Methods

Isolation and culture of hUCB–MSCs
The UCB samples were obtained from the umbilical vein

immediately after delivery, with the written informed consent of

the mother approved by the Boramae Hospital Institutional

Review Board (IRB) and the Seoul National University IRB(IRB

No. 0603/001-002-07C1). The UCB samples were mixed with the

Hetasep solution (StemCell Technologies, Vancouver, Canada) at

a ratio of 5:1, and then incubated at room temperature to deplete

erythrocyte counts. The supernatant was carefully collected and

mononuclear cells were obtained using Ficoll density-gradient

centrifugation at 2,500 rpm for 20 min. The cells were washed

twice in PBS. Cells were seeded at a density of 26105 to 26106

cells/cm2 on plates in growth media consisted of D-media

(Formula No. 78-5470EF, Gibco BRL) containing EGM-2

SingleQuot and 10% fetal bovine serum (Gibco BRL). After 3

days, non-adherent cells were removed. The adherent cells formed

colonies and grew rapidly, exhibiting spindle-shaped morphology.

Reagents
Ultrapure LPS (E. coli O111:B4), Pam3CSK4, and Tri-DAP

were purchased from Invivogen (San Diego, CA, USA). MDP [Ac-

(6-O-stearoyl)-muramyl-Ala-D-Glu-NH2] was from Bachem (Bu-

bendorf, Switzerland). MEK1/2 Inhibitor U0126 was from

Promega (Madison, WI, USA).

Flow cytometric analysis
hUCB-MSCs(16106/ml) were stained with FITC- or PE-

conjugated antibodies specific for human CD14, CD29, CD31,

CD33, CD34, CD44, CD45, CD73, CD90, CD105, CD133, and

HLA-DR. Non-specific isotype-matched antibodies served as

controls. All the antibodies were purchased from BD Bioscience,

and flow cytometry analysis was performed on a FACSCaliber

using the Cell Quest software (Becton Dickinson, Franklin Lakes,

NJ, USA).

RNA extraction and RT-PCR
Total RNA was extracted from hUCB-MSCs by using Easy-

spin total RNA extraction kit (Intron Biotechnology, Seongnam,

Korea) according to the manufacture’s protocol. cDNA was

prepared from 1 mg of total RNA by using Superscript III reverse

transcriptase (Invitrogen, Carlsbad, CA, USA) and oligo (dT)

primers (Invitrogen). The primer sets used were as follows;

TLR2, F: 59- GATGCCTACTGGGTGGAGAA-39, R: 59-

CGCAGCTCTCAGATTTACCC-39

TLR4, F: 59- ACAGAAGCTGGTGGCTGTG-39, R: 59-

TCTTTAAATGCACCTGGTTGG-39

NOD1, F: 59- CCACTTCACAGCTGGAGACA-39, R: 59-

TGAGTGGAAGCAGCATTTTG-39

NOD2, F: 59- GAATGTTGGGCACCTCAAGT-39, R: 59-

CAAGGAGCTTAGCCATGGAG-39

Rip2, F: 59- CCATTGAGATTTCGCATCCT-39, R: 59-

ATGCGCCACTTTGATAAACC-39

RPL13A, F: 59- CATCGTGGCTAAACAGGTAC-39, R: 59-

GCACGACCTTGAGGGCAGCC-39

The PCR condition consisted of an initial denaturation at 95uC
for 3 min; 30 cycles of 94uC for 30 sec, 60uC for 30 sec and 72uC
for 1 min; a final extension at 72uC for 10 min. The PCR

products were separated on a 1.5% agarose gel, visualized, and

photographed using a gel documentation system.

Cytokine production
Briefly, hUCB-MSCs (26104/well) were seeded in MSC

medium supplemented with 2% FBS in 96-well plate. Twenty-

four hours later, the cells were treated with various doses of

Pam3CSK4, LPS, Tri-DAP, and MDP and incubated for

additional 24 h. Culture supernatant was collected, centrifuged,

filtered through 0.2 mm filter and IL-8 concentration was

measured using commercial ELISA kit (R&D Systems, Minnea-

polis, MN, USA) according to manufacturer’s protocol.

hUCB-MSC proliferation
The cells were seeded at 2 6103/well in 96-well plates in MSC

medium supplemented with 2% FBS. Twenty-four hours later, the

cells were treated with Pam3CSK4, LPS, Tri-DAP, and MDP at

10 mg/ml concentration and incubated for 4 days. Proliferation

was determined by Cell Counting Kit-8 (Dojindo Molecular

Technologies, Rockville, MD, USA) according to manufacturer’s

instruction.

hUCB-MSC differentiation
Osteogenic differentiation. The cells were incubated in

conditioned media containing DMEM low glucose medium, 10%

FBS, 0.1 mM dexamethasone, 10 mM beta-glycerophosphate, and

50 mM ascorbate at the absence or presence of TLR and NLR

agonists. The cells were grown for 2 weeks, with medium

replacement twice a week. Osteogenesis was detected by Alizarin

Red staining. Photographs were taken and optical density was

measured at 570 nm.

