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Abstract

The preoperative imaging-based differentiation of primary central nervous system lympho-

mas (PCNSLs) and glioblastomas (GBs) is of high importance since the therapeutic strate-

gies differ substantially between these tumors. In this study, we investigate whether the

gamma distribution (GD) model is useful in this differentiation of PNCSLs and GBs. Twenty-

seven patients with PCNSLs and 57 patients with GBs were imaged with diffusion-weighted

imaging using 13 b-values ranging from 0 to 1000 sec/mm2. The shape parameter (κ) and

scale parameter (θ) were obtained with the GD model. Fractions of three different areas

under the probability density function curve (f1, f2, f3) were defined as follows: f1, diffusion

coefficient (D) <1.0×10−3 mm2/sec; f2, D >1.0×10−3 and <3.0×10−3 mm2/sec; f3, D >3.0 ×
10−3 mm2/sec. The GD model-derived parameters were compared between PCNSLs and

GBs. Receiver operating characteristic (ROC) curve analyses were performed to assess

diagnostic performance. The correlations with intravoxel incoherent motion (IVIM)-derived

parameters were evaluated. The PCNSL group’s κ (2.26 ± 1.00) was significantly smaller

than the GB group’s (3.62 ± 2.01, p = 0.0004). The PCNSL group’s f1 (0.542 ± 0.107) was

significantly larger than the GB group’s (0.348 ± 0.132, p<0.0001). The PCNSL group’s f2

(0.372 ± 0.098) was significantly smaller than the GB group’s (0.508 ± 0.127, p<0.0001).

The PCNSL group’s f3 (0.086 ± 0.043) was significantly smaller than the GB group’s (0.144

± 0.062, p<0.0001). The combination of κ, f1, and f3 showed excellent diagnostic perfor-

mance (area under the curve, 0.909). The f1 had an almost perfect inverse correlation with

D. The f2 and f3 had very strong positive correlations with D and f, respectively. The GD

model is useful for the differentiation of GBs and PCNSLs.
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Introduction

The preoperative imaging-based differentiation of primary central nervous system lymphomas

(PCNSLs) and glioblastomas (GBs) is of high importance since the therapeutic strategies differ

substantially between these tumors [1, 2]. The treatment of GBs is based on the maximal possi-

ble safe surgical resection together with postoperative chemoradiation therapy [1] whereas

PCNSLs require a biopsy for histological confirmation followed by chemoradiation therapy

[2]. In typical cases, the differentiation of these tumors by conventional MRI is not always dif-

ficult since PCNSLs shows homogenous contrast enhancing lesions while GBs show irregular

and heterogenous ring enhancing lesion with necrosis. However, it is frequently difficult to dif-

ferentiate these tumors especially when they demonstrate atypical imaging features.

Several studies have indicated that advanced MRI techniques such as diffusion-weighted imag-

ing (DWI) [3–6], dynamic susceptibility contrast perfusion-weighted imaging [6–8], and arterial

spin labeling [9] are useful for distinguishing PCNSLs and GBs. According to those studies, PCNSLs

are characterized by more restricted water diffusion and lower perfusion compared to GBs.

Many mathematical models have been proposed for the analysis of diffusion MRI. The

mono-exponential model describes the Brownian motion of water molecules by calculating

the apparent diffusion coefficient (ADC) based on the Gaussian distribution of diffusion dis-

placement [3]. The bi-exponential intravoxel incoherent motion (IVIM) model aims to sepa-

rate the true water diffusion and the capillary perfusion by using multiple low b-values [10,

11]. Diffusion kurtosis imaging (DKI) is an approach used to characterize non-Gaussian water

diffusion, which estimates kurtosis metrics [12].

It has been reported that all of these approaches are useful in differentiating GBs and

PCNSLs [3, 13, 14], but all have possible limitations. The mono-exponential model may not

precisely reflect the reality of diffusion behavior in heterogenous biological tissues, since this

model assumes a Gaussian distribution. The bi-exponential model could be influenced by an

uncertainty of the estimated perfusion, since signal measurements at low b-values are suscepti-

ble to measurement errors [15–18]. The DKI model is limited by the unclear biological inter-

pretation of the kurtosis parameters [18–21].

