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Abstract Pharmacogenomics is emerging as a popular

type of study for human genetics in recent years. This is

primarily due to the many success stories and high poten-

tial for translation to clinical practice. In this review, the

strengths and limitations of pharmacogenomics are dis-

cussed as well as the primary epidemiologic, clinical trial,

and in vitro study designs implemented. A brief discussion

of molecular and analytic approaches will be reviewed.

Finally, several examples of bench-to-bedside clinical

implementations of pharmacogenetic traits will be descri-

bed. Pharmacogenomics continues to grow in popularity

because of the important genetic associations identified that

drive the possibility of precision medicine.

Introduction

Personalized medicine, or more recently coined precision

medicine (Khoury et al. 2012), has advanced as one of the

predominant strategic initiatives and goals of the next

decade for many pharmaceutical companies, biotech insti-

tutes, academic medical centers, and the National Institutes

of Health. The primary goal of this type of initiative is to

treat patients with the correct dose of the appropriate

medication based on their individual demographic and

genomic makeup (Khoury et al. 2012; Mirnezami et al.

2012; Garay and Gray 2012). Pharmacogenetics and

pharmacogenomics have made the dreams of precision

medicine a reality. Pharmacogenetics is the study of a single

genetic variant with a drug response phenotype, such as

treatment responders and non-responders (i.e. assessment of

drug efficacy) or a serious adverse side effect (i.e. drug

toxicity). As molecular technologies to assay the entire

genome have developed and genome-wide association

studies (GWAS) emerged, so did pharmacogenomics (sur-

veying the entire genome for associations with drug

response phenotypes). As with other genetic traits and dis-

eases, it is hypothesized that variability in drug response is

due to underlying individual variation in genetic architec-

ture. This drug response can include efficacy, serious

adverse events, toxicity, or variability in target or mainte-

nance dose. In general, pharmacogenomic studies and

analysis approaches for these types of studies are very

similar to standard genetic epidemiology studies for com-

plex diseases, however, there are some subtleties that

should be considered and these will be described in this

review.

Efforts in pharmacogenomics have been fruitful and as

such, very satisfying to researchers for many reasons.

When genetic or genomic associations are identified for a

particular drug adverse event, such that an individual with

a certain genotype has a significantly increased risk to

develop such a reaction upon drug exposure, this result can

immediately be useful to patients and physicians in a

clinic; assuming of course that an alternative treatment is

available. Similarly if the genotype of a patient can be

useful to predict the proper dose of a medication, this

association also has clinical utility whereby a physician can

use this genotype information to guide their dosing.

Associations such as these have the possibility to make an

impact on human health much more rapidly than genomic

associations with complex disease risk such as type II
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diabetes or Crohn’s disease. It is not to say that such

associations are not of critical importance to progress in the

field and future drug development, diagnostics, or pre-

vention strategies. However, translating complex disease

risk associations into clinical practice requires additional

years of research.

Another reason that pharmacogenomics has become a

significant research area in human genetics is that the effect

size for many identified genetic associations for pharmac-

ogenomic traits are much larger than those for common,

complex diseases. Table 1 shows a selected number of

genetic associations for complex diseases as well as

pharmacogenomic traits extracted from the NHGRI

GWAS catalog which captures most of the genome-wide

associations identified in GWAS (Hindorff et al. 2009)

(http://www.genome.gov/gwastudies/). If one compares the

odds ratio for the selected pharmacogenomic traits (the first

four examples in Table 1) to those of the complex disease

traits (the last three examples in Table 1), most of the

effect sizes for the drug response phenotypes are much

stronger. This allowed these pharmacogenomic associa-

tions to be identified with a smaller sample size (tens to

hundreds of individuals in pharmacogenomics, where

complex trait studies often need thousands to tens of

thousands of individuals). Of course, this also means that

the confidence intervals on the odds ratio estimates will be

larger and the estimates may be biased and imprecise

(Hosmer 2000; Harrell et al. 2001), however, many of these

associations have been replicated. So while the effect

estimates may not be precise, they are predominantly larger

than those for complex disease phenotypes (the last three

examples in Table 1). This difference in effect size may be

due to the known, large environmental factor that is the

drug exposure—which is not always present or known in

complex traits.

Finally, for some pharmacogenomics outcomes the

study is relatively straight forward to design because the

drug in question is well characterized and its mechanism of

action is well known. This makes targeted genotyping or

sequencing experiments feasible to design and implement.

On the contrary, many drugs have an unknown mechanism

of action and/or little is known about its metabolism or

transport. This type of study lends itself to a dense, gen-

ome-wide assay (such as GWAS, exome sequencing,

exome chips, or whole-genome sequencing). So prior

knowledge about the drug can play a role as a strength or

weakness for pharmacogenomic studies and it clearly plays

an important role in the type of molecular approach

selected for the study.

A limitation of pharmacogenomics research is the reality

of study design constraints (Grady and Ritchie 2011).

Because many pharmacologic agents exert great patient

cost, both in terms of dollars as well as in disease treatment

efficacy or risk of toxicity, it is not often the case that the

study can be designed in an optimal way for genetic or

genomic research. It is, for example, unethical to have a

control group with disease who are denied drug treatment

to compare to the disease group on drug. If the drug is FDA

approved with proven patient benefits, it is not advisable to

deny treatment to patients specifically to control the

genomic study design. Therefore, it is more often the case

that performing an exposed-versus-unexposed study is not

possible. However, designs which included case-only on

drug, with and without serious adverse events can be used.

This is the most common design currently used (described

more below). Another challenge related to study design is

Table 1 Comparison of common, complex disease associations with pharmacogenomics (PGx)

Trait Chr Gene OR (CI) Sample size p value References

PGx trait

Response to tamoxifen

in breast cancer

10q22.3 C10orf11 4.51 (2.72–7.51) 240 cases 6 9 10-8 Kiyotani et al. (2012)

Response to statin

treatment

12p12.1 SLCO1B1 4.5 (2.60–7.70) 85 cases, 90 controls 2 9 10-9 Link et al. (2008)

Response to hepatitis

C treatment

20p13 ITPA 25 (11.11–50.0) 303 cases 2 9 10-25 Tanaka et al. (2011)

Nevirapine-induced rash 6p21.32 HLA-DRB1-

DQB1
3.1 (2.30–4.20) 201 cases 5 9 10-14 Lucena et al. (2011)

Complex disease trait

Type II diabetes 10q25.2 TCF7L2 1.46 (NR) 2,413 cases, 2,392

controls

2 9 10-15 Kho et al. (2012)

Obesity 16q12.2 FTO 1.39 (1.27–1.51) 685 obese children, 685 lean

children

1 9 10-28 Meyre et al. (2009)

Age-related macular

degeneration (AMD)

1q31.3 CFH 3.11 (2.76–3.51) 2,978 cases, 2,859 controls 2 9 10-76 Chen et al. (2010)

Associations from the NHGRI GWAS Catalog (Hindorff et al. 2009)
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that most pharmacogenomic research studies are amended

to existing projects. For example, many prospective clini-

cal trials add a retrospective pharmacogenomics compo-

nent. The limitation here is that pharmacogenomics

researchers are confined to the original study design, which

may or may not fulfill their research question.

