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Co-optimization of therapeutic antibody affinity
and specificity using machine learning models that
generalize to novel mutational space
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Therapeutic antibody development requires selection and engineering of molecules with high
affinity and other drug-like biophysical properties. Co-optimization of multiple antibody
properties remains a difficult and time-consuming process that impedes drug development.
Here we evaluate the use of machine learning to simplify antibody co-optimization for a
clinical-stage antibody (emibetuzumab) that displays high levels of both on-target (antigen)
and off-target (non-specific) binding. We mutate sites in the antibody complementarity-
determining regions, sort the antibody libraries for high and low levels of affinity and non-
specific binding, and deep sequence the enriched libraries. Interestingly, machine learning
models trained on datasets with binary labels enable predictions of continuous metrics that
are strongly correlated with antibody affinity and non-specific binding. These models illus-
trate strong tradeoffs between these two properties, as increases in affinity along the co-
optimal (Pareto) frontier require progressive reductions in specificity. Notably, models
trained with deep learning features enable prediction of novel antibody mutations that co-
optimize affinity and specificity beyond what is possible for the original antibody library.
These findings demonstrate the power of machine learning models to greatly expand the
exploration of novel antibody sequence space and accelerate the development of highly
potent, drug-like antibodies.
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ntibody therapeutics are being used to treat human dis-

orders ranging from cancer and autoimmune diseases to

allergies and neurodegenerative diseases!~3. The success
of antibody therapeutics is due in large part to their highly
attractive molecular properties, including their high affinities,
long half-lives, potent effector functions, and excellent biophysi-
cal properties (e.g., high stability and solubility)*-¢. However, it is
well known that antibody candidates selected from immunization
or in vitro library sorting typically have a wide range of bio-
physical properties, such as diverse solubilities and viscosities in
common formulation conditions’~1%. In many cases, antibody
candidates with the highest bioactivities exhibit one or more
undesirable biophysical properties that impede production, for-
mulation and/or delivery. This is often discovered late in the
developmental process, after substantial investment of limited
resources, and can compromise the therapeutic potential of
otherwise promising candidates®21>. Therefore, there is a need
for antibody engineering methods to improve their biophysical
properties while maintaining high affinity and bioactivity, espe-
cially during early stages of development. Unfortunately, it is
commonly observed that improving a given sub-optimal antibody
property, such as specificity or solubility, results in deficits in
other properties, such as affinity!6-22. These strong tradeoffs are
often due to the central role of the complementarity-determining
regions (CDRs) of antibodies in strongly impacting both their
affinities and biophysical properties!823-25,

Therefore, there is significant need for simple and robust
methods for predicting CDR mutations that co-optimize antibody
affinity and various biophysical properties with minimal experi-
mentation. Encouragingly, advances in high-throughput evalua-
tion of antibody properties using a combination of display
technologies (e.g., phage and yeast-surface display) and deep
sequencing have enabled the generation of large datasets that link
multisite antibody mutations, such as mutations in multiple
CDRs, with different levels of a given property (e.g., high and low
levels of affinity, stability or specificity)26-32. However, these
datasets have been substantially underused due to shortcomings
in extracting meaningful features from antibody primary
sequences and incorporating them into models that accurately
predict different levels of a given antibody property. Conventional
methods of analyzing such deep sequencing datasets typically use
frequencies or enrichment ratios to identify promising antibody
mutants, but these approaches fail to make use of the large
amount of available antibody sequence information and, in some
cases, only result in modest ability to identify antibodies with
large improvements in properties such as affinity?>33. These
approaches are typically limited to the analysis of antibody var-
iants observed in the sequenced libraries, which represent an
extremely small fraction of maximal sequence space, even for
antibody mutations only in the CDRs. An exception is a reported
method that predicts enrichment ratios31.

One logical and simple approach for using the vast amount of
sequence information obtained from antibody library deep
sequencing is to encode the amino acid sequences as sequence-
identity vectors (e.g., one-hot encoded antibody sequences) to
build predictive models. Indeed, models developed using this
approach are often highly accurate for predicting the classification
of antibody properties, such as low or high affinity34-36, However,
classification imposes binary labels on continuous properties, and
intra-class variability such as high versus very high affinity is vital
to antibody optimization. Therefore, it would be significant if
methods could be developed for predicting continuous metrics
that are strongly correlated with antibody properties based only
on binary measurements of an experimentally tractable number
of antibody sequences. Moreover, it would also be significant if
such methods could generalize to novel mutational space,

including at novel CDR sites not mutated in the original libraries,
to greatly expand the fraction of the maximal sequence space
explored during antibody optimization.

In this work, we have sought to address both outstanding chal-
lenges in order to co-optimize the affinity and specificity (non-
specific binding) of a clinical-stage antibody (emibetuzumab37).
This antibody is specific for c-Met [also known as tyrosine-protein
kinase Met or hepatocyte growth factor receptor (HGFR)] and
reached phase II clinical trials for the treatment of non-small cell
lung cancer. Previous work has revealed that the high levels of non-
specific binding for emibetuzumab are primarily due to the heavy
chain CDRs38, Given that heavy chain CDRs also play a central role
in mediating antibody affinity, we reasoned that CDR mutations in
the heavy chain of emibetuzumab would exhibit strong tradeoffs
between emibetuzumab on-target (affinity) and off-target (non-
specific) binding. Therefore, we expected that co-optimized anti-
body variants with both high affinity and low non-specific binding
would be extremely rare and require advanced methods to identify
them. Moreover, we expected that it would be important to develop
predictive models that can learn from large but sparsely sampled
antibody CDR libraries and predict antibody properties for novel
CDR mutants not sampled in the original libraries to identify rare
co-optimized variants. Herein, we report an integrated experimental
and computational approach that combines deep sequencing,
machine learning, and high-throughput experimental methods to
identify co-optimized therapeutic antibody variants, including var-
iants with superior combinations of affinity and non-specific
binding relative to a parental, clinical-stage antibody (Fig. 1).

Results

Conventional analysis of deep sequencing data is poorly pre-
dictive of co-optimal emibetuzumab variants. Toward our goal
of identifying co-optimized emibetuzumab variants with high
affinity and specificity (low non-specific binding), we designed a
large antibody sub-library (~107 variants) by mutating sites in the
heavy chain CDRs that were predicted previously to mediate non-
specific binding (Supplementary Fig. 1)38. We sampled the wild-
type residue and five mutations at eight sites distributed across
heavy chain CDRs 1 (one site), 2 (four sites) and 3 (three sites)
that are predicted to reduce non-specific binding. Next, we dis-
played the library on the surface of yeast as single-chain Fab
fragments and sorted the library via magnetic-activated cell
sorting (MACS, rounds 1-2) against the antigen (HGFR) to
remove fragmented or non-displaying antibodies. The MACS-
sorted libraries were then sorted by fluorescence-activated cell
sorting (FACS, round 3) for high levels of antigen binding and
high and low levels of non-specific binding to two polyspecificity
reagents (ovalbumin3? and soluble membrane proteins isolated
from CHO cells!>#04l; Supplementary Fig. 2). Finally, we deep
sequenced the input and FACS-sorted libraries and selected 4000
of the most frequently observed antibody mutants that were
observed in both the affinity and specificity selections for further
analysis (see Methods for more details).