As one of the non-Gaussian distribution models, a statistical model based on the gamma dis-

tribution (GD) has been proposed for diffusion MRI analyses [22]. The GD model is a two-

parameter family of continuous probability distribution parametrized in terms of the shape

parameters kappa (κ) and the scale parameter theta (θ), and this model assumes that the diffusion

coefficient (D) is distributed continuously within a voxel. The GD model allows us to estimate

fractions of a tissue type based on the concept that the area fractions for D<1.0 × 10−3 mm2/sec,

D = 1.0 × 10−3 to 3.0 ×10−3 mm2/sec, and D>3.0 ×10−3 mm2/sec are attributed to intracellular,

extracellular extravascular, and intravascular spaces, respectively [18, 22, 23]. Based on these frac-

tions, we may be able to estimate histopathological conditions of neoplasms or organs.

The GD model has been used to assess prostate cancers [22–24], breast cancers [18], and

renal function [25]. The GD model was also used to assess cerebral ischemic stroke in rat

brains, and it was showed that this model exhibited a better performance than the conven-

tional mono-exponential model and allowed for a significantly enhanced visualization of

ischemic lesions [26]. To the best of our knowledge, its application to brain tumors has never

been reported. We conducted the present study to determine whether the GD model is useful

in the differentiation of PCNSLs and GBs.

Materials and methods

This retrospective study was approved by the Institutional Review Board of Kyushu University

Hospital (no. 2019–447), and the requirement for informed consent was waived.
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Patients

The DWI protocol with multiple b-values has been a part of our routine preoperative MRI

examination for patients with brain tumors since January 2013. The patient inclusion criteria

for this study were: (1) The DWI with multiple b-values was conducted preoperatively for the

patient during the period from January 2013 to August 2019; and (2) The patient subsequently

underwent a surgical resection or biopsy within 1 month of the DWI with multiple b-values,

and the histopathological diagnosis of PCNSL or GB was made. A total of 89 patients met these

criteria. The exclusion criteria were as follows: (1) no distinct contrast enhancement observed in

the lesion (n = 3); and (2) difficulty in the analysis of images due to severe artifacts (n = 2). Thus,

a total of 84 patients including 27 with PCNSLs (age, 62.9 ± 15.5 years; Male, 17 patients; Female,

10 patients) and 57 with GBs (age, 66.0 ± 16.4 years; Male, 31 patients; Female, 26 patients) were

included in this study. The difference between the number of patients with PCNSLs and GBs

can be explained by the fact that the PCNSLs are less frequent compared to the GBs [27].

MRI

Multi-b-value DWI was performed on a 3T clinical scanner (Achieva 3.0TX or Ingenia 3.0T, Phil-

ips Healthcare, Best, The Netherlands) with an 8-channel or 15-channel head coil. The DWI was

performed in axial planes by using a single-shot echo-planar imaging diffusion sequence, with 13

b-values (0, 10, 20, 30, 50, 80, 100, 200, 300, 400, 600, 800, 1000 sec/mm2) in three orthogonal

directions. The other imaging parameters were: repetition time, 2,500 msec; echo time, 70 msec;

matrix, 128×126 (reconstructed to 256×256); slice thickness, 5 mm, field of view, 230×230 mm;

number of slices, 11; sensitivity encoding factor, 1.5; scan time, 2 min 7 sec. For reference, several

standard MR images including contrast-enhanced T1-weighted images were acquired.

Image analysis

The mono-exponential model was computed using all of the above-listed b-values according

to the following equation:

Sb
S0

¼ e� b�ADC ð1Þ

where Sb is the signal intensity for each b-value and S0 is the signal intensity at a b-value of zero.

In the bi-exponential model, the signal decay was estimated by the following the equation:

Sb
S0

¼ ð1 � f Þ � e� bD þ f � e� bD� ð2Þ

where D� is the pseudo-diffusion coefficient, and the f is the volume fraction within a voxel of

water flowing in perfused capillaries.