Replication of effects is another significant challenge

and limitation of pharmacogenomics studies, as compared

to complex disease association studies. To replicate

detected associations, one needs to have an independent

study with the same drug treatment and phenotype outcome

collected (adverse event, toxicity, etc.). For efficacy or

dosing outcomes, one needs not only the same drug, but

also the same dosing. For assessing drug–drug interaction

associations, one needs the same drug cocktail observed in

multiple patient cohorts. This presents a significant chal-

lenge. Often, because of this limitation, pharmacogenomics

researchers focus on functional validation of associations

in cell lines (Welsh et al. 2009; Duan et al. 2009; Huang

et al. 2007; Matsson et al. 2012; Ingle et al. 2010) or model

systems, rather than replication of effects.

Lastly, many pharmacogenomics traits or drug response

studies have very limited sample size. Drugs that exhibit

life-threatening adverse events, such as toxicity, are often

pulled from the market. Even without intervention in this

manner, many adverse events are quite rare. So while the

effect size if often larger for pharmacogenomic traits, the

available sample size may be appreciably smaller.

Regardless of the limitations described above, pharma-

cogenetic and pharmacogenomics studies have been extre-

mely successful in human genetics. The ability to translate

genetic associations from ‘‘bench to bedside’’, which is the

promise of translational research, has been demonstrated for

several pharmaceuticals and various drug-related pheno-

types (described in this review). It is clear that in this

GWAS era, with thousands of known genetic associations

for hundreds of traits, a type of study that has forged ahead,

with great success is pharmacogenomics. In this review, the

most common study designs for pharmacogenomics will be

described. Next, the molecular and analytic strategies suited

for pharmacogenomics will be briefly discussed. Finally, a

number of the translational success stories of pharmacog-

enomics traits will be reviewed. This manuscript will pro-

vide evidence for the impetus in pharmacogenomics as an

emerging area for human genetics.

Epidemiologic study designs for pharmacogenomics

Pharmacogenomic studies are often performed on data

collected for other pharmacologic research, although in

some cases, prospective clinical trials have been designed

specifically for pharmacogenomics testing. The three

primary epidemiologic study designs used include clinical

trials, retrospective case–control studies, or biobanks

linked to electronic health records (EHR) as shown in

Fig. 1. Each of these designs will be discussed briefly in

the following sections, including strengths and limitations

of each design. A summary of the strengths and limitations

is presented in Table 2.

Randomized clinical trials

A randomized clinical trial (RCT) is the gold standard of

study designs in drug treatment-related research (Stolberg

et al. 2004). An RCT is a well-designed study typically

focused on understanding the efficacy and/or toxicity of a

new therapeutic. Study participants are randomized to one

of multiple treatment arms, which controls confounding

and selection bias (Manolio et al. 2006). In addition, RCTs

are usually conducted in a double-blind manner, where

neither the study participants nor the researcher collecting

the data is knowledgeable of the treatment arm to which

the patient has been assigned (Stolberg et al. 2004). This

process protects the study from bias in two ways. First, the

study participants are less likely to have adherence issues,

differential recall of symptoms, or placebo effects. This is

due to the fact that participants are under the care of the

study physician and coordinators and are typically seen in

clinic at regular intervals, and they are all asked the same

questions about their treatment effects. Second, this pro-

tects the research from evaluating participants in a biased

manner (probing more for symptoms or minimizing

severity of symptoms). The randomization and blinding

processes attempt to control for heterogeneity and bias that

could contribute to the results of the study and are major

strengths of the RCT design.

Another significant strength of the RCT is the ability to

collect pristine phenotype information (i.e. outcomes

observed right after drug treatment and toxicities) as the

patient population is being closely monitored during

treatment initiation. In addition some RCTs have control

arms which allow for the true assessment of the predictive

ability of genetic markers to be realized, and to determine

if the effect is pharmacogenomic or just genetic in nature.

This provides more informative power than even the

observational clinical trial designs which can only be

prognostic. RCTs are otherwise epidemiologically sound

experiments that allow one to observe prospectively the

impact of therapeutics on the patient population. Finally,

within an RCT, a case-only design can be used to look for

gene–environment interactions where the ‘‘environment’’ is

the drug (Little et al. 2005).

The strengths of the RCTs are clear whereas the limi-

tations may or may not occur (depending on the trial

design). For example, if there is a complication or toxicity
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due to treatment during the trial, regardless of which arm

an individual was randomized to, their treatment may be

modified during the study to accommodate their

complications and/or changing symptoms. The safety and

well-being of the participants outweighs controlling the

proper study design. However, these issues can cause

Fig. 1 A visual display of the three primary epidemiologic study designs used in pharmacogenomics: randomized clinical trials, case–control,

and biobanks
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subsequent analyses of the trial data to be compromised.

An additional limitation is that while randomization of

study participants is attempted, it is not guaranteed.

Therefore, researchers may still need to adjust for covari-

ates that are not even distributed between groups. Another

potential issue is that of biased DNA sample collection

where not all participants are required to consent for DNA

contribution, in addition to the reality that many RCT are

multi-site studies and in some cases, not all sites collect

biospecimens for DNA extraction or they collect samples

in different ways (blood, saliva, etc.). As a result, sys-

tematic exclusion or bias of certain subgroups of partici-

pants may occur which could create significant issues with

subsequent genetic association analyses. Finally, as with

any large study followed for a period of time, there is

significant expense related to maintaining the cohort. Not

only is cost a potential issue, but also keeping track of

participants over long periods of time can be complicated,

if not impossible depending on the pharmacogenomic

endpoint of interest. Thus, the dataset generated in the end

of an RCT may be a substantially different sample size

from what was predicted at the outset of the trial.