To evaluate our ability to predict antibody mutants with high
affinity and low levels of non-specific binding, we next Sanger
sequenced 125 mutants from the FACS-sorted libraries and
evaluated their relative levels of antigen and non-specific binding
on the surface of yeast. Although it is logical to assume that
antibody mutants which are most enriched (relative to the input)
or most frequently observed will display superior properties, we
found that this was generally not the case, in line with previous
work294243 although some exceptions have been observed3!:44,
We observed a lack of statistically significant positive correlations
between antigen binding and frequency (Spearman’s p of 0.23
and p value of 0.08) or enrichment ratio (p of —0.01 and p value
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Fig. 1 Overview of antibody library sorting, deep sequencing, and machine learning methods used to co-optimize the affinity and specificity of

a therapeutic antibody. A clinical-stage antibody (emibetuzumab) was mutated at eight positions in three heavy chain CDRs, and the antibody libraries
were sorted using yeast surface display and magnetic- and fluorescence-activated cell sorting for high affinity and high and low levels of non-specific
binding. The sorted libraries were deep sequenced, and the resulting antibody sequences were used to train models for predicting metrics correlated with
antibody affinity and specificity (non-specific binding) using different types of molecular features. These features included antibody sequences encoded as
binary vectors, physicochemical features, and deep learning features. The resulting models were used not only to predict the classification of antibody
affinity and specificity (e.g., high or low affinity), but also continuous metrics correlated with each property to predict intraclass variability (e.g., high vs.
very high affinity). The model predictions were also used to identify antibody mutants in the library at the Pareto frontier that maximize antibody affinity to
different extents while minimizing tradeoffs due to reduced specificity (i.e., increased non-specific binding). Some of the models, which generalized to novel
mutational space, were used to identify antibodies with even greater improvements in affinity and specificity than was possible in the experimentally sorted

libraries.

of 0.96) for positive antigen-binding selections. Moreover, we also
observed a lack of statistically significant negative correlations
between non-specific binding and frequency (p of —0.16 and p
value of 0.14) for negative non-specific binding selections
(Supplementary Fig. 3). While we did observe a significant
negative correlation between non-specific binding and enrich-
ment ratio (p of —0.47 and p value of 6 x 1079), the lack of a
corresponding significant correlation for affinity prevents the use
of enrichment ratios for reliably identifying antibody variants that
are co-optimal for both high affinity and specificity.

Prediction of Pareto optimal antibody variants. We next eval-
uated the information contained in our selected dataset of
4000 sequences by analyzing the enrichment of library mutations

in the positive sorts relative to the negative sorts (Fig. 2). We
noticed strong enrichment of the wild-type residues for both the
high affinity and high non-specific binding selections, particularly
for Y33 in HCDRI and R50 and R55 in HCDR2. Surprisingly,
wild-type residues W97 and Y102 in HCDR3 were not enriched
in the affinity selections, suggesting opportunities for further
antibody affinity optimization.

To preserve this information for model development, we chose
to encode the antibody Vy; sequences as one-hot encoded binary
vectors to capture the presence or absence of mutations at each
site in our library. We hypothesized that classification algorithms
with architectures that learn weights for these individual features
would enable not only accurate predictions of property class (e.g.,
high vs. low affinity) but also accurate predictions of continuous
property values (e.g., high vs. very high affinity).
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Fig. 2 Levels of CDR residue enrichment in the sorted emibetuzumab libraries are similar for high affinity and high non-specific binding selections.
Calculated ratios between the amino acid frequencies at each mutated site for library samples selected for (A) high affinity relative to low affinity and (B)
high non-specific binding (ovalbumin and soluble membrane proteins) relative to low non-specific binding. Red mutations appeared more frequently in the
high affinity and high non-specific binding library samples, while blue mutations appeared more frequently in the low affinity and low non-specific binding
library samples. Wild-type residues are highlighted with black boxes, and residues that were not sampled in the libraries are indicated with gray shading.

To test this hypothesis, we evaluated the ability of relatively
simple linear discriminant analysis (LDA) models to predict both
antibody affinity and specificity (Fig. 3). LDA models predict
binary classifications by first projecting high-dimensional data
into a continuous one-dimensional space to optimize classifica-
tion accuracy, and then finding the optimal classification cutoft
within the one-dimensional space. We reasoned that the scalings
learned by the models would reflect the different levels of
mutational enrichment, and that the resulting one-dimensional
feature-space predictions, referred to as projections, would
correlate with the continuous values of antibody affinity and
specificity that were measured experimentally.

Therefore, we trained LDA models to predict deep sequencing
labels using the one-hot encoded features, herein referred to as
OneHot models. The models were trained to predict each
antibody property using five-fold cross-validation methods
(80%:20% training:test data splits) to prevent overfitting.
Encouragingly, the OneHot models strongly classified the affinity
and specificity of the antibody mutants in the deep sequencing
datasets, as both models resulted in 93% accuracy for classifying
antibody affinity and specificity (Fig. 3A, B). These accuracies are
similar to those obtained using a simpler classification algorithm
(k-nearest neighbors) that makes predictions based on similarity
to training set data alone (83% for affinity and 89% for specificity;
Supplementary Fig. 4). This finding is consistent with our
experience analyzing similar datasets with diverse types of models
and demonstrates that classification of antibody properties such
as affinity and specificity based on deep sequencing data is a
relatively simple task and weakly dependent on the type of model
used for the predictions.

However, predictions of property class (e.g., high vs. low
affinity) are of limited use for identifying antibody mutants with
the best combinations of properties, including affinity and
specificity. Inspection of the LDA projections for each antibody
property revealed both significant intraclass variability and that
the values at either extreme predicted each property with

the highest accuracies (Fig. 3A, B), suggesting that the LDA
projections may be useful for predicting not only interclass
differences (e.g., classification of low versus high affinity) but also
intraclass differences (e.g., high versus very high affinity).
Therefore, we also evaluated the ability of the model projections,
which are continuous metrics and not actual property values, to
describe the relative affinity and non-specific binding values for
experimental measurements obtained using yeast surface display
for the set of 125 antibody mutants that were isolated via Sanger
sequencing after library sorting (Fig. 3C, D). None of these
antibody mutants were present in the set of 4000 antibodies used
for training and testing. Strikingly, we observed strong correla-
tions between the model predictions and the experimental
measurements, including Spearman correlation coefficients of
0.87 for affinity (p value of 1073%) and 0.67 for non-specific
binding (p value of 10717). These encouraging results indicate
that continuous metrics correlated with each property can be
predicted for the sequences in the library with relatively high
accuracy, including for the 4000 sequences used in the training
process.