The GD model is represented by ρ(D) and is given by:

r Dð Þ ¼
1

GðkÞy
k �Dk� 1 � exp

� D
y

� �

ð3Þ

where κ describes the shape parameter and θ describes the scale parameter. When the distribu-

tion of D follows this equation, the signal intensity on DWI is given by:

S bð Þ ¼ S0 �
1

ð1þ ybÞk
ð4Þ
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Three different areas under the probability density function (PDF) curve were defined as

follows: f1, the fraction of D <1.0×10−3 mm2/sec; f2, the fraction of 1.0×10−3 to 3.0×10−3 mm2/

sec; f3, the fraction of D >3.0×10−3 mm2/sec. The f1 value is attributed to the intracellular

component; the f2 is attributed to the extracellular extravascular component, and the f3 is

attributed to the intravascular component [18, 22, 23].

The DWI data in the digital imaging and communications in medicine (DICOM) format

were transferred to a personal computer and fit to the GD model, and then the κ and θ values

were estimated using the Image J software program (ver. 1.52p; U.S. National Institutes of

Health, Bethesda, MD) and self-built plug-ins. After the export of the x- and y-coordinates and

the κ and θ of each pixel within the region of interest (ROI), the f1, f2, and f3 values of each

pixel were calculated using Microsoft Excel ver. 16.16.14.

ROI placement

The matrix sizes of the postcontrast T1-weighted images were adjusted to the same size as

those of the DWI using the ImageJ function to match the geometric information of these

images. ROIs were placed to delineate the enhancing lesion on the single slice that had the

maximum area. On the size-adjusted postcontrast T1-weighted images, areas showing contrast

enhancement were manually segmented by a neuroradiologist with 19 years of experience (O.

T.) (Fig 1). The areas with necrosis, cystic lesion, hemorrhage, or obvious artifacts were care-

fully excluded from the ROI.

The ROIs were copied from the postcontrast T1-weighted images and pasted to the DWI.

Fine manual adjustments were made when there were locational mismatches due to image dis-

tortion or the patient’s motion, etc. The ROIs were also placed on the peritumoral non-con-

trast-enhancing T2-hyperintense areas to evaluate whether there were differences in

histological features including tumor infiltration or increased vascularity in the peritumoral

areas between PCNSLs and GBs. In addition, the ROIs were placed on the contralateral nor-

mal-appearing white matter. The ROIs for the peritumoral non-contrast-enhancing T2-hyper-

intense areas and contralateral normal-appearing white matter were measured on the image

obtained with the b-value of 0 sec/mm2 image. The same ROIs were used for all DWI analyses.

Statistical analyses

The GD model-derived and IVIM-derived parameters were compared between the PCNSLs

and GBs with the Mann-Whitney U-test. A receiver operating characteristic (ROC) curve anal-

ysis was performed to assess the diagnostic performance of the parameters in the differentia-

tion of PCNSLs and GBs. The area under the curve (AUC) was calculated, and then the

sensitivity and specificity were obtained. The optimal cutoff point was determined by You-

den’s method [28]. The diagnostic performance was considered excellent for AUC values

between 0.9 and 1.0, good for AUC values between 0.8 and 0.9, fair for AUC values between

0.7 and 0.8, poor for AUC values between 0.6 and 0.7, and failed for AUC values between 0.5

and 0.6 [29].

To determine whether the combination of multiple parameters for both the GD model and

the IVIM model increases the diagnostic performance, we first performed a stepwise analysis

to select the explanatory variables for a multiple regression model from a group of candidate

variables by going through a series of automated steps. A forward-selection rule was applied in

which the analysis started with no explanatory variables and then added variables, one by one,

based on which variable was the most statistically significant, until there were no remaining

statistically significant variables [30, 31]. We then performed a binomial logistic regression

analysis to examine the AUCs of the combinations of the selected parameters. Two
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independent AUCs were compared using the method of Delong et al. [32]. The correlations

among the parameters were assessed with Pearson’ correlation. Statistical analyses were per-

formed with Prism 5.0 (GraphPad Software, San Diego, CA), MedCalc 19.1 (Broekstraat, Mar-

iakerke, Belgium), and JMP Pro 14.0 (SAS Institute, Cary, NC). P-values <0.05 were

considered significant.