Retrospective observational study

An alternative to the RCT which is more commonly used and

certainly less expensive is a case–control study, or retro-

spective observational study. Case–control design has

become the workhorse of genetic association studies in

human genetics, as it has been shown to be the most powerful

design for the detection of common variants associated with

common traits (Kraft and Cox 2008). In this design, partic-

ipants are enrolled based on their phenotype, or drug

response (efficacy, adverse event, toxicity, etc.), and infor-

mation regarding their exposures are collected retrospec-

tively. This includes any number of exposures (medical,

environmental, comorbidities, demographic, etc.) as well as

a DNA sample for genotyping. A major strength of the case–

control design, in addition to being a powerful approach, is

the ability to control the recruitment sample size for the cases

and controls. Typically, in pharmacogenomic studies, this

design is used in a collection of individuals who are all

receiving treatment for a particular disease. The ‘‘cases’’ and

‘‘controls’’ for the pharmacogenomic study are those affec-

ted and unaffected with some adverse event, toxicity, or the

responders and non-responders (efficacious versus non-

efficacious) to the treatment. Depending on the frequency of

the side effect or toxicity, the potential sample size collected

may vary quite a bit. Though less common, in some cases, a

case–control study could be constructed from a prospective

observational cohort study (also called a nested case–control

study) such as in (Link et al. 2008). In this design, phenotype

information is collected over time, and the case–control

study is designed subsequently, depending on the outcomes

observed and collected during the study. This type of study is

most common in clinic-based biobanks (described in the

following section). Case-only designs can also be extracted

from case–control studies, and are often done to look spe-

cifically for gene–drug interactions (Little et al. 2005). An

important consideration for the case-only design is the

assumption that the gene and the environmental factor (drug)

must not be correlated in the patient population. This

assumption is essential for the G 9 E interaction to be valid.

A limitation of the case–control design is the potential

bias introduced in any retrospective study in terms of dif-

ferential recall. The nature of a retrospective design relies

Table 2 Comparison of three study designs for pharmacogenomics

Randomized controlled trials Observational case–control Biobanks

Strengths

Little confounding Powerful analytic approach Phenotypes can be selected after sample

collection (from EHR)

Little selection bias Control recruitment sample size of cases and controls Many phenotypes are possible

Pristine phenotypes on short-term

outcomes and toxicity

Can be prospective or retrospective Patients are followed over time as they

continue in clinic

Limitations

Mid-trial changes due to toxicity can

cause problems for research analysis

Bias from differential recall Study design limited by what phenotypes/

traits collected in the EHR

Population stratification Population stratification Population stratification

Potential for bias in DNA collection Complications in phenotype collection (adherence,

changes, multiple treatments)

Data collected for clinic purposes—not

research

Cost: expensive in terms of time and

money to follow participants

Cost: most data collected at study initiation;

subsequent cost in making the data useful for

analysis

Cost: bioinformatics for phenotyping is

significant in terms of time and money
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on participants to report their past exposures, symptoms,

etc. (with the exception of the biobanks liked to electronic

health records where the information comes from the

medical record, not directly from the patient). This infor-

mation is easier for some individuals to recall than others;

which can introduce some degree of bias (Swan et al.

1992). For example, often ‘‘cases’’, or in pharmacoge-

nomics individuals who have toxic adverse events or

individuals who do not respond to treatment (non-effica-

cious), on average these individuals may be more likely to

recall their exposures including the drug, potential drug–

drug interactions, other environmental or diet exposures,

etc. because they think in depth about why their drug

treatment did not work for them. Whereas in ‘‘controls’’, or

individuals where the drug showed expected efficacy or no

toxic adverse event, they may not be as detailed in their

recall of other drugs, environmental, or diet exposures

because they have no need to. There are a number of

epidemiological survey techniques used to control this

issue, which can protect from these biases (Lash and Ahern

2012; Pathak et al. 2011; Stover et al. 2010; Hamilton et al.

2011; Pan et al. 2012; Hendershot et al. 2011).

Another limitation, which is also true of any retrospec-

tive clinical trial or biobank as well, is population stratifi-

cation. As with any other population-based genetic

association study, there is a risk of identifying allele fre-

quency differences that are due to underlying population

differences between cases and controls, rather than allele

frequency differences due to disease (Balding 2006). Much

work has been done in this area to identify evidence for

population stratification and approaches to deal with it

when it happens (Edwards and Gao 2012). In pharmacog-

enomics, an additional challenge exists when a particular

serious adverse event or toxicity is more prevalent in one

ancestral population. For example, Stevens Johnson syn-

drome (SJS) is associated with alleles in HLA and car-

bamazepine treatment and is more common in individuals

who are of Asian descent (Locharernkul et al. 2011). To

determine which alleles are associated with SJS, it is

important to compare individuals without SJS to those with

SJS from the same ancestry group. Otherwise any differ-

ences detected may be associated with ancestry group. This

challenge is expanded even further when the research is

considering individuals from admixed populations. If seg-

ments of the chromosomes originate from different

ancestral populations, mapping the region harboring sus-

ceptibility loci can be particularly challenging. Most

studies involving admixed populations will consider local

ancestry and/or admixture mapping.

Another limitation of a retrospective design is a set of

complications with study design that are typically out of

the researcher’s control. These include combination of

therapies, adherence to medication schedule, changes in

dose or drug based on patient response. These needs to be

dealt with after the data are collected and can lead to

studies requiring stratified analyses or even dropping some

individuals from the study. Lastly, the costs associated with

a case–control design are primarily at the time of sample

collection and enrollment, as all of the data are collected at

one time point. The result is additional cost in extracting

useful phenotype information from the data collected. The

extraction of phenotype can vary in complexity, based on

the depth of information collected. Despite the limitations,

the case–control design is a very common approach for

pharmacogenomics.

DNA biobanks

The third study design which has been emerging in phar-

macogenomics is a medical facility-based biobank linked

to electronic health records (EHR) (or a similar cohort

linked to medical records, White et al. 2011; Wilke et al.

2008; Kiyotani et al. 2008; Matimba et al. 2008). This is a

type of prospective, observational study. The availability of

electronic health records has been increasing dramatically

in recent years (Kho et al. 2011). The ability to conduct

genomic research from these records has been demon-

strated in a number of recent studies (Denny et al. 2011;

Crosslin et al. 2012; Kullo et al. 2011). The eMERGE

network (electronic MEdical Records and GEnomics)

which is funded by the National Human Genome Research

Institute (NHGRI) of the National Institutes of Health in

the United States, has driven this study design over the past

several years (McCarty et al. 2011). Many health care

providers, academic medical centers, and insurance pro-

viders have implemented DNA biobanks to link to their

EHR systems for research purposes. From these cohorts of

patient samples, pharmacogenomics studies can be devel-

oped. For example, an evaluation of warfarin dosing from

samples extracted from the Vanderbilt biobank, BioVU,

using genotypes from VKORC1, CYP2C9 and CYP4F2

has demonstrated the ability to extract pharmacogenom-

ics phenotype information using electronic algorithms

(Ramirez et al. 2012). In a study of tacrolimus response,

CYP3A5/CYP3A4 was identified previously to be associ-

ated with circulating drug levels and this effect was repli-

cated in the Vanderbilt DNA biobank (BioVU) (Birdwell

et al. 2012). Similar such studies can be designed and

implemented when large patient populations have been

collected with drug exposures and phenotype outcomes

(such as adverse events or drug toxicity). This is a major

strength of this design.

Like any cohort design, a number of genetic association

studies can be constructed after the cohort has been

established and populated. However, there are also limi-

tations with this type of sample collection. The primary
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limitation is that the ability to perform any particular

association study relies on the availability of samples with

the particular phenotype or drug exposure of interest. Since

there is little, if any, control exerted on the types of patients

collected, it can be very difficult to have a large enough

sample size to conduct a powerful association study.