The simplicity of the LDA models naturally raises the question
of whether more complex machine learning models would lead to
improved performance for predicting antibody affinity and
specificity metrics. Therefore, we developed neural network
models to predict affinity and specificity metrics. Each
model included a dense layer with a single node to create final
projections that could be used as metrics for correlation with each
property and identification of optimal classification cutoffs
(Supplementary Fig. 5). Notably, the neural network models
performed similarly to the LDA models. The classification
prediction accuracies were the same for both models for affinity
and specificity, consistent with our general observation that the
accuracy of classification of antibody properties based on deep
sequencing data is weakly dependent on model complexity. For
the prediction of continuous antibody properties, we observed the
same performance for predicting antigen binding (Spearman's p
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Fig. 3 Models trained using supervised dimensionality reduction not only accurately classify antibody mutants with high and low levels of affinity and
specificity but also accurately predict intraclass variability. A, B Linear discriminant analysis (LDA) models were trained using sequence-based features
(one-hot encoded sequences as binary vectors) and displayed high accuracy for classifying antibody affinity and specificity for 4000 antibodies identified
in the enriched libraries via deep sequencing. (C-D) The continuous predictions of the LDA models, which are referred to as projections, are strongly
correlated with experimental measurements of the (C) relative affinity and (D) non-specific binding for 125 single-chain antibodies (Fabs) selected
randomly from the sorted libraries. In (C), the antigen (HGFR) concentration was 1nM, and the values are normalized between elotuzumab (value of zero)
and wild-type emibetuzumab (value of one). In (D), the non-specific binding reagent was ovalbumin (0.1 mg/mL). In (A-D), the projection (x-axis) values
that separated high and low classes (e.g., high and low affinity) were close to but not exactly zero. In (C) and (D), the experimental measurements are
averages of two or three independent repeats. Independent two-sided t-tests were performed to determine significance.

of 0.87 for both models) and modestly improved performance for
predicting non-specific binding (p of 0.70 compared to 0.67 for
the LDA model).

Given the strong performance of simple and easy-to-
implement LDA models, we next plotted the LDA model
projections of affinity and specificity for each of the 4,000
antibody sequences to directly visualize the tradeoffs between the
two properties on a continuous scale (Fig. 4A). Notably, the
emibetuzumab variants showed strong tradeoffs between both
properties, as increases in affinity typically required reductions in
specificity and vice versa. This analysis also revealed the Pareto
frontier for the antibody library, which corresponds to the set of
co-optimal antibody variants with the maximum affinities at each
level of specificity. Notably, the wild-type antibody is not at the
Pareto frontier and, therefore, it may be possible to increase both
affinity and specificity at the same time.

To evaluate the predictions of Pareto optimal antibody
variants, we next identified and produced 41 antibody mutants
(as soluble IgGs) that were predicted to be at or near the Pareto
frontier (Fig. 4A) and experimentally evaluated their levels of
antigen (Fig. 4B) and non-specific (Fig. 4C) binding. Encoura-
gingly, we find that the model predictions are strongly predictive
of affinity (Spearman’s p of 0.72 and p value of 8 x 10~8; Fig. 4B)
and specificity (p of 0.77 and p value of 3 x 10~%; Fig. 4C), which

is not observed for conventional analysis using enrichment ratios
and frequencies of the antibody mutants (Supplementary Fig. 6).
Moreover, we find that simultaneous improvement of both
binding properties is achieved for more than one-third of the
antibodies (37%; Fig. 4D). We also observed strong tradeoffs
between affinity and non-specific binding, as most antibodies
(87%) with high affinity (greater than wild type) also displayed
relatively high non-specific binding (>50% of wild type).
Conversely, most antibodies (91%) with large reductions in
non-specific binding (<50% of wild type levels) displayed reduced
affinity (less than wild type). This demonstrates the strong
intrinsic tradeoffs between antibody affinity and specificity for
variants with heavy chain CDR mutations that include sites
strongly involved in both on- and off-target interactions.

Prediction of novel mutations that further co-optimize anti-
bodies. We identified a lead candidate (EM1) for further opti-
mization that displayed an attractive combination of increased
antigen binding (1.20x of wild type) and reduced non-specific
binding (0.51x of wild type; Fig. 4D). We also selected additional
clones for further mutagenesis, although to a more limited extent,
to investigate the potential for optimizing antibody mutants with
a diverse range of properties. We sought to predict novel CDR
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determine significance.

mutations, including at previously non-mutated CDR sites, to
improve both the affinity and specificity of EM1 and related
variants beyond the Pareto frontier identified for the first-
generation library. This is not possible using the OneHot models
because they are defined based on the sequences of the antibody
mutants in the library and subsequent models would be insen-
sitive to variations at novel sites in the CDRs. However, we rea-
soned that it may be possible to predict beneficial novel
mutations using models that incorporate other types of molecular
features that are based on the entire Vi; domain.

Therefore, we evaluated two additional sets of molecular
features based on antibody Vy domains for integration into
models that predict the impacts of novel mutations on antibody
affinity and specificity. The first set of features are Unified
Representation (UniRep) features, which are deep learning
features obtained from a neural network trained on over twenty
million unlabeled protein sequences to perform next amino acid
prediction3>. A compelling aspect of these features is that they are
not biased by assumptions regarding which molecular features are
most important for antibody affinity and specificity. We used the
previously reported 64-unit neural network to generate 64
UniRep features per antibody3>. The second set of features,
which we refer to as PhysChem features, are 26 physicochemical
features that are based on the Vi domain sequence, including the
isoelectric point, average residue hydrophobicity, and number of
specific amino acids.

We next used the UniRep and PhysChem features to build
LDA models for predicting both antibody affinity and specificity
metrics (Supplementary Fig. 7), as we did for the OneHot features
(Fig. 3A, B), and first evaluated their ability to classify the
emibetuzumab mutants in the deep sequencing datasets.
Encouragingly, we observed strong accuracies for classifying
antibody affinity, with modestly higher accuracy for the UniRep
model (91%) relative to the PhysChem model (85%; Supplemen-
tary Fig. 7). Likewise, we also observed strong accuracies for
classifying antibody specificity (92% for both models). These
classification accuracies were similar to those obtained for
k-nearest neighbors models using the same features (80-86%
for affinity and 88-91% for specificity; Supplementary Fig. 8). We
also tested whether LDA projections trained on UniRep or
PhysChem features correlated with continuous measures of
affinity and specificity (Supplementary Fig. 7), as we did for the
OneHot model (Fig. 3C, D). Encouragingly, our results were
highly similar for the three sets of features, as model predictions
were strongly correlated with experimental measurements of
affinity and specificity.

We also evaluated the ability of the UniRep and PhysChem
LDA models to predict property metrics of soluble IgGs, as we
did for the OneHot LDA models (Fig. 4). We observed similar
(albeit modestly lower) Spearman correlation coefficients between
model predictions and experimental measures of affinity (0.66 for
UniRep and 0.68 for PhysChem relative to 0.72 for OneHot) and
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specificity (0.65 for UniRep and 0.74 for PhysChem relative to
0.77 for OneHot; Supplementary Fig. 7). We also repeated this
analysis using neural network models and observed similar
performance relative to the OneHot models for affinity (0.75 for
UniRep relative and 0.68 for PhysChem relative to 0.72 for
OneHot) and specificity (0.70 for UniRep and 0.71 for PhysChem
relative to 0.77 for OneHot; Supplementary Fig. 9). Overall, these
results demonstrate that both simple (LDA) and more complex
(neural net) models are capable of predicting continuous metrics
that are strongly correlated with antibody properties based on
both simple (OneHot) feature sets that are limited to the observed
mutations in the sequenced library and more complex
(PhysChem and UniRep) feature sets that can be potentially
used to predict novel mutations features.