Results

Comparisons of the parameters between the PCNSL and GB groups

The detailed information for the parameters in the gadolinium enhancing lesion, peritumoral

T2-hyperintense areas without contrast enhancement, and normal appearing white matter is

summarized in Table 1.

The results of our comparisons of the GD model-derived parameters between the PCNSLs

and GBs in the gadolinium-enhancing lesions are shown in Fig 2. In the gadolinium-enhanc-

ing lesions, the κ was significantly smaller in the PCNSL group (2.26 ± 1.00) than in the GB

group (3.62 ± 2.01, p = 0.0004), the f1 was significantly larger in the PCNSL group

(0.542 ± 0.107) than in the GB group (0.348 ± 0.132, p<0.0001), the f2 was significantly smaller

Fig 1. Regions-of-interest (ROIs). Fig 1A and 1B show a GB with ring enhancement, and Figures C and D show a

PCNSL with solid enhancement. The ROIs were placed on postcontrast T1-weighted images to include contrast

enhancing lesions (A, C, area #1). The ROIs were also placed on the non-contrast-enhancing T2-hyperintense areas

surrounding the contrast-enhancing area (area #2) and the contralateral normal-appearing white matter (B, D, area

#3).

https://doi.org/10.1371/journal.pone.0243839.g001
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in the PCNSL group (0.372 ± 0.098) than in the GB group (0.508 ± 0.127, p<0.0001), and the

f3 was significantly smaller in the PCNSL group (0.086 ± 0.043) than in the GB group

(0.144 ± 0.062, p<0.0001), while the θ was not significantly different between the groups.

In the peritumoral T2-hyperintense areas without contrast enhancement, no significant dif-

ferences were found between the PCNSL and GB groups for any of the GD model derived

parameters.

In the contralateral normal-appearing white matter, the f1 was significantly larger in the

PCNSL group (0.642 ± 0.047) than in the GB group (0.593 ± 0.044, p<0.0001), the f2 was sig-

nificantly smaller in the PCNSL group (0.316 ± 0.036) than in the GB group (0.354 ± 0.038,

p<0.0001), and the f3 was significantly smaller in the PCNSL group (0.043 ± 0.026) than in the

GB group (0.053 ± 0.019, p = 0.0105).

Fig 3 provides a PCNSL case that showed a ring-like enhancing mass lesion mimicking a

GB. This lesion showed a low κ, a large f1, a small f2, and a small f3, suggesting PCNSL. Fig 4

demonstrates a GB case that showed a solid enhancing mass lesion. This lesion showed a small

κ, a small f1, moderate f2 and large f3, which are consistent with GB.

Table 1. Gamma distribution model-derived parameters in PCNSLs and GBs.

κ θ (×10−6 mm2/s) f1 f2 f3

Enhancing lesion PCNSL 2.26±1.00 p = 0.0004 1.91±2.43 p = 0.6341 0.542±0.107 p<0.0001 0.372±0.098 p<0.0001 0.086±0.043 p<0.0001

GB 3.62±2.01 1.72±1.63 0.348±0.132 0.508±0.127 0.144±0.062

T2-hyperintense areas PCNSL 8.23±2.42 p = 0.8528 0.39±0.19 p = 0.4747 0.140±0.066 p = 0.4014 0.775±0.074 p = 0.8882 0.085±0.045 p = 0.2570

GB 8.36±3.18 0.40±0.25 0.188±0.150 0.752±0.128 0.073±0.040

NAWM PCNSL 2.76±1.18 p = 0.6341 0.85±0.45 p = 0.1436 0.642±0.047 P<0.0001 0.316±0.036 p<0.0001 0.043±0.026 p = 0.0105