Similarly, in a biobank linked to an EHR, medical infor-

mation is collected in the arena of patient care which may

or may not have all of the necessary information for

research purposes. Finally, phenotyping the patients to

determine efficacy or drug toxicity requires significant

medical informatics algorithm development. This can have

varying levels of complexity depending on the trait, which

then relates to the cost of phenotyping, which can be

substantial for complex drug effects (such as neuropathy or

liver toxicity). Thus, the pharmacogenomics design in a

biobank linked to an EHR may be a powerful approach (as

shown above) or it may be a challenge to accumulate

sufficient sample sizes.

In vitro study design

Many pharmacogenomics studies rely on epidemiologic

designs described in the previous section, however, for

many drugs this is not a practical approach. Variation in

drug response may be due to multiple genes, each with

small effects. In these cases, large sample sizes will be

needed to identify the effects. This is unlikely to be the

case in clinical trials, prospective cohorts, etc. Another

complication is controlling potential confounding factors

such as comorbidities, dosing, and diet. For all of these

potential issues, many groups have relied on in vitro study

designs using human cell-based models for pharmacoge-

nomics discovery, as well as validation. In these experi-

ments, cell lines are perturbed with drug treatment, in

different doses, and changes in gene expression and cell

growth can be observed (Welsh et al. 2009). The in vitro

cell-based study design also has clear strengths and limi-

tations, much like each epidemiologic study design. In

terms of strengths, the experiment can be well controlled,

large numbers can be generated in a cost-effective manner,

and the samples are unlimited in terms of resources (as

more cell lines can be made as needed) (Welsh et al. 2009).

However, these studies are limited by the following: (1)

must select cell lines from one tissue, and can only be made

from certain tissues (may or may not be the right one for

the drug in question, (2) cell lines may not express

important enzymes needed for drug metabolism and

transport, and (3) establishing cell lines may damage the

cell in unknown ways, thus altering the cell’s characteristic

and subsequently the pharmacogenomics response (Welsh

et al. 2009). Still, cell lines, such as the HapMap lym-

phoblastoid cell lines (LCLs), have been used for several

pharmacogenomics studies (Duan et al. 2009; Huang et al.

2007; Watson et al. 2011a, b; Brown et al. 2011), and have

shown enormous potential.

Molecular techniques for pharmacogenomics

Pharmacogenomics studies are inherently quite similar to

standard human genetic studies; however, the phenotype is

related to treatment response rather than simply a quanti-

tative trait or disease risk. Due to the similarity, standard

molecular technologies and analytic approaches can be

applied to these studies (Grady and Ritchie 2011). For

example, in the post-GWAS era, any number of data

generation techniques can be used, depending on the sci-

entific questions and hypothesis being tested. For example,

if it is hypothesized that rare, coding variants will be most

important for the pharmacogenomics trait of interest, ex-

ome sequencing or exome chips would be the most likely

methodology of choice. Conversely, if gene expression

variation from eQTLs (expression quantitative trait loci) or

epigenetic variation are hypothesized to be most relevant,

next generation sequencing of either RNA (RNAseq) or

methylation sites (methyl-seq) may be selected instead.

With the rapid development of novel technologies, there

are a number of assays that can be considered and these

have been reviewed elsewhere (Krueger et al. 2012; Zhou

et al. 2011; Zhang et al. 2011; Ku et al. 2011). An

important consideration is also the type of tissue being

collected and the appropriate molecular technique selected.

For example, when assaying germline DNA variation,

DNA from blood (i.e. lymphocytes) would be appropriate

and sufficient. However, if DNA variation of interest is

related to somatic changes, such as in cancer, DNA from

the tumor would be more appropriate. In addition, the

comparison would typically be tumor tissue compared to a

healthy section from the same tissue; this adds additional

effort to perform such an experiment. If gene expression or

epigenetic variation in the liver is of interest, surrogate

tissue, such as blood, may be inappropriate for this

assessment as blood cells may or may not reflect the actual

relationship between drug and the organ affected by tox-

icity (i.e. liver, if metabolized by liver; skin if skin toxicity;

etc.). A full survey of these techniques is out of the scope

of this review, thus readers should be encouraged to

explore some of these references (Manolopoulos et al.

2011; Kacevska et al. 2011; Midorikawa et al. 2012).

As mentioned earlier, an additional benefit to some

pharmacogenomics studies is the knowledge of the mech-

anism of action of the drug. This can make the initial

design of the molecular study much more targeted. For

example, several companies have designed genotyping

arrays specifically focused on drug metabolism and
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transport genes, such as the Affymetrix DMET chip and the

Illumina ADME chip. Platforms like this will allow for

more targeted evaluation of genes known to be related to

the drug and/or phenotype of interest. Alternatively, a

targeted exome or genome capture experiment could be

considered if there is a list of genes hypothesized to be

relevant for the drug metabolism. This approach will most

likely only be relevant until the cost of whole-genome

sequencing drops. Once the cost of sequencing the entire

genome is low enough, this will be the method of choice as

it allows one to obtain the rare variants as well as the

common variants and everything in between. Still, even if

the genes/pathways which control drug mechanism are

known, these may or may not explain variation in response.

So while this knowledge may guide the initial molecular

assays, subsequent genomic assays may be needed. This

will result in genome-wide genotyping or whole-genome

sequencing being selected as the assay of choice.

Analytic techniques for pharmacogenomics

Standard analysis techniques are typically implemented in

pharmacogenomics studies. In general, the study design

allows for standard regression methods, Chi-square tests,

Cox-proportional hazard models for time to event analysis,

or Wilcoxon tests, etc. and there is no need for specialized

statistical methods. The only caveat to this is that the

definition of case–control groups and the interpretation of

results must be carefully considered. For example, if the

case group is defined by a serious adverse side effect to

statin treatment, and the control group is a population-

based control group that includes a set of individuals who

are not exposed to statins, associations identified may be

more likely to be associated with the reason that the

‘‘cases’’ are prescribed statins, rather than the statin side

effect. It is also possible that the association is important

for the side effect. A mechanism to control for disease

indication that led to treatment is needed for a study such

as this.

Analysis techniques for pharmacogenomics have also

been extensively reviewed (Motsinger et al. 2006a, 2007;

Motsinger and Ritchie 2006; Flynn 2011; Rodin et al.