As a preliminary test of the generality of the UniRep and
PhysChem LDA models, we evaluated the ability of the models to
predict the impacts of CDR mutations on antibody affinity and
specificity for residues that were selectively omitted during the
training process, which we refer to as a leave-one-out analysis®°.
We performed such analysis by training the models on new sets
of antibodies (4,000 sequences) that lack information about a
given wild-type residue at one of the eight mutated CDR sites
(i.e., no antibodies with the wild-type residue at a given CDR site
were included in the training process). Next, the trained models
were tested on antibodies that have the corresponding wild-type
CDR residue regardless of the identity of the residues at the other
seven mutated CDR sites (Supplementary Fig. 10). While the
UniRep and PhysChem models both performed reasonably well,
the UniRep models displayed the best overall performance. We
repeated this process by training LDA models that lack
information about the most common residue at each CDR site
that was not wild type and observed that the UniRep models
again displayed the best overall performance.

Encouraged by these results, we next directly tested if our
models could generalize to novel mutational space (Fig. 5).
Therefore, we predicted single mutations (29 unique variants)
that had not been sampled in the original library, including
mutations at 15 novel CDR sites in HCDR2 and HCDR3. These
mutations were primarily predicted for the EM1 clone (20 of 29
variants), but also for seven additional clones with the goal of
generating a wide range of predictions and experimental
measurements. We reasoned that focusing on evolutionarily
conserved mutations would be most productive, and only
considered predicted mutations with relatively high conservation
(Blosum62 substitution scores > 0; see Methods for more
detail)*®. The antibody mutants were selected based on the
UniRep predictions and, notably, some of them were predicted to
exceed the Pareto frontier of the first-generation library (Fig. 5A,
inset of left panel). Moreover, the predictions sample a range of
increases in predicted affinity or specificity or both. The
PhysChem models predict different affinity and specificity
metrics for the same mutants, which led to different distributions
of each property (Fig. 5B, left panel).

Experimental validation of novel mutation predictions. To test
these predictions, we generated the 29 antibody variants as soluble
IgGs and evaluated their relative levels of affinity and non-specific
binding (Fig. 5). Encouragingly, we observed significant correla-
tions between the UniRep LDA predictions and both antibody
affinity (Spearman’s p of 0.46 and p value of 0.01) and specificity (p
of 0.43, p value of 0.02 and Pearson correlation coefficient (r) of
0.34; Fig. 5A). Conversely, we only observed significant correlations
between PhysChem LDA predictions and antibody specificity (p of
0.45, p value of 0.01 and r of 0.49; Fig. 5B). Notably, the neural
network models for UniRep and PhysChem features each only

achieved statistical significance for one antibody property (Sup-
plementary Fig. 11). Likewise, the OneHot LDA models, which
only account for the absence of residues at previously mutated
CDR sites, also only achieved statistical significance for one anti-
body property (p value of 0.01 for affinity and 0.27 for specificity).
Finally, if we did not limit our predicted mutations to those with
relatively high conservation (Blosum62 substitution scores > 0) for
our best models (LDA UniRep), statistically significant predictions
were only observed for one of the antibody properties (p value of
0.03 for specificity and p value of 0.41 for antigen binding). Overall,
these findings demonstrate that LDA models trained with deep
learning features were superior at generalizing to novel mutational
space relative to those trained with conventional physicochemical
antibody features, which is consistent with the findings from the
leave-one-out analysis (Supplementary Fig. 10). More generally,
these findings demonstrate the great potential for using these
approaches to predict antibody mutations at novel CDR sites that
co-optimize multiple properties linked to therapeutic antibody
performance.

We next plotted the experimental measurements of the relative
antibody affinity and non-specific binding against each other for
the 70 IgGs produced in this study, including the 29 IgGs with
novel mutations absent in the original library, to identify the
variants with the most co-optimal combinations of affinity and
specificity (Fig. 6A). One variant (EM2) displayed particularly
attractive properties, as it displayed increased antigen binding
(1.28x) and reduced non-specific binding (0.30x) relative to wild
type. Therefore, we evaluated this variant and its first-generation
parental variant (EM1) in more detail. Affinity analysis of IgG
binding as a function of antigen concentration revealed that both
EM1 (ECs of 2.6 + 0.2 nM) and EM2 (ECs, of 2.4 + 0.3 nM) have
higher affinity than wild type (ECsy of 4.4 +0.8 nM; Fig. 6B).
Despite the increased affinity of these variants, they both showed
reduced non-specific binding to a second polyspecificity reagent
(soluble membrane proteins) relative to wild type (Fig. 6C), which
is consistent with similar non-specific binding measurements
obtained using ovalbumin (Fig. 6A). Moreover, both EM1 and
EM2 are at least as active at inhibiting hepatocyte growth factor-
induced proliferation of human cancer cells as the wild-type
antibody (Fig. 6D). EM1 and EM2 also have attractive, drug-like
biophysical properties, as they display low levels of self-
association (CS-SINS scores <0.35) in a standard antibody
formulation (pH 6 and 10 mM histidine), which suggests the
antibody mutants will display low viscosity and opalescence in
concentrated antibody formulations (150 mg/mL; Fig. 6E)*’.
Moreover, these antibody variants display high thermal stability
with melting temperatures >75 °C (Fig. 6F)!1>. Collectively, these
results demonstrate the great potential of using machine learning
for co-optimizing therapeutic antibodies to improve both affinity
and specificity while maintaining high bioactivity and other drug-
like biophysical properties.

Finally, we sought to understand the molecular basis for the
improved antibody affinity and specificity of the best emibetuzu-
mab variant (EM2; Fig. 7). This variant contained five CDR
mutations relative to wild type, including one in HCDR2 and four
in HCDR3 (Fig. 7A). Given the importance of both HCDRs on
antibody affinity, we assumed that these mutations may be located
at CDR sites that are outside of the paratope. However, we found
that two of the five mutations occurred within the predicted
paratope and there was some rearrangement within this region
(Fig. 7B), which may be linked to the increased affinity of EM2
(Fig. 6B)48. The novel HCDR3 mutation in EM2 (D101E), which
increases both affinity and specificity, is a conservative mutation
located just outside the predicted paratope. Additional CDR
mutations located outside the predicted antibody paratope, such as
R54G in HCDR2, led to the removal of a large positively charged
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Fig. 5 Models trained with deep learning features generalize to novel mutational space. Models trained using (A) deep learning (UniRep) and (B)
physicochemical (PhysChem) features were used to evaluate the Pareto frontier. (A, left panel) A panel of 29 antibody variants with novel CDR mutations
(not sampled in the original library) were designed along and beyond the Pareto frontier using the model trained with UniRep features. The predictions
were limited to evolutionary conserved mutations with Blosum62 scores >0. (B, left panel) The designed antibody mutants using the UniRep models led to
different distributions relative to the Pareto frontier predicted using the PhysChem models. (A, middle and right panels) Comparison of UniRep model
predictions and experimental measurements of antigen (middle panel, HGFR, 1nM) and non-specific (right panel, ovalbumin, 0.1 mg/mL) binding for
soluble IgGs. (B, middle and right panels) Comparison of PhysChem model predictions and experimental measurements of antigen (middle panel, HGFR,
1nM) and non-specific (right panel, ovalbumin, 0.1 mg/mL) binding for soluble IgGs. In (A) and (B), the experimental measurements are averages of three
independent experiments, and the error bars are standard deviations. Independent two-sided t-tests were performed to determine significance.

patch, which may explain the reduced non-specific binding given
the strong link between positively charged patches in antibody
CDRs and non-specific binding?449-52. Overall, these findings
suggest the combination of CDR mutations in EM2 that co-
optimize affinity and specificity do so by largely preserving the
paratope for high affinity binding while disrupting a positively
charged patch outside the paratope to reduce non-specific binding.