GB 2.55±0.75 1.08±1.41 0.593±0.044 0.354±0.038 0.053±0.019

PCNSL, primary central nerve system lymphoma; GB, glioblastoma; NAWM, normal appearing white matter.

https://doi.org/10.1371/journal.pone.0243839.t001

Fig 2. Comparisons of the GD model-derived parameters between the PCNSLs and GBs in the gadolinium-

enhancing lesion. A: The κ was significantly smaller in the PCNSL group than in the GB group. B: The θ was not

significantly different between the groups. C–E: The f1 was significantly larger and the f2 and f3 were significantly

smaller in the PCNSL group than in the GB group.

https://doi.org/10.1371/journal.pone.0243839.g002
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The ADC values of the enhancing lesions were significantly smaller in the PCNSL group

(0.883 ± 0.176 × 10−3 mm2/sec) compared to the GB group (1.246 ± 0.266 × 10−3 mm2/sec,

p<0.0001). The PCNSL group’s D values were significantly smaller (0.805 ± 0.167 × 10−3

mm2/sec) compared to the GB group’s D values (1.146 ± 0.256 ×10−3 mm2/sec, p<0.0001).

The D� was significantly smaller in the PCNSL group (34.0 ± 7.4 × 10−3 mm2/sec) versus the

Fig 3. A 62-year-old-male with a PCNSL. A: The post-contrast T1-weighted image shows a ring-like enhancing mass

lesion in the right frontal lobe (arrow). The enhancing lesion shows high signal intensity on the DWI (B) and a low

ADC (0.70×10−3 mm2/sec, C). This lesion shows a small κ (1.76, D), a large θ (4.85×10−6 mm2/sec, E), a large f1 (0.626,

F), a small f2 (0.270, G), and a small f3 (0.104, H). The peritumoral T2-hyperintense area without contrast

enhancement shows a large κ (8.18, D), a small θ (0.46×10−6 mm2/sec, E), a small f1 (0.139, F), a large f2 (0.772, G),

and a small f3 (0.090, H).

https://doi.org/10.1371/journal.pone.0243839.g003

Fig 4. A 66-year-old-male with a GB. A: The post-contrast T1-weighted image shows a solid enhancing mass lesion

in the right thalamus (arrow). The enhancing lesion shows partly high signal intensity on DWI (B) and a relatively

high ADC (1.42×10−3 mm2/sec, C). This lesion shows a small κ (1.44, D), a large θ (3.15×10−6 mm2/sec, E), a small f1

(0.297, F), a moderate f2 (0.399, G), and a large f3 (0.304, H). The peritumoral T2-hyperintense area without contrast

enhancement shows a large κ (3.94, D), a small θ (0.75×10−6 mm2/sec, E), a small f1 (0.308, F), a large f2 (0.597, G),

and a small f3 (0.095, H).

https://doi.org/10.1371/journal.pone.0243839.g004
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GB group (40.7 ± 5.6 × 10−3 mm2/sec, p<0.0001). The f was significantly smaller in the PCNSL

group (0.082 ± 0.024) compared to the GB group (0.102 ± 0.023, p = 0.0005).

Diagnostic performance of the single and combined parameters

The ROC graphs and diagnostic performance parameters are shown in Fig 5 and Table 2. In

the single-parameter analysis regarding the differential diagnosis of GBs and PCNSLs, the

Fig 5. ROC graphs. The combination of κ, f1, and f3 demonstrated excellent diagnostic performance with the AUC of

0.909, sensitivity of 84.2%, and specificity of 88.9%. The f1 (AUC 0.877) and f2 (AUC 0.817) showed good

performances. The κ (AUC 0.737) and f3 (AUC 0.778) showed fair diagnostic performances. The θ (AUC 0.533)

resulted in a failed performance.

https://doi.org/10.1371/journal.pone.0243839.g005

Table 2. ROC analysis for diagnostic performance of the parameters in the differentiation between PCNSLs from GBs.