2011; Srinivasan et al. 2009). Briefly, for single SNP or

variant analysis in pharmacogenomics association studies a

large array of statistical methods can be utilized(Cantor

et al. 2010) such as Chi-square test (Greenwood 1996;

Zheng et al. 2004), Armitage trend test (Armitage 1955;

Cree et al. 2010), Kaplan–Meier survival curves (Kaplan

and Meier 1958; Huang et al. 2009), Bayesian statistics

(Stephens and Balding 2009), or data mining methods

(Coassin et al. 2010) but is commonly performed in the

framework of regression (Woodahl et al. 2008). Most of

these are performed in standard statistical analysis software

such as STATA, SAS, R, PLINK, or others. Epistasis, or

gene–gene interactions, and gene–environment interactions

can be investigated through the use of many standard sta-

tistical methods (Motsinger et al. 2007; Cordell 2009),

complex regression methods including lasso regression

(Ayers and Cordell 2010) and logic regression (Kooperberg

et al. 2001; Kooperberg and Ruczinski 2005), as well as

data mining methods such as multifactor dimensionality

reduction (MDR) (Hahn et al. 2003; Ritchie et al. 2001),

tree-based methods such as classification and regression

trees (CART) (Breiman et al. 1984) and Random Forests/

Random Jungle (Breiman 2001; Schwarz et al. 2010),

evolutionary algorithms designed for application to genetic

data are grammatical evolution neural networks (GENN)

(Turner et al. 2010a) and genetic programming neural

networks (GPNN) (Motsinger et al. 2006b). The use of a

wide variety of methods designed for gene–gene interac-

tion analysis in pharmacogenomics studies is reviewed by

Motsinger et al. (2007). For data integration methods, there

are a number of methods emerging and more being devel-

oped all the time. For example, Huang et al. (2007) have

been exploring the three-stage triangle method, where one

investigates the association of SNPs with the trait to filter the

SNP list, next these SNPs are tested for association with

gene expression, and finally, those significant results are

tested for association with the trait. Other approaches

include using pathway analysis (Emilsson et al. 2008),

Bayesian networks (Fridley et al. 2012), canonical correla-

tion analysis (Chalise et al. 2012), and neural networks

(Turner et al. 2010b; Holzinger and Ritchie 2012). We

would direct readers to these manuscripts for a more in depth

discussion of the different analytic methods appropriate for

pharmacogenomics (Grady and Ritchie 2011; Motsinger

et al. 2007; Holzinger and Ritchie 2012; Yan 2008).

Success stories of pharmacogenomics: translational

pharmacogenetics

As shown in Table 1, pharmacogenomics studies have

observed a number of great successes in recent years. An

entire area of pharmacogenomics that was not highlighted

in the current review is cancer pharmacogenomics. The

difference in cancer is that both germline DNA variation

and somatic mutations in the tumor are part of the inves-

tigation. This changes some of the study design consider-

ations described above, thus cancer is not a major focus of

this review. However, it is important to note that many of

the successes in translation of pharmacogenomics to the

clinic are in the treatment of cancer such as EGFR tyrosine

kinase inhibitors (TKIs) in the treatment of lung cancer

(Yi et al. 2009) and HER2-directed therapies in the
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treatment of HER2-positive early-stage breast cancer (Ar-

teaga et al. 2012). The following sections will highlight

some of the pharmacogenomics results that have translated

into precision medicine. All of these particular associations

have been replicated in multiple studies and are also

evaluated by the Clinical Pharmacogenetics Implementa-

tion Consortium (CPIC) of the Pharmacogenomics

Research Network (PGRN) (Relling and Klein 2011).

CPIC was established in 2009 to address the need for

interpretation of genetic association results and guidance

for clinicians so that pharmacogenetic tests could be used

wisely in clinical care (Relling and Klein 2011). CPIC

comprises physicians and researchers who are experts in

pharmacogenetics, pharmacogenomics, and laboratory

medicine many of whom are from the Pharmacogenomics

Research Network (PGRN) and PharmGKB. CPIC has

established a framework for evaluating levels of evidence

needed to justify the implementation of a pharmacogenetic

finding into clinical care. Their systematic approach is

described in Relling and Klein (2011). In this review, we

describe several success stories in pharmacogenetics with

reported associations, CPIC evaluation, and clinical

implementation (Relling and Klein 2011).

Warfarin

Warfarin is often considered the poster-child for phar-

macogenomics research. Warfarin is a widely used anti-

coagulant that needs to be closely monitored as patients

whose warfarin levels are not maintained within its very

narrow therapeutic index are at risk for clotting or bleed-

ing. Common genetic variants in two genes, CYP2C9 and

VKORC1, have been associated with dosing variability

along with several non-genetic factors, which when com-

bined, explain up to 50 % of the variability in dose

(Johnson et al. 2011). To be more specific in European

descent individuals, CYP2C9 and VKORC1 explain up to

18 and 30 % of the variability, respectively; however, in

individuals of other ancestry groups, the variants identified

in Europeans explain much less of the variability. Routine

clinical care in warfarin dosing is empirical; a physician

prescribes a dose and monitors the patient closely to pre-

vent under or over-anticoagulation (Johnson et al. 2011).

Much research is ongoing to implement genetic testing into

routine clinical care to use genotype to guide prediction of

dose, including several genetic tests that are FDA approved

(Johnson et al. 2011).

Abacavir

Abacavir is a nucleoside reverse transcriptase inhibitor

used in combination with other anti-retroviral medications

indicated for the treatment of HIV. Abacavir is generally

well-tolerated by patients, however, in 5–8 % of individ-

uals undergoing treatment, a hypersensitivity reaction

occurs (Martin et al. 2012). Symptoms of hypersensitivity

include fever, rash, fatigue, cough, gastrointestinal symp-

toms, and dyspnea (shortness of breath). A genetic variant

in HLA-B, HLA-B*57:01, is associated with this hyper-

sensitivity reaction in about 6 % of patients (Martin et al.

2012). This association has been reviewed by Martin et al.

(2012). Not only was this association observed in retro-

spective analyses of clinical trials, there was also a pro-

spective, double-blind, randomized clinical trial of a

genetic test to reduce adverse events through screening for

HLA-B*57:01 before treatment (PREDICT-1) (Mallal

et al. 2008). Based on the results of this trial and other

supporting evidence, the FDA has implemented a black

box warning in 2008 recommending that all patients be

screened for HLA-B*57:01 before abacavir treatment.

Abacavir is one of the best examples of implementation of

pharmacogenomics into routine clinical care (Martin et al.

2012).

Thiopurines

Thiopurines are a class of drugs used for nonmalignant

immunologic conditions (specifically mercaptopurine and

azathioprine), including inflammatory bowel disease,

rheumatoid arthritis, and others, as well as lymphoid

malignancies (mercaptopurine) and myeloid leukemias

(thioguanine) (Relling et al. 2011). There is substantial

evidence showing the association between TPMT geno-

type, thiopurine methyltransferase, and phenotypic vari-

ability in treatment response (Relling et al. 2011). Dosing

recommendations have been developed and implemented,

in the absence of a randomized clinical trial; however, a

reduction in thiopurine-induced adverse events has been

reported (Relling et al. 2011).