Adipogenic differentiation. The cells were incubated in

conditioned media containing DMEM low glucose medium, 10%

FBS, 1 M dexamethasone, 10 mg/ml insulin, 0.5 mM 3-isobutyl-

1-methylxanthine, and 0.2 mM indomethacin at the absence or

presence TLR and NLR agonists. The cells were grown for 3

weeks, with media replacement twice a week. Adiopogenesis was

detected by Oil red O staining. Photographs were taken and

optical density was measured at 500 nm.

Chondrogenic differentiation. 26105 cells were seeded in

15-mL polypropylene tube and centrifuged to a pellets. The pellets

were cultured in 1 ml of chondrogenic medium that contained

10% FBS and 500 ng/ml bone morphogenetic protein-2(BMP-2;

R&D Systems) for 3 weeks. The chondrogenic differentiation

medium was replaced twice a week. The pellets were embedded in

paraffin and cut into 3 mm sections. For histological evaluation,

the sections were stained with toluidine blue following general

procedures.

Role of NLR and TLR in hUCB-MSCs function
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Western blot
The cells were stimulated with agonists, harvested, and lysed in

buffer containing 1% Nonidet-P40 supplemented with complete

protease inhibitor ‘cocktail’ (Roche) and 2 mM dithiothreitol.

Lysates were resolved by 12% SDS-PAGE, transferred to

nitrocellulose membranes, and immunoblotted with primary

antibodies such as regular- and phopho-ERK (Cell signaling,

Beverly, MA, USA) and GAPDH (Santa Cruz biotechnology,

Santa Cruz, CA, USA). After immunoblotting with secondary

antibodies, proteins were detected with enhanced chemilumines-

cence (ECL) reagent (Intron Biotechnology).

Statistical analysis
The differences in mean values among different groups were

tested, and the values were expressed as mean 6 SD. All of the

statistical calculations were calculated by one-way ANOVA

followed by Bonferroni post-hoc test for multigroup comparisons

(StatView 5.0; SAS Institute, Cary, NC). Statistical significance is

indicated in the figure legends.

Results

TLR2, TLR4, NOD1, and NOD2 were functionally
expressed in hUCB-MSCs

To verify the stem cell phenotypic markers of hUCB-MSCs using

flow cytometry, we observed that hUCB-MSCs were negative for

CD14, CD31, CD33, CD34, CD45, CD133 and HLA-DR

expression but positive for CD29, CD44, CD73, CD90 and

CD105 (data not shown). The gene expression of TLR2, TLR4,

NOD1, and NOD2 in hUCB-MSCs was examined by RT-PCR. A

human monocytic leukemia cell line, THP-1 cells were used as

positive control. All receptors tested were expressed in both THP-1

cells and hUCB-MSCs (Fig. 1A). TLR4 was expressed more strongly

in hUCB-MSCs than in THP-1 cells, whereas the gene expression of

TLR2, NOD1, and NOD2 was weaker in UCB-MSC (Fig. 1A).

Rip2, the adaptor protein of NOD1 and NOD2, was also apparently

expressed in hUCB-MSCs (Fig. 1A). To evaluate the functionality of

the receptors, we examined IL-8 production by hUCB-MSCs in

response to their specific agonists. Stimulation by Pam3CSK4 (TLR2

agonist), LPS (TLR4), Tri-DAP (NOD1), and MDP (NOD2) led to

increased production of IL-8 in hUCB-MSCs in a dose-dependent

manner (Fig. 1B and C). These findings indicate that NOD1 and

NOD2, as well as TLR2 and TLR4, are expressed in hUCB-MSCs

and can respond to their specific agonists.