Parameters Area Under Curve Sensitivity (%) Specificity (%) Cutoff Value

κ 0.737 61.4 81.5 2.954

θ 0.533 68.4 48.1 0.971 ×10−3 mm2/sec

f1 0.877 82.5 81.5 0.474

f2 0.817 87.7 70.4 0.380

f3 0.778 71.9 70.4 0.104

κ+f1+f3 0.909 84.2 88.9 0.540 0.404 0.133

D 0.875 86.0 81.5 0.887×10−3 mm2/sec

D� 0.776 66.7 85.2 40.089×10−3 mm2/sec

f 0.731 78.9 63.0 0.087

D+f 0.884 82.5 81.5 0.998×10−3 0.072

ADC 0.879 87.7 77.8 0.972 ×10−3 mm2/sec

ROC, receiver operating characteristics; PCNSL, primary central nerve system lymphoma; GB, glioblastoma; D, true diffusion coefficient; D�, pseudo-diffusion

coefficient; f, perfusion fraction; ADC, apparent diffusion coefficient.

https://doi.org/10.1371/journal.pone.0243839.t002
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ADC, f1, D, and f2 all showed good performances. The ADC showed the highest AUC value at

0.879, and the f1 and D values showed comparable AUCs (f1, 0.877; D, 0.875). No significant

differences were found in the comparisons of ROC curves for these three parameters: f1 vs.

ADC, p = 0.6130, f1 vs. D, p = 0.8449; ADC vs. D, p = 0.3935. The κ, f3, D�, and f showed fair

diagnostic performances, but the θ resulted in a failed performance.

In the combined-parameters analysis, the stepwise procedure selected κ, f1, and f3 for the

GD model, and the D and f for the IVIM model. The combination of κ, f1, and f3 revealed

excellent diagnostic performance with the AUC of 0.909, sensitivity of 84.2%, and specificity of

88.9%. This combination increased the diagnostic performance of κ (p = 0.0016), and f3

(p = 0.0075), although it did not improve the performance of f1 (p = 0.1950). The AUC of this

combination (0.909) was higher than that of ADC (0.879); however, there was no significant

difference between them (p = 0.2152).

The combination of D and f showed good diagnostic performance with the AUC of 0.884,

82.5% sensitivity, and 81.5% specificity. This combination improved the diagnostic perfor-

mance of f (p = 0.0077), although it did not improve the performance of D (p = 0.5276).

Among all of the single and combined parameters, the combination of κ, f1, and f3 showed

the highest AUC; however, no significant differences were detected between this combination

and the ADC (p = 0.2152) or the combination of D and f (p = 0.2207).

Correlations of the model parameters

Fig 6 shows the correlations among the GD model-derived and IVIM model-derived parame-

ters in all tumors. The f1 had an almost perfect inverse correlation with D (all, r = −0.9756,

p<0.0001; PCNSL, r = −0.9558, p<0.0001; GB, r = −0.9699, p<0.0001). The f2 had a very

strong positive correlation with D (all, r = 0.8865, p<0.0001; PNCSL, r = 0.9619, p<0.0001;

GB, r = 0.8273, p<0.0001). The f3 had a very strong positive correlation with the f (all,

r = 0.8654, p<0.0001; PNCSL, r = 0.8317, p<0.0001; GB, r = 0.8611, p<0.0001). The f1 had an

very strong negative correlation with the f2 (all, r = −0.9155, p<0.0001; PCNSL, r = −0.9150,

p<0.0001; GB, r = −0.8874, p<0.0001).

Discussion

The results of our analyses revealed that in gadolinium-enhancing lesions, the κ was signifi-

cantly smaller in the PCNSL group than in the GB group. The θ was not different between the

groups. The f1 was larger, the f2 was smaller, and the f3 was lower in the PCNSLs than in the

GBs. The low κ values observed in the PCNSLs indicated that the PDF curve had a right-

skewed distribution, which meant that the PDF has its peak in the lower D area, and thus the

fraction of lower D was larger. Since the θ values were not significantly different between the

PCNSL and GB groups, it was likely that the lower κ values might result in the lower ADC and

D values and the higher f1 values observed in the PCNSLs compared to the GBs. These find-

ings are in accordance with studies that examined the mono-exponential model, in which

PCNSLs showed lower ADC values relative to GBs [3–5].