Codeine

Codeine is an opioid analgesic used for the treatment of

mild to moderately severe pain. Codeine is metabolized to

morphine by CYP2D6, which has genetic variants that

leave some individuals poor metabolizers and others

ultrarapid metabolizers. More than 80 CYP2D6 alleles have

been identified by the Cytochrome P450 Nomenclature

Committee (http://www.cypalleles.ki.se) and clinical phe-

notypes are known for some of these, but certainly not all

of them. As shown by Crews et al. (2012), a CYP2D6 score

is calculated based on their genotypes at multiple alleles in

the gene. A number of side effects have been reported for

codeine use including gastrointestinal symptoms, drowsi-

ness, dizziness, vomiting, sweating and several others

(Crews et al. 2012). Case reports have reported severe and
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even life-threatening events in ultrarapid metabolizers

(Crews et al. 2012). Genetic testing is available for

CYP2D6 in clinical care, although not performed by all

physicians prescribing codeine. Based on the evidence,

CPIC reports that alternative treatments be explored for

patients who based on genetic testing are either poor me-

tabolizers or ultrarapid metabolizers (Crews et al. 2012).

Future directions in pharmacogenomics

Similar to all complex trait research in human genetics,

pharmacogenomics is experiencing an explosion of data.

The vast amount of data is extremely exciting for

researchers, but brings with it significant challenges. For-

tunately, as discussed previously, pharmacogenomics has a

number of success stories to motivate and inspire future

research endeavors. However, it is important to recognize

that even for the traits with identified effects there is likely

to be additional heritability that can be explained (Maher

2008). While estimating this heritability in PGx precisely is

challenging (as family studies are not always readily

available), the proposed heritability of most PGx traits

exceeds that which has been explained so far. Thus, con-

sidering alternatives to the common variant hypothesis are

warranted. Much like other traits, this additional herita-

bility will be explored in:

• Rare variants, generated by genome sequencing

experiments

• Combinations of common and rare genetic variants in

polygenic and or predictive models

• Network and pathway analyses, including common

and/or rare variants

• mRNA gene expression integrated with DNA sequence

variation

• Gene–drug–environment interactions, including addi-

tional drugs and other environmental exposures

Fortunately, the barriers to data sharing are being

reduced all the time, which makes it possible to assemble

datasets with sufficient sample size to begin to consider

effects like those listed above. The future of personalized

medicine will likely involve predictive models composed

of multiple variants and perhaps gene expression and

environmental factors as well. We will learn the true

complexity of pharmacogenomic traits.

Still, several success stories have been reported

(described above) where pharmacogenomics discoveries

have been made and many of these translated into the

clinic. This process involves a significant amount of work,

and the process has been slow for even the successful

gene–drug relationships. This is due, in part, to a lack of

specific guidelines on how to adjust medications on the

basis of genetic testing results (Relling and Klein 2011). It

is the goal of the CPIC (Relling and Klein 2011) to provide

these guidelines to clinicians and laboratories. Important

considerations that go into these guidelines include the

results of pharmacogenomics studies, US Food and Drug

Administration (FDA) label changes, and commercial

sources release information for certain drugs (Relling and

Klein 2011). It is certainly the case that personalized

medicine, or precision medicine, is emerging in clinics

around the world. However, best practices for making these

translations are still in progress.

Summary

Pharmacogenomics continues to expand in popularity as

more genetic associations are uncovered. The nature of the

effects in pharmacogenomics has been predominantly

stronger and more interpretable than common disease

associations. This is partially due to the known mechanism

of action, metabolism, and transport for many pharma-

ceuticals. Another reason, and perhaps the more important

one, is that pharmacogenomics can be translated into

patient care in a near immediate course of action. For

example, if a polymorphism is identified to be associated

with drug dosing, physicians can change clinical care using

genotype in the dosing algorithm. Likewise, if a poly-

morphism is associated with a serious adverse event, an

alternative treatment could be selected for such patients.

Finally, if it is known that treatment efficacy is optimal for

one certain genotype group, while a similar drug is most

efficacious for another genotype group, therapy can be

personalized to achieve maximal success in patient care.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Armitage P (1955) Tests for linear trends in proportions and

frequencies. Biometrics 11:375–386

Arteaga CL et al (2012) Treatment of HER2-positive breast cancer:

current status and future perspectives. Nat Rev Clin Oncol

9:16–32

Ayers KL, Cordell HJ (2010) SNP selection in genome-wide and

candidate gene studies via penalized logistic regression. Genet

Epidemiol 34:879–891

Balding DJ (2006) A tutorial on statistical methods for population

association studies. Nat Rev Genet 7:781–791

Birdwell KA et al (2012) The use of a DNA biobank linked to

electronic medical records to characterize pharmacogenomic

predictors of tacrolimus dose requirement in kidney transplant

recipients. Pharmacogenet Genomics 22:32–42

Breiman L (2001) Random forests. Mach Learn 45:5–32

1624 Hum Genet (2012) 131:1615–1626

123



Breiman L, Friedman J, Olshen RA (1984) Classification and

regression trees. Chapman & Hall, New York

Brown C, Havener TM, Everitt L, McLeod H, Motsinger-Reif AA

(2011) A comparison of association methods for cytotoxicity

mapping in pharmacogenomics. Front Genet 2:86

Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS

results: a review of statistical methods and recommendations for

their application. Am J Hum Genet 86:6–22

Chalise P, Batzler A, Abo R, Wang L, Fridley BL (2012) Simulta-

neous analysis of multiple data types in pharmacogenomic

studies using weighted sparse canonical correlation analysis.

OMICS 16:363–373

Chen W et al (2010) Genetic variants near TIMP3 and high-density

lipoprotein-associated loci influence susceptibility to age-related

macular degeneration. Proc Natl Acad Sci USA 107:7401–7406

Coassin S, Brandstätter A, Kronenberg F (2010) Lost in the space of

bioinformatic tools: a constantly updated survival guide for

genetic epidemiology. The GenEpi Toolbox. Atherosclerosis

209:321–335

Cordell HJ (2009) Detecting gene–gene interactions that underlie

human diseases. Nat Rev Genet 10:392–404

Cree BAC et al (2010) A major histocompatibility Class I locus

contributes to multiple sclerosis susceptibility independently

from HLA-DRB1*15:01. PLoS One 5:e11296

Crews KR et al (2012) Clinical Pharmacogenetics Implementation

Consortium (CPIC) guidelines for codeine therapy in the context

of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol

Ther 91:321–326

Crosslin DR et al (2012) Genetic variants associated with the white

blood cell count in 13,923 subjects in the eMERGE Network.