Activation of TLRs and NLRs did not influence the
proliferation of hUCB-MSCs

TLRs have been found to promote the proliferation of several

types of MSC [17,20,21]. To examine whether TLR and NLR

activation influence the proliferation of hUCB-MSC, the cells

were incubated at the absence or presence of each agonist

(Pam3CSK4, LPS, Tri-DAP, and MDP) for 4 days and cell

proliferation was determined by CCK-8 analysis. Results showed

that none of agonists influenced the proliferation of hUCB-MSC

(Fig. 2A and B).

Activation of TLRs and NLRs promoted osteogenic
differentiation of hUCB-MSCs

It has been shown that TLRs modulates the differentiation of

MSCs [16,17]. To determine whether TLRs and NLRs are

involved in osteogenic differentiation of hUCB-MSCs, the cells

were treated with Pam3CSK4, LPS, Tri-DAP, and MDP and

cultured in standard osteogenic medium. During osteogenic

differentiation of two different hUCB-MSCs (#618 and #1114),

all agonists tested significantly induced higher intensity of the

Alizarin red S staining (Fig. 3A and B). It has shown that

extracellular signal-regulated protein kinases (ERK) activation

plays an important role in the osteogenic differentiation of MSCs

[22]. Therefore, we explored whether TLR and NLR agonists

lead to ERK activation in hUCB-MSCs. As expected, stimulation

by TLR and NLR agonists rapidly induced phosphorylation of

ERK in hUCB-MSCs (Fig. 3C). To determine whether inhibition

of ERK is associated with osteogenic differentiation of hUCB-

MSCs, the Pam3CSK4-stimulated cells were treated with U0126

as an MEK1/2 inhibitor. In Alizarin Red S staining, treatment of

U0126 restored osteogenic differentiation of hUCB-MSCs en-

hanced by Pam3CSK4 (Fig. 3D and E). These results indicated

that both TLR and NLR signaling may promote osteogenic

differentiation of hUCB-MSCs through ERK-dependent pathway.

Tri-DAP and MDP, but not Pam3CSK4 and LPS, inhibited
adipogenic differentiation of hUCB-MSCs

To determine the effects of TLR and NLR agonists on

adipogenic differentiation of hUCB-MSCs, the cells were incubated

at the absence or presence of each agonist for 3 weeks. As shown in

Fig. 4A–C, stimulation with Tri-DAP and MDP significantly

inhibited adipogenic differentiation at 3 weeks after treatment,

whereas Pam3CSK4 and LPS did not influence on adipogenic

differentiation of hUCB-MSCs (Fig. 4A–C). This phenomenon was

Figure 1. TLRs and NLRs were functionally expressed in hUCB-MSCs. mRNA expressions of TLR2, TLR4, NOD1, NOD2, and Rip2 were
determined by RT-PCR in hUCB-MSCs (A). The cells were treated with Pam3CSK4, LPS (B), Tri-DAP, and MDP (C) in a dose-dependent manner for 24 h
and IL-8 production was determined using a commercial ELISA kit (B and C).
doi:10.1371/journal.pone.0015369.g001

Role of NLR and TLR in hUCB-MSCs function
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Figure 2. Activation of TLRs and NLRs did not influence the proliferation of hUCB-MSCs. hUCB-MSCs were treated with various doses of
Pam3CSK4, LPS (A), Tri-DAP, and MDP (B) for 4 days and cell proliferation was determined by CCK-8 kit.
doi:10.1371/journal.pone.0015369.g002

Figure 3. Stimulation with TLR and NLR agonists promoted osteogenic differentiation of hUCB-MSCs through phosphorylation or
ERK1/2. hUCB-MSCs were grown in conditioned media at the absence or presence of Pam3CSK4, LPS, Tri-DAP, and MDP (10 mg/ml) for 2 weeks, and
culture media was replaced twice per week. Osteogenesis was determined by Alizarin Red S at 2 weeks after treatment (A) and optical density was
determined using ELISA at 570 nm (B). hUCB-MSCs were treated with Pam3CSK4, LPS, Tri-DAP, and MDP for 15, 30, and 60 min and ERK
phosphorylation was determined by Western Blot analysis with an anti-phospho-ERK antibody (C). hUCB-MSCs were co-treated with Pam3CSK4 and
U0126 for 2 weeks and determined by Alizarin Red staining (D) and quantified using ELISA at 570 nm (E). * P,0.05, ** P,0.01, *** P,0.001.
doi:10.1371/journal.pone.0015369.g003

Role of NLR and TLR in hUCB-MSCs function
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confirmed in another line of hUCB-MSCs (#1114) (Fig. 4D and E).