The θ is a scale parameter and may thus reflect the heterogeneity of a biological tissue. We

expected that the θ values would be larger in GBs than in PCNSLs since GBs are histologically

characterized by intratumoral tissue heterogeneity whereas PCNSLs are characterized by the

dense and homogenous distribution of tumor cells; however, no significant difference in the θ
values was observed between the groups. The θ values showed large standard deviations in

both the PCNSLs and the GBs, indicating that this value could vary widely even in the same

type of tumor. The same trend was observed in a study of breast tumors in which the θ values
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were not significantly different between the different types [18]. The utility of this parameter

should be further evaluated in larger populations.

It seems that the higher f1 and lower f2 in the PCNSLs and the lower f1 and higher f2 in the

GBs well reflected the histological features of the respective tumors. Histologically, PCNSLs

are characterized by high cell density at the expense of reduced available extracellular space,

and necrosis is not a common feature of this tumor. GBs can show locally high cell density, but

the overall cell density can be lowered depending on the fraction of microscopic necrosis or

hemorrhage. Our present findings are consistent with a study that reported that the ADC was

lower and the cell density was higher in PNCSLs than in high-grade gliomas [3].

The GB group showed larger f3 and f compared to the PCNSL group. This may be attrib-

uted to the difference in vascularity of these tumors. Pathologically, neovascularization is a key

feature of GB while it is not prominent in PCNSL [33, 34]. Our results are consistent with

those from previous studies using dynamic susceptibility contrast perfusion-weighted imaging

and arterial spin labeling imaging [9, 35].

With respect to the diagnostic performance, the ADC, f1, and D showed comparable AUCs

in the present study, indicating that all three of these parameters are useful in the differentia-

tion of PNCSLs and GBs. The reason for the slightly higher AUC observed with the ADC

Fig 6. The correlations among the GD model-derived and IVIM model-derived parameters in all tumors. The f1

had an almost perfect inverse correlation with D. The f2 had a very strong positive correlation with D. The f3 had a

very strong positive correlation with the f.

https://doi.org/10.1371/journal.pone.0243839.g006
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could be the effect of perfusion on ADC measurements. In hyperperfused tissues, ADC will be

affected by the perfusion effect and overestimated compared to D; however, since both f1 and

D are parameters without a perfusion effect in theory, an overestimation caused by perfusion

should not be observed in these values. Therefore, in hypervascular tumors such as GBs, the

ADC should be larger than D. On the other hand, in hypovascular tumors such as PCNSLs,

this difference between ADC and D should smaller. This means that the difference between

ADC and D would be larger in GBs than in PCNSLs. Therefore, ADC could show higher diag-

nostic performance in the discrimination of these two tumors than D. In fact, the difference

between the ADC and D values was greater in the GBs (0.100 × 10−3 mm2/sec) than in the

PCNSLs (0.078 × 10−3 mm2/sec), which was most likely due to the higher perfusion effect on

the ADC in GBs than in PCNSLs. Nevertheless, the combination of κ, f1, and f3 demonstrated

the highest diagnostic performance among all of the single and combined parameters, with the

AUC of 0.909. The AUC of this combination tended to be higher than that of ADC although

there was no statistically significant difference. Whether the combination of parameters of the

GD model has an additive value should be evaluated in a larger population, since we did not

observe statistical significance in all of our comparisons.

We found the correlations between the GD model-derived and IVIM-derived parameters,

particularly between the f1 and D, the f2 and D, and the f3 and f. The almost perfect negative

correlation observed between the f1 and D may indicate that these two parameters contain vir-

tually identical information. The positive correlation between f2 and D suggests that the

increased extracellular space like that taken up by microscopic necrosis might result in the

higher f2. The positive correlation between f3 and f indicates that both of these parameters

well reflected tissue perfusion despite the different analysis methods used. The negative corre-

lation between f1 and f2 was likely due to the complementary relationship between these two

parameters. In general, intravascular space (≒ f3) is smaller compared to intracellular (≒ f1)