Hum Genet 131:639–652

Denny JC et al (2011) Variants near FOXE1 are associated with

hypothyroidism and other thyroid conditions: using electronic

medical records for genome- and phenome-wide studies. Am J

Hum Genet 89:529–542

Duan S et al (2009) Expression and alternative splicing of folate

pathway genes in HapMap lymphoblastoid cell lines. Pharmac-

ogenomics 10:549–563

Edwards TL, Gao X (2012) Methods for detecting and correcting for

population stratification. Curr Protoc Hum Genet, Chap 1,

Unit1.22

Emilsson V et al (2008) Genetics of gene expression and its effect on

disease. Nature 452:423–428

Flynn AA (2011) Pharmacogenetics: practices and opportunities for

study design and data analysis. Drug Discov Today 16:862–866

Fridley BL, Lund S, Jenkins GD, Wang L (2012) A Bayesian

integrative genomic model for pathway analysis of complex

traits. Genet Epidemiol 36:352–359

Garay JP, Gray JW (2012) Omics and therapy—a basis for precision

medicine. Mol Oncol 6:128–139

Grady BJ, Ritchie MD (2011) Statistical optimization of pharmac-

ogenomics association studies: key considerations from study

design to analysis. Curr Pharmacogenomics Pers Med 9:41–66

Greenwood P (1996) A guide to Chi-squared testing. Wiley, New

York

Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality

reduction software for detecting gene–gene and gene-environ-

ment interactions. Bioinformatics 19:376–382

Hamilton CM et al (2011) The PhenX Toolkit: get the most from your

measures. Am J Epidemiol 174:253–260

Harrell FE (2001) Regression modeling strategies: with applications

to linear models, logistic regression, and survival analysis.

Springer, Berlin

Hendershot T et al (2011) Using the PhenX Toolkit to Add Standard

Measures to a study. Curr Protoc Hum Genet, Chap 1, Unit1.21

Hindorff LA et al (2009) Potential etiologic and functional implica-

tions of genome-wide association loci for human diseases and

traits. Proc Natl Acad Sci USA 106:9362–9367

Holzinger ER, Ritchie MD (2012) Integrating heterogeneous high-

throughput data for meta-dimensional pharmacogenomics and

disease-related studies. Pharmacogenomics 13:213–222

Hosmer D, Lemeshow S (2000) Applied logistic regression. Wiley

Interscience, New York

Huang RS et al (2007) A genome-wide approach to identify genetic

variants that contribute to etoposide-induced cytotoxicity. Proc

Natl Acad Sci USA 104:9758–9763

Huang S-W et al (2009) Validation of VKORC1 and CYP2C9 genotypes

on interindividual warfarin maintenance dose: a prospective study

in Chinese patients. Pharmacogenet Genomics 19:226–234

Ingle JN et al (2010) Genome-wide associations and functional

genomic studies of musculoskeletal adverse events in women

receiving aromatase inhibitors. J Clin Oncol 28:4674–4682

Johnson JA et al (2011) Clinical Pharmacogenetics Implementation

Consortium Guidelines for CYP2C9 and VKORC1 genotypes

and warfarin dosing. Clin Pharmacol Ther 90:625–629

Kacevska M, Ivanov M, Ingelman-Sundberg M (2011) Perspectives

on epigenetics and its relevance to adverse drug reactions. Clin

Pharmacol Ther 89:902–907

Kaplan E, Meier P (1958) Nonparametric estimation from incomplete

observations. J Am Stat Assoc 53:457–481

Kho AN et al (2011) Electronic medical records for genetic research:

results of the eMERGE consortium. Sci Transl Med 3:79re1

Kho AN et al (2012) Use of diverse electronic medical record systems

to identify genetic risk for type 2 diabetes within a genome-wide

association study. J Am Med Inform Assoc 19:212–218

Khoury MJ, Gwinn ML, Glasgow RE, Kramer BS (2012) A

population approach to precision medicine. Am J Prev Med

42:639–645

Kiyotani K et al (2008) Association of genetic polymorphisms in

SLCO1B3 and ABCC2 with docetaxel-induced leukopenia.

Cancer Sci 99:967–972

Kiyotani K et al (2012) A genome-wide association study identifies

locus at 10q22 associated with clinical outcomes of adjuvant

tamoxifen therapy for breast cancer patients in Japanese. Hum

Mol Genet 21:1665–1672

Kooperberg C, Ruczinski I (2005) Identifying interacting SNPs using

Monte Carlo logic regression. Genet Epidemiol 28:157–170

Kooperberg C, Ruczinski I, LeBlanc ML, Hsu L (2001) Sequence

analysis using logic regression. Genet Epidemiol 21(Suppl

1):S626–S631

Kraft P, Cox DG (2008) Study designs for genome-wide association

studies. Adv Genet 60:465–504

Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome

analysis using short bisulfite sequencing data. Nat Methods

9:145–151

Ku CS, Naidoo N, Wu M, Soong R (2011) Studying the epigenome

using next generation sequencing. J Med Genet 48:721–730

Kullo IJ et al (2011) Complement receptor 1 gene variants are

associated with erythrocyte sedimentation rate. Am J Hum Genet

89:131–138

Lash TL, Ahern TP (2012) Bias analysis to guide new data collection.

Int J Biostat 8(2)

Link E et al (2008) SLCO1B1 variants and statin-induced myopathy–

a genomewide study. N Engl J Med 359:789–799

Little J, Sharp L, Khoury MJ, Bradley L, Gwinn M (2005) The

epidemiologic approach to pharmacogenomics. Am J Pharmac-

ogenomics 5:1–20

Locharernkul C, Shotelersuk V, Hirankarn N (2011) Pharmacogenetic

screening of carbamazepine-induced severe cutaneous allergic

reactions. J Clin Neurosci 18:1289–1294

Hum Genet (2012) 131:1615–1626 1625

123



Lucena MI et al (2011) Susceptibility to amoxicillin-clavulanate-

induced liver injury is influenced by multiple HLA class I and II

alleles. Gastroenterology 141:338–347

Maher B (2008) Personal genomes: the case of the missing

heritability. Nature 456:18–21

Mallal S et al (2008) HLA-B*5701 screening for hypersensitivity to

abacavir. N Engl J Med 358:568–579

Manolio TA, Bailey-Wilson JE, Collins FS (2006) Genes, environment

and the value of prospective cohort studies. Nat Rev Genet

7:812–820

Manolopoulos VG, Ragia G, Tavridou A (2011) Pharmacogenomics

of oral antidiabetic medications: current data and pharmacoepi-

genomic perspective. Pharmacogenomics 12:1161–1191

Martin MA et al (2012) Clinical pharmacogenetics implementation

consortium guidelines for hla-B genotype and abacavir dosing.