Discussion

We have developed a facile approach for the multi-objective
optimization of therapeutic antibodies. We show that one-
dimensional projections obtained from LDA models reflect the
continuous variability of the evaluated biophysical properties.
These projections, linear combinations of learned scalings that
maximize interclass separation, are trained on binary datasets for
affinity and specificity, yet are correlated with continuous prop-
erty values, which enables the direct identification of Pareto
optimal antibodies. Examination of the projection weights for
OneHot features revealed that LDA scalings were strongly cor-
related with the site-specific enrichment of mutations in antibody
libraries screened for high levels of antigen and non-specific
binding (Supplementary Fig. 12). While we are unaware of

previous work on predicting continuous metrics correlated with
antibody properties such as affinity or non-specific binding from
binary deep sequencing datasets, it is notable that this general
approach has been pursued in unrelated fields of study. For
example, in the field of text analysis, it has been demonstrated
that continuum information can be predicted based on binary
labels>3. This approach used the outputs of a variety of trained
binary classifiers to predict continuous sentiment scores asso-
ciated with text samples. We believe that this general approach
holds great potential for improving and simplifying antibody
engineering.

Another aspect of our work that deserves further consideration
is the demonstration of strict tradeoffs between antibody affinity
and specificity at the library scale (thousands of mutants). Pre-
vious studies have elucidated similar tradeoffs for pairs of anti-
body and protein properties, including affinity/thermostability,
affinity/solubility ~and  humanness/thermostability!6-21->4-60,
However, these studies are generally limited by low-throughput
measurements of relatively small sets of protein mutants (tens to
hundreds of individually produced and experimentally measured
variants) 162154, In contrast, our approach applies to much larger
numbers of antibody mutants, the size of which is only limited by
the deep sequencing technology. Moreover, previous studies that
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Fig. 6 Emibetuzumab mutants co-optimized for affinity and specificity also display high bioactivity and stability. A Antigen (HGFR, 1nM) and non-
specific (ovalbumin, 0.1 mg/mL) binding measurements for soluble IgGs. B Concentration-dependent antigen binding of antibody mutants (EM1 and EM2)
relative to wild-type. € Non-specific binding analysis of wild-type and mutant IgGs to a second polyspecificity reagent (soluble membrane proteins, 0.1 mg/mL).
D Antibody-mediated inhibition of human cancer cell growth in response to hepatocyte growth factor (HGF). E Antibody self-association measurements (CS-
SINS scores) in a standard formulation condition (pH 6 and 10 mM histidine). F Apparent melting temperature (T,,) of the antibody mutants. In (A), the data
are averages of three independent experiments and the error bars are standard deviations. In (B), the binding experiments were performed two or three times,
representative binding curves are shown, the EC5q values are averages of the independent experiments, and the ECsq errors are standard deviations. The p value
comparing WT to EM1is 0.026 and the p value comparing WT to EM2 is 0.022. In (C), the binding experiments were performed three times and the average
curve is shown. In (D), five independent experiments were performed (three technical replicates per experiment), the average value of each independent
experiment is shown as a different symbol, the overall average values are shown as bars, the errors are standard deviations, and CTL is a control IgG
(elotuzumab) that does not bind HGFR. The p values comparing WT, EM1, and EM2 to HGF are 4 x10~4, 2 x10~6, and 2 x 107, respectively. The p values
comparing WT, EM1, and EM2 to CTL are 3x1073, 2% 104, and 2 x 10~4, respectively. In (E), the values are averages of three independent experiments, the
error bars are standard deviations, and CS-SINS scores less than 0.35 correspond to IgGls predicted to display low viscosity (<30 cP) and opalescence (<12
NTU) when concentrated to 150 mg/mL'344. The p value comparing WT to EM2 is 0.0009 and the p value comparing EM1to EM2 is 0.0002. In (F), the data
are averages of three independent experiments and the error bars are standard deviations. The p value comparing WT to EM1 is 0.015. In (B) and (D-F),
independent two-sided t-tests were performed to determine significance and the p values are <0.05 (*), <0.01 (**) and <0.001 (***).

simultaneously optimized combinations of antibody properties
such as humanness (e.g., human string content)>® and stability
(e.g., AMBER energy calculations)>® are either not applicable for
predicting other antibody properties given the lack of models
(e.g., non-specific binding) or the difficulty in applying them due
to the need for extremely accurate antibody/antigen structures
(e.g., affinity). In contrast, our methods enable the simple iden-
tification of Pareto optimal clones directly from binary deep
sequencing data without the need for pre-existing models,
including those that require accurate antibody/antigen structural
information. Our approach also enables the selection of specific
levels of multiple antibody properties at the same time, affording
greater control over the antibody engineering process than has
been possible previously.

Another key aspect of our work is the ability to identify
beneficial mutations that were absent in the original antibody
library, enabling extrapolation to novel mutational space. A
common goal of machine learning in the field of protein
engineering is to develop generalizable algorithms that can
extrapolate to unseen mutations, especially at non-mutated
sites in the training sets. A recent study demonstrates the great
potential of algorithms that use deep learning features to

generalize to novel mutational space for improving the activity
of enzymes and fluorescent proteins3°.

Our models, which used similar types of deep learning features
and generalize to novel mutational space, deserve further con-
sideration. First, we found that it was necessary to limit the
predictions to mutations with moderate-to-high evolutionary
conservation (Blosum62 substitution scores >0). This was
necessary because the models also predicted mutations with lower
evolutionary conservation, such as tryptophan mutations in the
CDRs, which we found resulted in levels of affinity and non-
specific binding that were poorly correlated with the model pre-
dictions. We expect that additional information about the site-
specific frequencies of mutations in antibody repertoires, which
were not considered in this work, could be incorporated into
future models to further improve predictions. Second, the deep
learning features used in this work were generated from algo-
rithms trained on millions of diverse proteins, including mostly
non-antibody proteins3>36, We expect that similar deep learning
features extracted from more closely related protein sequences,
such as human antibody repertoires, will lead to even better
model performance. Third, we used simple comprehensive scans
of single mutations to predict novel sequences. This approach will
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Some alterations to the paratope region and adjacent regions are also apparent in the EM2 mutant. The amino acids at the mutated sites in the structural
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not scale to the exponentially large antibody sequence space.
However, the neural networks used here could serve as a starting
point to implement generative neural networks that could enable
the prediction of antibody sequences with defined affinities and
specificities®2, Fourth, the models in this work were trained to
generalize to novel mutational space for predicting metrics cor-
related with two antibody properties (affinity and specificity) that
could be readily screened in a high-throughput manner using
massive antibody libraries. We expect that our approaches could
be easily extended to other antibody properties that can be
screened via in vitro library sorting. For example, our approach
could be used for simplifying the selection of species cross-
reactive antibodies. The lack of species cross-reactivity is a
common problem in pre-clinical development because antibodies
that bind their target human antigens with high affinity often
weakly bind or fail to bind antigen orthologs from different
species (e.g., mouse, rat and monkey) that are necessary for pre-
clinical testing®®%4. A key next step is to rigorously test the
generality of our approaches for predicting the impacts of addi-
tional sets of CDR mutations in emibetuzumab as well as CDR
mutations in other antibodies with unique physicochemical
properties. We believe that these and other exciting opportunities
are expected to lead to machine learning models that can
increasingly generalize to novel mutational space and reduce the
amount of required experimentation to obtain co-optimized
drug-like antibodies.