These findings suggest that NOD1 and NOD2 signaling may be

involved in adipogenic differentiation of hUCB-MSCs.

Enhanced chondrogenic differentiation of hUCB-MSCs by
TLR and NLR agonists

To determine whether TLR and NLRs are involved in

chondrogenic differentiation of hUCB-MSCs, hUCB-MSCs were

maintained in BMP-2 supplemented chondrogenic medium at the

absence or presence of each agonists. All TLR and NLR agonists

used increased the diameter of pellets (Fig. 5A). All the pellets were

positive to toluidine blue staining (Fig. 5B). These data suggest that

both TLR and NLR signaling may be involved in chondrogenesis

of hUCB-MSCs.

Discussion

NLRs have been found to be involved in cytosolic recognition of

microbial molecules such as PGN derivatives (by NOD1 and

NOD2) and flagellin (by NLRC4/IPAF) [3]. Similarly with TLR

signaling, NOD1 and NOD2 trigger inflammatory response

through activation of NF-kB and MAPK. Moreover, NOD1

and NOD2 agonists, in combination with TLR agonists,

synergistically induce cytokine production and activation of NF-

kB and MAPK in immune cells [23,24,25]. These findings suggest

Figure 4. Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs. hUCB-MSCs were grown in conditioned media at the
absence or presence of Pam3CSK4, LPS, Tri-DAP, and MDP (10 mg/ml) for 3 weeks, and culture media was replaced twice per week. Adipogenesis was
determined by Oil Red O staining (A) and level of intercellular lipid was determined using ELISA at 500 nm at 3 weeks after treatment (B and C). hUCB-
MSCs (#1114) from another umbilical cord blood were grown in conditioned media at the absence or presence of each ligands for 3 weeks, and
adipogenesis was determined (D) and quantified using ELISA at 500 nm (E). ** P,0.01, *** P,0.001.
doi:10.1371/journal.pone.0015369.g004

Figure 5. Activation of TLRs and NLRs promoted chondrogenic differentiation of hUCB-MSCs. hUCB-MSCs were prepared as pellets and
they were cultured in chondrogenic medium supplemented with 500 ng/ml BMP-2 for 3 weeks. Then, the volume of pellets was measured (A) and
stained with toluidine blue (B). * P,0.05.
doi:10.1371/journal.pone.0015369.g005

Role of NLR and TLR in hUCB-MSCs function
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that NLR signaling may be closely related in TLR-mediated

events. As TLRs modulate the functions of a variety of MSCs, in

this study, we explored the role of NLRs, particularly NOD1 and

NOD2, on hUCB-MSCs function. In addition, because most

studies about the role of TLRs have been performed in BM- or

adipose tissue-derived MSCs, we also confirmed the effect of

TLR2 and TLR4 on UCB-MSC functions.

A previous study showed that cord blood MSCs expressed low

levels of TLR1, 3, 5, 9 and high level of TLR4 [19]. However, in

our study, both TLR2 and TLR4 were expressed in hUCB-MSCs,

although TLR4 expression was much stronger than TLR2. This

discrepancy might be due to difference of PCR condition used or

MSCs origin. Many studies also showed functional expression of

TLR2 in BM- or adipose tissue-derived MSCs (ASC) [16,17,18,26].

Moreover, in this study, Pam3CSK4 and LPS stimulation led to IL-8

production in UCB-MSC, suggesting that hUCB-MSCs function-

ally express TLR2 and TLR4.

It has been known that NOD1 is ubiquitously expressed in a

variety of cell types, whereas NOD2 is mainly expressed in immune

cells [27]. In this study, the genes of NOD1 and NOD2 were

apparently expressed in hUCB-MSCs, although expression levels

were relatively weaker than those of TLR2 and TLR4. In addition,

mRNA of Rip2/RICK, an adaptor molecule of NOD1 and NOD2,

was also expressed. Stimulation with Tri-DAP and MDP, NOD1

and NOD2 agonists, led to IL-8 production, indicating the

functional expression of NOD1 and NOD2 in hUCB-MSCs.