and extracellular extravascular space (≒ f2). In fact, the f3-values were much smaller than the

f1- and f2-values in both PCNSLs and GBs in the present study. Therefore, the increase in f1

would result in the decrease in f2, and vice versa. Although the GD-derived and IVIM-derived

parameters provide similar information, the strength of the GD model-derived parameters is

that all fraction values (f1, f2, f3) are expressed as fractions or percentages, which allows us to

well characterize tumors from histological viewpoint. The IVIM-derived f-value is also

expressed in a percentage or fraction; however, the IVIM analysis is not able to provide the

fraction values for intracellular and extracellular-extravascular spaces. In this sense, the IVIM

method is not a perfect method for the histological characterization of tumors.

In the T2-hyperintense lesions without contrast enhancement, no significant differences

were observed between the PCNSL and GB groups for any parameters. There have been sev-

eral studies that showed increased rCBV on DSC-perfusion imaging in peritumoral noncon-

trast-enhancing T2-hyperintense areas of GBs [36, 37]. The results of these studies indicated

that the peritumoral areas of GB include not only vasogenic edema but also tumor cells infil-

trating surrounding brain parenchyma; however, our study did not reveal any significant dif-

ferences in the GD model-based parameters for peritumoral noncontrast-enhancing

T2-hyperintense areas between PCNSLs and GBs. The f2 values in the noncontrast-enhancing

T2-hyperintense areas were higher in both types of tumor compared to those in the contrast-

enhancing areas and normal appearing white matter. We assume that the high f2 values in the

noncontrast-enhancing T2-hyperintense areas are likely to reflect mostly perifocal vasogenic

edema rather than tumor infiltration outside the enhancing lesion. Our result is consistent

with the previous DWI study in which ADC could not be used to differentiate edema with

infiltration of tumor cells from vasogenic edema in high-grade gliomas and PCNSLs [38].
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In the normal-appearing white matter, the GB group showed larger f1, smaller f2, and larger

f3 than the PCNSL group although these differences were small. This was unexpected, and the

reasons for the differences remain unclear; however, since GBs frequently show extensive infil-

tration into the surrounding brain tissue, which is a fundamental feature of diffuse glioma, it is

no wonder that the increased cell density and perfusion were observed in the normal-appear-

ing white matter.

This study has several limitations. The number of patients was relatively small (n = 84) —

especially the number of patients with PCNSL (n = 27). The only one person performed the

ROI placements on a single slice, and not whole tumor volume was evaluated. The ROI place-

ments on the gadolinium-enhancing lesions were occasionally difficult, particularly when the

lesions showed irregular and thin ring-like enhancement. Although the best effort was made

to include only enhancing lesions, it is possible that necrosis in tumors was included, and this

could have affected the analyses. In addition, the selection of b-values has not yet been opti-

mized. Prior studies of the GD model used the maximum b-values ranging from 1000 to 3000

sec/mm2 [18, 22–24]. In a study of prostate cancers, Oshio et al. used the similar DWI parame-

ters to ours and the highest b-value of 1000 s/mm2, and reported that the good fitting accuracy

was observed in both cancerous tissues (R2 = 0.99226) and normal tissues (R2 = 0.99842) [22].

Their result indicated that DWI with the highest b-value of 1000 s/mm2 can be used for GD

model analyses; however, since it was reported that the non-monoexponential diffusion-

related signal decay generally becomes more obvious over more extended b-value ranges, the

maximum b value of 1000 sec/mm2 used in the present study might be lower than the optimal

value. The optimal b-values and numbers should be elucidated in future studies.

Conclusions

The GD model well described the histological features of PCNSLs and GBs, and its use enabled

the significant differentiation of these tumors. The κ, f2, and f3 values were significantly

smaller and the f1 values were significantly larger in the PCNSLs than in the GBs. The combi-

nation of κ, f1, and f3 showed the highest AUC. The GD model-derived parameters correlated

well with the IVIM-derived parameters. The GD model may therefore contribute to the char-

acterization of various brain tumors from the histological viewpoint.
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