Methods

Antibody sub-library design and generation. Sites in the heavy chain CDRs of
emibetuzumab were selected for mutagenesis using chemical rules reported pre-
viously for predicting antibodies with drug-like specificity®S. Briefly, CDR sites in

the Vi domain were selected for mutagenesis if they were (i) flagged by one or
more of the six maximum chemical rules, (ii) hydrophobic or positively charged,
(iii) solvent exposed (>10%), and (iv) relatively uncommon in human antibodies
(<50% site-specific frequency in human repertoires)®>. For each of eight sites that
were identified in the heavy chain CDRs for mutagenesis (Y33, R50, R54, R55, G56,
A95, W97, and Y102), degenerate codons were selected to sample the wild-type
residue in addition to five additional residues which sample a range of physico-
chemical properties and were predicted to reduce non-specific binding (Fig. S1).
The final library of yeast-displayed single-chain Fabs (scFabs; theoretical diversity
of 1.7 x 10°) was constructed via homologous recombination following electro-
poration of EBY100 Saccharomyces cerevisiae®”.

Preparation of antigen and polyspecificity reagents. For MACS selections,
Protein A Dynabeads (Invitrogen, 10002D) were coated with the extracellular
domain of hepatocyte growth factor receptor as an Fc fusion protein (HGFR-Fc;
Acro Biosciences MET-H5256). For FACS selections, HGFR-Fc was used as pur-
chased following reconstitution. Soluble membrane proteins (SMPs) were prepared
as previously described®40, and SMPs and ovalbumin (OVA; Sigma A5503) were
biotinylated with Sulfo-NHS-LC-Biotin (Pierce, P121335).

Antibody library sorting and deep sequencing. The first two rounds of MACS
were performed by incubating 107 HGFR-Fc coated Dynabeads with 10° (Round 1)
and 107 (Round 2) yeast cells (displaying scFabs) for 3 h at room temperature in
PBSB with 1% milk. Binding cells were isolated using a magnet and regrown in
selective media. Further sorting was performed with a FACS sorter following
incubation of 107 regrown yeast cells with soluble reagents. The antigen (1 nM
HGEFR-Fc with 1% milk in PBSB) and ovalbumin (260 pg/mL in PBSB) were
incubated with yeast cells for 3 h at room temperature. Soluble membrane proteins
(130 pg/mL in PBSB) were incubated with yeast cells for 20 min on ice. A mouse
anti-Myc mAb (1:1000; Cell Signaling Technologies, 2276 S) was co-incubated with
the antigen and polyspecificity reagents to evaluate antibody display. The bound
reagents were detected using different secondary reagents. The biotinylated poly-
specificity reagents were detected using streptavidin AF647 (1:1000; Life Tech-
nologies, $32357). The antigen (HGFR-Fc) was detected with goat anti-human
AF647 (1:300; Jackson ImmunoResearch Labs, 109605098). The anti-Myc tag
antibody was detected using goat anti-mouse AF488 (1:300; Life Technologies,
A11001).
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Cells were sorted on a MoFlo Astrios sorter (Beckman-Coulter) by selecting
those that expressed scFabs (as detected using the anti-Myc tag antibody) and
displayed high antigen binding or high and low polyspecificity reagent binding
(Supplementary Fig. 2). Gates for antigen sorting were set to collect the top 50% of
antigen-positive cells, capturing those along the top of the diagonal population of
antigen-binding and antibody-displaying cells. Gates for specificity (non-specific
binding) sorting were set to capture the top 25% of binders (also along the top of
the diagonal population of binding and displaying cells) and the bottom 10% of
binders. The selected populations of cells in round 3, which include high antigen
binding and high and low non-specific binding to two polyspecificity reagents,
along with the input library, were deep sequenced. Given that the sorting
experiments were performed in duplicate, this resulted in a total of 12 library
samples that were deep sequenced. The deep sequencing was performed as
reported previouslys.

In total, sequencing covered approximately 20% of the total library diversity
with 1,504,269 unique sequences acquired in the first replicate (6 samples: input,
antigen positive, PSR positive, PSR negative, ovalbumin positive, ovalbumin
negative) and 851,151 unique sequences in the second replicate (6 samples). The
reproducibility between replicates is shown in Supplementary Fig. 13.

The deep sequencing was processed using the following procedure. First, a
positive label for antigen binding was assigned to sequences found in both antigen
positive samples, and a negative label was assigned to those not found in either
sample but were found in the input library sample. Sequences found in only one
antigen positive sample were discarded. A positive label for non-specific binding
was assigned to sequences found in at least three of the four positive samples and
none of the negative samples for non-specific binding to soluble membrane
proteins and ovalbumin and a negative label was assigned to sequences found in at
least three out of the four negative samples and none of the positive samples for
non-specific binding. Unlabeled antibody sequences, as well as sequences with gaps
or unidentified residues, were discarded. Next, 4000 of the most frequently
observed antibody sequences, prioritized for positive antigen binding labels due to
their lower abundance and stratified evenly in terms of high and low specificity,
were identified and used as the master sequence dataset for machine learning
analyses. The final dataset consisted of 2000 high specificity and 2000 low
specificity clones, with 1516 of these displaying high antigen binding and 2484
displaying low antigen binding. All sequences were 115 residues long, ranging from
HI1 to H113 (Kabat numbering). Before final model development, we confirmed
that our sample size was sufficient to achieve maximum performance
(Supplementary Fig. 14). Less than 1% of sequences had mutations at sites that
were not intentionally mutated in the library. This dataset is reported in
Supplemental file emi_binding.csv.

For the conventional analysis of the deep sequencing data, frequency values
were calculated using the same criteria as used for sample observation (as reported
above) to maintain consistency. Frequency was calculated by dividing the number
of occurrences in each sample by the number of samples successfully sequenced.
For the analyzed individual clones (scFabs and IgGs), sequences were considered in
the subsequent analysis if they were observed in at least three of the four negative
non-specific binding samples (ovalbumin and soluble membrane proteins) and
both antigen positive binding samples. Enrichment ratios for antibody sequences
were calculated as the log, of the ratio of output to input frequencies for each
replicate. Final frequency values and enrichment ratios were calculated as averages
of the two deep sequencing replicates.