There are discrepancies about the effect of TLRs on the MSC

proliferation. A recent study showed that TLR agonists including

PGN, LPS, poly I:C, and flagellin did not affect the proliferation

of human ASC (hASC) [16]. Only CpG-ODN, TLR9 agonists,

reduced slightly hASC proliferation [16]. This was confirmed by

a study of Lombardo et al. [26], showing that TLR3 and TLR4

agonists had no effect on the proliferation of hASCs. In contrast,

downregulation of MyD88, a common adaptor molecule for

TLRs except TLR3, using siRNA inhibited the proliferation of

hASC [21]. In addition, TLR agonists such as Pam3Cys and LPS

enhanced the proliferation of mouse BM-MSCs [17,20],

suggesting involvement of TLRs on MSC proliferation. Collec-

tively, these results indicate that the effect of TLRs on MSC

proliferation may be a cell-type specific event. In our study, the

agonists of NOD1 and NOD2 as well as TLR2 and TLR4 did not

influence hUCB-MSCs proliferation. It is needed to clarify the

effect of NOD1 and NOD2 on the proliferation of different types

of MSCs.

It has been well known that TLRs are associated with MSC

differentiation. Particularly, TLRs seem to be involved in

osteogenic rather than adipogenic differentiation of MSC. TLR3

and TLR4 agonists significantly increased osteogenic differentia-

tion of hASCs, but did not affect adipogenic differentiation

[21,26]. Other TLR agonists (poly I:C, flagellin, CpG-ODN) also

did not influence adipogenic differentiation of hASC [16].

Interestingly, PGN inhibited adipogenic differentiation of hASCs

significantly [16,21]. In those studies, PGN was used as TLR2

agonist. However, a previous study by Travassos et al. [28]

revealed that highly purified PGN was not detected by TLR2.

They suggested that cell wall contaminants such as lipoteichoic

acid (LTA) or lipoproteins present in PGN preparations are

responsible for TLR2-dependent cell activation [28]. In our study,

Tri-DAP and MDP significantly inhibited adipogenic differentia-

tion of hUCB-MSCs at 2 and 4 weeks after stimulation, whereas

Pam3CSK4 and LPS did not, suggesting involvement of NOD1

and NOD2 on adipogenic differentiation of hUCB-MSCs. As well

known, NOD1 and NOD2 recognize PGN derivatives, meso-DAP

and MDP, respectively. Accordingly, it is likely that NOD1 and

NOD2 are involved in PGN-mediated inhibition of adipogenic

differentiation of hASCs. It should be clarified the role of TLR2 on

adipogenic differentiation of MSC and which receptor originally

mediates inhibitory effect of PGN. In addition, various TLR

agonists enhance osteogenic differentiation of MSCs [16,21,26].

Our results showed that all TLR and NLR agonists used increased

osteogenic differentiation of hUCB-MSCs, suggesting that NLRs

as well as TLRs may be involved in osteogenic differentiation of

MSCs. ERK phosphorylation is correlated with the osteogenic

differentiation of MSCs [22,29]. Because TLR and NLR agonists

enhanced osteogenic differentiation of hUCB-MSCs, we examined

ERK phosphorylation by the agonists. LPS and MDP induced

ERK phosphorylation within 1 h in mouse macrophages [24,30].

In this study, Pam3CSK4 and MDP induced ERK phosphoryla-

tion in hUCB-MSCs from 15 min after treatment and the level

reached to peak at 30 min post-treatment. LPS and Tri-DAP

induced ERK phosphorylation from 30 min post-treatment. ERK

was strongly phosphorylated in the hUCB-MSCs treated with

Pam3CSK4, whereas LPS induced only mild activation of ERK,

which correlated with intensity of Alizarin Red S staining.

Moreover, U0126, MEK1/2 inhibitor, inhibited osteogenic

differentiation enhanced by Pam3CSK4. Taken together, it is

likely that ERK signaling is critical for osteogenic differentiation of

hUCB-MSCs induced by TLR and NLR stimulation.

In our knowledge, there is no report about the effect of TLRs on

chondrogenic differentiation of MSCs, except the study by

Pevsner-Fischer et al [17]. They revealed that TLR2 stimulation

with Pam3Cys inhibited induced differentiation of MSCs into

osteogenic, adipogenic, or chondrogenic lineages. However, in this

study, all used agonists including Pam3CSK4 enhanced the

chondrogenic differentiation potential of hUCB-MSCs. The

reason for this discrepancy remains to be elucidated.

In conclusion, the present study revealed novel information that

NOD1 and NOD2 as well as TLRs are involved in regulating the

differentiation of hUCB-MSCs. These findings are expected to

provide better understanding of the biological function of MSCs.

Further study using in vivo model is need to clarify physiological

role of NOD1 and NOD2 on MSC functions.
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