Clin Pharmacol Ther 91:734–738

Matimba A et al (2008) Establishment of a biobank and pharmacogenetics

database of African populations. Eur J Hum Genet 16:780–783

Matsson P et al (2012) Discovery of regulatory elements in human

ATP-binding cassette transporters through expression quantita-

tive trait mapping. Pharmacogenomics J 12:214–226

McCarty CA et al (2011) The eMERGE Network: a consortium of

biorepositories linked to electronic medical records data for

conducting genomic studies. BMC Med Genomics 4:13

Meyre D et al (2009) Genome-wide association study for early-onset

and morbid adult obesity identifies three new risk loci in

European populations. Nat Genet 41:157–159

Midorikawa Y, Tsuji S, Takayama T, Aburatani H (2012) Genomic

approach towards personalized anticancer drug therapy. Phar-

macogenomics 13:191–199

Mirnezami R, Nicholson J, Darzi A (2012) Preparing for precision

medicine. N Engl J Med 366:489–491

Motsinger AA, Ritchie MD (2006) Multifactor dimensionality

reduction: an analysis strategy for modelling and detecting

gene–gene interactions in human genetics and pharmacogenom-

ics studies. Hum Genomics 2:318–328

Motsinger AA, Ritchie MD, Dobrin SE (2006a) Clinical applications

of whole-genome association studies: future applications at the

bedside. Expert Rev Mol Diagn 6:551–565

Motsinger AA, Lee SL, Mellick G, Ritchie MD (2006b) GPNN:

power studies and applications of a neural network method for

detecting gene–gene interactions in studies of human disease.

BMC Bioinforma 7:39

Motsinger AA, Ritchie MD, Reif DM (2007) Novel methods for

detecting epistasis in pharmacogenomics studies. Pharmacoge-

nomics 8:1229–1241

Pan et al (2012) Using PhenX measures to identify opportunities for

cross-study analysis. Hum Mutat. doi:10.1002/humu.22074

Pathak J et al (2011) Evaluating phenotypic data elements for genetics and

epidemiological research: experiences from the eMERGE and PhenX

Network Projects. AMIA Summits Transl Sci Proc 2011:41–45

Ramirez AH et al (2012) Predicting warfarin dosage in European-

Americans and African-Americans using DNA samples linked to

an electronic health record. Pharmacogenomics 13:407–418

Relling MV, Klein TE (2011) CPIC: Clinical Pharmacogenetics

Implementation Consortium of the Pharmacogenomics Research

Network. Clin Pharmacol Ther 89:464–467

Relling MV et al (2011) Clinical Pharmacogenetics Implementation

Consortium guidelines for thiopurine methyltransferase geno-

type and thiopurine dosing. Clin Pharmacol Ther 89:387–391

Ritchie MD et al (2001) Multifactor-dimensionality reduction reveals

high-order interactions among estrogen-metabolism genes in

sporadic breast cancer. Am J Hum Genet 69:138–147

Rodin AS, Gogoshin G, Boerwinkle E (2011) Systems biology data

analysis methodology in pharmacogenomics. Pharmacogenom-

ics 12:1349–1360

Schwarz DF, König IR, Ziegler A (2010) On safari to Random Jungle:

a fast implementation of Random Forests for high-dimensional

data. Bioinformatics 26:1752–1758

Srinivasan BS et al (2009) Methods for analysis in pharmacogenom-

ics: lessons from the Pharmacogenetics Research Network

Analysis Group. Pharmacogenomics 10:243–251

Stephens M, Balding DJ (2009) Bayesian statistical methods for

genetic association studies. Nat Rev Genet 10:681–690

Stolberg HO, Norman G, Trop I (2004) Randomized controlled trials.

AJR Am J Roentgenol 183:1539–1544

Stover PJ, Harlan WR, Hammond JA, Hendershot T, Hamilton CM

(2010) PhenX: a toolkit for interdisciplinary genetics research.

Curr Opin Lipidol 21:136–140

Swan SH, Shaw GM, Schulman J (1992) Reporting and selection bias

in case-control studies of congenital malformations. Epidemiol-

ogy 3:356–363

Tanaka Y et al (2011) Genome-wide association study identified

ITPA/DDRGK1 variants reflecting thrombocytopenia in pegy-

lated interferon and ribavirin therapy for chronic hepatitis C.

Hum Mol Genet 20:3507–3516

Turner S, Dudek S, Ritchie M (2010a) Grammatical evolution of

neural networks for discovering epistasis among quantitative

trait loci. Lect Notes Comput Sci 6023:86–97

Turner SD, Dudek SM, Ritchie MD (2010b) ATHENA: a knowledge-

based hybrid backpropagation-grammatical evolution neural

network algorithm for discovering epistasis among quantitative

trait Loci. BioData Min 3:5

Watson VG, Hardison NE, Harris T, Motsinger-Reif A, McLeod HL

(2011a) Genomic profiling in CEPH cell lines distinguishes

between the camptothecins and indenoisoquinolines. Mol Cancer

Ther 10:1839–1845

Watson VG et al (2011b) Identification and replication of loci

involved in camptothecin-induced cytotoxicity using CEPH

pedigrees. PLoS One 6:e17561

Welsh M et al (2009) Pharmacogenomic discovery using cell-based

models. Pharmacol Rev 61:413–429

White CC et al (2011) CYP4A11 variant is associated with high-

density lipoprotein cholesterol in women. Pharmacogenomics J.

doi:10.1038/tpj.2011.40

Wilke RA et al (2008) Characterization of low-density lipoprotein

cholesterol-lowering efficacy for atorvastatin in a population-

based DNA biorepository. Basic Clin Pharmacol Toxicol

103:354–359

Woodahl EL et al (2008) Pharmacogenomic associations in ABCB1

and CYP3A5 with acute kidney injury and chronic kidney
disease after myeloablative hematopoietic cell transplantation.

Pharmacogenomics J 8:248–255

Yan Q (2008) The integration of personalized and systems medicine:

bioinformatics support for pharmacogenomics and drug discov-

ery. Methods Mol Biol 448:1–19

Yi HG et al (2009) Epidermal growth factor receptor (EGFR) tyrosine

kinase inhibitors (TKIs) are effective for leptomeningeal metas-

tasis from non-small cell lung cancer patients with sensitive

EGFR mutation or other predictive factors of good response for

EGFR TKI. Lung Cancer 65:80–84

Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-

generation sequencing on genomics. J Genet Genomics 38:95–109

Zheng HX et al (2004) The impact of pharmacogenomic factors on

steroid dependency in pediatric heart transplant patients using

logistic regression analysis. Pediatr Transplant 8:551–557

Zhou L, Li X, Liu Q, Zhao F, Wu J (2011) Small RNA transcriptome

investigation based on next-generation sequencing technology.

J Genet Genomics 38:505–513

1626 Hum Genet (2012) 131:1615–1626

123

http://dx.doi.org/10.1002/humu.22074
http://dx.doi.org/10.1038/tpj.2011.40

	The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-GWAS era
	Abstract
	Introduction
	Epidemiologic study designs for pharmacogenomics
	Randomized clinical trials
	Retrospective observational study
	DNA biobanks
	In vitro study design

	Molecular techniques for pharmacogenomics
	Analytic techniques for pharmacogenomics
	Success stories of pharmacogenomics: translational pharmacogenetics
	Warfarin
	Abacavir
	Thiopurines
	Codeine

	Future directions in pharmacogenomics
	Summary
	Open Access
	References