Antigen binding analysis using yeast surface display. Individual clones were
isolated and Sanger sequenced from the enriched libraries (after FACS sorting) to
generate a reference set of measurements of antibody affinity and specificity for
model evaluation. The on- and off-target binding properties of the scFabs (dis-
played on yeast) were evaluated using a BioRad Zeti5 flow cytometer. Briefly,
single-point binding of HGFR-Fc or OVA to scFabs on yeast (10° cells for HGFR-
Fc and 5 x 106 cells for OVA) was performed and detected as described above.
Only cells that expressed scFabs were considered in subsequent quantitative ana-
lysis. Single-point binding measurements are reported as the mean binding signal
divided by the mean display signal, both of which were gated for antibody
expression. The signal for the scFab display-only control (no HGFR-Fc or OVA
added) was subtracted from the binding signals for each sample (with HGFR-Fc or
OVA). The resulting binding measurements were normalized to the binding
measurements for the wild-type emibetuzumab scFab and represent averages of
two to three biological replicates.

Production of soluble IgGs. Variable heavy (Vi) domains of selected in-library
clones were isolated from yeast display plasmids or ordered as geneblocks (IDT).
The Vi domains were cloned into pTT5 mammalian expression plasmids con-
taining a common IgG1 heavy and light chain (kappa) framework, as described
previously®. Briefly, the PCR-amplified fragments and expression vectors were
digested with the desired restriction enzymes (EcoRI-HF and Nhel-HF for Vy;
EcoRI-HF and BsiWI-HF for V;; New England Biolabs). Finally, digested DNA
fragments and vectors were purified (Qiagen, 28104), ligated with T4 ligase (New
England Biolabs, M0202L) and transformed into competent DH5a cells. Antibody
sequences were confirmed by Sanger sequencing.

Single mutations were introduced into the Vi domain sequences through site-
directed mutagenesis using primers that amplified the entire plasmids. High-
fidelity polymerase (PfuUltra IT Hotstart PCR Master Mix, Agilent 600850) was
used to avoid undesired mutations. Following PCR, the product was digested with
Dpnl (NEB R01768S) for 30 min to remove the parent template. Finally, plasmids
were isolated and sequenced to screen for the desired mutations after
transformation.

For IgG expression, the HEK293-6E cell line (L-11565, National Research
Council Canada) was cultured in disposable conical tubes (Corning, 7203954,
Thermo Fisher Scientific) with F17 (50591354, Thermo Fisher Scientific) or
BalanCD HEK293 (91165, Fujifilm Irvine Scientific) media. The cultures were
incubated at 37 °C and 250 rpm. Soluble IgGs were produced via transient
transfection (30 mL) using 7.5 ug each of heavy and light chain plasmids, and 60 ug
polyethylenimine (PEI MAX, 247651, Polysciences Inc.) for F17 media or 75 pg
polyethylenimine for BalanCD media. Five days after transfection, cultures were
harvested and the supernatant was batch purified using Protein A agarose resin
(20334, Pierce; Thermo Fisher Scientific) followed by size-exclusion
chromatography (SEC) using a Shimadzu Prominence semi-prep HPLC System
outfitted with a LC-20AT pump, SIL-20AC autosampler, and FRC-10A fraction
collector. Proteins were loaded onto an SEC column (Superdex 200 Increase 10/300
GL column; GE, 28990944) and analyzed at 0.75 mL/min using a PBS running
buffer with 200 mM arginine (pH 7.4) After purification, soluble IgGs were buffer
exchanged into PBS (pH 7.4) with Zeba desalting columns (89890, Thermo Fisher
Scientific), aliquoted, snap-frozen, and stored at —80 °C.

Antibody affinity and non-specific binding measurements. Affinity analysis was
performed as reported previously?®. Briefly, Protein A Dynabeads (Invitrogen,
10002D) were washed three times and diluted to 54 pg/mL in PBSB. Beads (30 uL)
were incubated with antibodies (85 pL, 15 pg/mL) overnight at 4 °C. The coated
beads were then washed twice by centrifugation (3500x g for 4 min) with PBSB. For
single-point binding measurements, biotinylated reagents [1 nM biotinylated-
HGEFR (Sino Biological 10692-H27H-B), 0.1 mg/mL ovalbumin, 0.1 mg/mL SMP]
in PBSB were incubated with the washed beads. Biotinylated SMP was incubated at
4°C for 20 min, as previously reported®3. Biotinylated HGFR and OVA were
incubated for 3 h at room temperature. The beads were then washed once and
incubated with streptavidin-AF647 (1:1000; Invitrogen, $32357) and goat anti-
human Fc F(ab’), AF-488 (1:1000; Invitrogen, H10120) on ice for 4 min. Finally,
the beads were washed once more, resuspended in PBSB, and analyzed via flow
cytometry to measure their median fluorescent intensities (MFI). Results are
reported as normalized scores between emibetuzumab and elotuzumab as the high
and low binding controls, respectively. Affinity and non-specific binding mea-
surements are reported in iso_binding.csv and igg binding.csv files.

ECs values of antigen binding were measured for select variants as IgGs on beads.
Washed Protein A beads were incubated with antibodies (85 pL, 0.076 pug/mL)
overnight. The coated beads were washed with PBSB and incubated with biotinylated
HGEFR in PBSB at a range of concentrations at 10x molar excess for 3 h at room
temperature. The beads were then washed once and incubated with secondary
reagents (1:1000; streptavidin-AF647, 1:1000; goat anti-human Fc F(ab’), AF-488) on
ice for 4 min. Finally, the beads were washed once more, resuspended in PBSB, and
analyzed via flow cytometry to measure their median fluorescent intensities (MFI).

Dose-dependent non-specific binding was measured for select variants was
measured as IgGs on beads. Washed Protein A beads were incubated with
antibodies (85 uL) at a range of concentrations (0.015-15 ug/mL) overnight. The
coated beads were washed with PBSB and incubated with biotinylated SMP and
OVA in PBSB. The beads were then washed once and incubated with fluorescent
secondary reagents on ice for 4 min. Finally, the beads were washed once more,
resuspended in PBSB, and analyzed via flow cytometry to measure their median
fluorescent intensities. Results are reported as normalized scores between
emibetuzumab and elotuzumab at the highest antibody concentrations incubation
(15 ug/mL) as the high and low binding controls, respectively.

Cell proliferation. NCI H596 cells (ATCC, HTB-178) were seeded at 2,000 cell/
well in 96 well plates (Fisher, 14387220) in RPMI1640 supplemented with 10% FBS
(Fisher, 10082147) and antibiotics (penicillin-streptomycin; Fisher, 15-140-122).
After growth overnight, cells were preincubated with antibodies (100 nM) for

30 min before stimulation with 50 ng/mL HGF (Fisher, 501624085) for five days.
Promega CellTiter-Glo™ Luminescent Cell Viability Assay Kit (Fisher, PRG7572)
was used to measure cell proliferation on a Biotek Synergy H1 Hybrid Microplate
reader (Biotek) according to the manufacturer’s instructions.

Charge-stabilized self-interaction nanoparticle spectroscopy (CS-SINS). CS-
SINS was measured as reported previously?’. Briefly, capture antibody (Jackson
ImmunoResearch, 109-005-008) and polylysine (90%:10% w/w ratio respectively;
Fisher Scientific, ICN19454405) were immobilized on concentrated gold nano-
particles and incubated overnight. Dilute IgG solutions (11.1 ug/mL, 45 uL) were
incubated with 5 pL of gold conjugates for 4 h at room temperature. Absorbance
spectra was measured on a Biotek Synergy Neo plate reader (Biotek) in 1 nm
increments between 450 and 650 nm. A quadratic equation was fit to describe the
forty data points surrounding the maximum measured absorbance. The inflection
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point of this quadratic was calculated to determine the plasmon wavelength.
Plasmon wavelengths were then normalized and calibrated against a panel of five
antibodies (NIST mAb, ibalizumab, mepolizumab, trastuzumab, and romosozu-
mab). This calibration panel was used to rescale the measurements to the same
scale as reported in the original study*’.

Melting temperature analysis. Melting temperatures of soluble IgGs were ana-
lyzed via differential scanning fluorimetry. Antibodies (0.12 pg/mL) were combined
with Protein Thermal Shift Dye (Applied Biosystems, 4461146) in a 7:1 anti-
body:dye molar ratio. Samples were submitted to the University of Michigan
Advanced Genomics Core for analysis using an ABI Prism 7900HT Sequence
Detection System (Applied Biosystems). Fluorescence was evaluated for 45 min at
temperatures increasing from 25 to 98 °C. Background signals (buffer only sam-
ples) were subtracted from the results and melting temperatures were calculated as
the turning point of the first unfolding event.

Molecular feature embedding. (1) One-hot encoding was performed on Vi
sequences using the scikit-learn (1.0.1) python package. Sequences were first
encoded as integers using sklearn.LabelEncoder and subsequently one-hot encoded
using sklearn.OneHotEncoder. Code to generate one-hot encoded features is
provided as onehot_gen.py. (2) PhysChem features were extracted by calculating 26
biophysical descriptors that describe the entire Vi; domain. This includes the count
of all twenty amino acids as features 1-20, the number of hydrophobic (A, I, L, F,
V), amphipathic (W, Y, M), polar (Q, N, S, T, C, M), and charged residues (K, R, D,
E, H) as features 21-24, the isoelectric point using ExPASy as feature 25, and the
average hydropathy score of all residues using Kyte-Doolittle scoring index
(Table S1) as feature 268, ExPASy calculations of isoelectric point are reported in
emi_pltxt, igg plLtxt, and iso_pl.txt. Code to generate PhysChem features is
included as physchemvh_gen.py. (3) UniRep features for Vy; sequences were
acquired using a previously reported procedure®. We used the base model weights
for the UniRep-64 neural network. Briefly, a babbler64 object was instantiated and
the built-in get_rep() function was used to compute UniRep features for each Vi
sequence, which resulted in 64 UniRep features per antibody variant. UniRep
features for each dataset are reported in emi_reps.csv, iso_reps.csv, and

igg reps.csv.

Model development. Analyses were performed in python (3.8) using the scikit-
learn (1.0.1) and TensorFlow (2.7.0) packages. For the LDA models, the built-in
LinearDiscriminantAnalysis function with the singular value decomposition sol-
ver was used. Independent LDA models were trained to predict metrics correlated
with antigen binding and polyspecificity reagent (ovalbumin and soluble mem-
brane proteins) binding with five-fold cross-validation performed, consisting of
3200 sequences in each training set and 800 sequences in each test set. After
confirming that training and test set accuracies were similar, the final models were
trained on the full datasets. Finally, one-dimensional projections were generated for
each sequence from the final trained models for both antigen and polyspecificity
reagent (ovalbumin and soluble membrane proteins) binding. This process was
repeated independently for each set of features (OneHot, PhysChem, and UniRep).
Model code is included as onehot_models.py, physchemvh_models.py, and uni-
rep_models.py. To predict metrics correlated with properties of previously unseen
sequences, features for novel sequences were generated, and the trained LDA
models were used to generate one-dimensional projections. These novel sequences
sampled all single amino acid mutations except cysteine at all sites in HCDR2 and
HCDR3. HCDRI1 was excluded because the original dataset only contained one
mutation in HCDRI1. The features from each novel sequence were generated as
described above. Antibody sequences at or near the Pareto frontier were identified
that displayed a range of predicted affinity and specificity metrics. Evolutionarily
conservative mutations were defined using the BLOSUM62 scoring matrix’%71,
Baseline k-nearest neighbors models were created using the built-in KNeighbor-
sClassifier function. Classifiers were trained using a range of nearest neighbor
values from 1 to 25 and the mean test accuracy from five-fold cross-validation was
reported.

The neural network models were built and trained in TensorFlow. The neural
network architecture consists of a two-layer neural network that generates a one-
dimensional projection, called the projector network, and a final prediction layer
that predicts accuracy or specificity based on the projection (Supplementary Fig. 5).
The neural networks were trained for predicting metrics correlated with affinity
and specificity for all three feature sets, which led to the generation of a total of six
neural networks. Each network was trained using the
SparseCategoricalCrossentropy loss function, ADAM optimizer, a batch size of
50 sequences, and a total of 3200 sequences for training. Five-fold cross-validation
accuracy analysis was used to identify the number of antibody sequences resulting
in plateauing of model training accuracy, and subsequently final models were
trained for 50 epochs (OneHot and PhysChem features) or 250 epochs (UniRep
features). The networks were trained using the same data used to train the LDA
models.

Antibody structural modeling. Molecular Operating Environment (MOE) soft-
ware (2021.05) was used to generate homology models. Amber10:EHT forcefield
and a dielectric constant of 4 were also used. Antibody modeler was implemented
to identify template structures from a Fab/antibody structure database for Vg, Vi,
and individual CDR loops. For emibetuzuab, the Vi and V. chains of PDB:4LIQ
were selected as the framework templates. PDB:3W2D was used for the light chain
CDR loop templates, PBD:4YHL was used for the heavy chain CDR 1 and 2
templates, and PDB:5NHW was used for the heavy chain CDR3 template. Finally,
the initial antibody model was energy minimized with a minimum gradient setting
of 0.00001 RMS keal/mol/A2. The final homology models for the emibetuzumab
variants were then exported to PyMOL (2.5) for visualization.

Statistical analysis and visualization. All data (except homology models) were
plotted and visualized using the python packages matplotlib (3.4.3) and seaborn
(0.11.2). Statistical analysis was performed in python (3.8) using the scipy (1.7.3)
package. The normality of the distributions of variables was evaluated using the
Shapiro-Wilks test’2. Using this test, most distributions of the experimental data
and model predictions (except for the experimental non-specific binding data in
Fig. 5) differed significantly from normal distributions (p < 0.05). For all datasets,
the Spearman correlation coefficients are given. If both the experimental data and
model predictions did not significantly differ from normal distributions, Pearson
correlations are also reported. The statistical significance of Spearman and Pearson
correlations were calculated by a two-sided student’s t-test.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data are provided with the paper, online at BioProject (Accession code:
PRJNA850089), and in the Tessier lab GitHub repository: https://github.com/Tessier-
Lab-UMich/Emi_Pareto_Opt_ML.

Code availability
Scripts to generate main figures and perform data analysis are provided in the Tessier lab
GitHub repository: https://github.com/Tessier-Lab-UMich/Emi_Pareto_Opt_ML.
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