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Monitoring clinical progression with
mitochondrial disease biomarkers
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Mitochondrial disorders are genetically determined metabolic diseases due to a biochemical deficiency of the respiratory chain.

Given that multi-system involvement and disease progression are common features of mitochondrial disorders they carry substan-

tial morbidity and mortality. Despite this, no disease-modifying treatments exist with clear clinical benefits, and the current best

management of mitochondrial disease is supportive. Several therapeutic strategies for mitochondrial disorders are now at a mature

preclinical stage. Some are making the transition into early-phase patient trials, but the lack of validated biomarkers of disease

progression presents a challenge when developing new therapies for patients. This update discusses current biomarkers of mito-

chondrial disease progression including metabolomics, circulating serum markers, exercise physiology, and both structural and

functional imaging. We discuss the advantages and disadvantages of each approach, and consider emerging techniques with a

potential role in trials of new therapies.
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Introduction
Mitochondrial disorders are genetically determined meta-

bolic diseases due to a biochemical deficiency of the respira-

tory chain that affect around 1 in 4300 of the population

in the UK (Gorman et al., 2015). Given that multisystem

involvement and disease progression are common features,

mitochondrial disorders carry substantial morbidity and are

associated with excess premature death (Kaufmann et al.,

2011). Despite this burden, a recently published Cochrane

review did not identify any disease-modifying treatments of

benefit (Pfeffer et al., 2012), and current best management

of mitochondrial disease is therefore supportive.

Consequently there is an unmet need for treatments that

modify the underlying biochemical deficit and disease

trajectory.

However, the development of new therapeutic strategies

presents major challenges for the scientific, pharmaceutical,

academic and clinical communities (Food and Drug

Administration, 2004). For rare diseases, including mito-

chondrial disorders, these issues are magnified through

the geographical dispersion of patients, the use of
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heterogeneous patient groups in both interventional and

natural history studies to date, and historically at least, a

perceived lack of return on financial investment for the

pharmaceutical industry (Pfeffer et al., 2013). As biomarker

identification provides a means of overcoming some of

these barriers—for example, enabling prospective com-

pounds to be assessed in a practical timescale, or facilitat-

ing patient subgroup categorization—their development has

been afforded high scientific priority (Food and Drug

Administration, 2004).

Biomarkers are widely defined as: ‘A characteristic that is

objectively measured and evaluated as an indicator of

normal biologic processes, pathogenic processes, or

pharmacologic response(s) to a therapeutic intervention’

(Biomarkers Definitions Working Group, 2001). With

increasing scientific focus on developing biomarkers, an ex-

pansive nomenclature has emerged (Biomarkers Definitions

Working Group, 2001; Altar et al., 2008; Wagner, 2008).

‘Drug-related’ biomarkers are those identifying novel path-

ways, or enabling assessment of drug-target interactions;

while ‘disease-related’ biomarkers reflect the presence or

absence of disease, aid disease stratification, guide progno-

sis or inform disease natural history (Fig. 1). Following

identification of a potential biomarker, it should be both

validated and qualified: where validation refers to the pro-

cess of determining assay reliability, and qualification de-

scribes the process of linking a biomarker with biological

processes and clinical endpoints. Where biomarkers have a

specific purpose, in a specific patient cohort, their impact

on clinical trial design is outlined in Fig. 1.

Traditionally, biomarkers in mitochondrial diseases have

been used to improve diagnostic accuracy or target those

who should undergo invasive investigation. However, as

next generation sequencing techniques progressively im-

prove the diagnostic process (Taylor et al., 2014), alterna-

tive uses of biomarkers can be increasingly explored. As

several therapeutic strategies for mitochondrial disorders

are now at a mature preclinical stage (Bogacka et al.,

2005; Lagouge et al., 2006; Yatsuga and Suomalainen,

2012), and are making the transition into early-phase pa-

tient trials (Table 1), it is the lack of validated biomarkers

for disease progression that currently presents the biggest

challenge in developing new therapies for patients.

The unmet need for surrogate markers of disease pro-

gression becomes clear when considering three key clinical

features of mitochondrial diseases. First, the disorders are

notoriously heterogeneous—even within genetically homo-

geneous groups. Second, acute relapses are frequently

experienced; and third, baseline progression tends to

occur slowly over a number of years. In the context of

clinical trials, and particularly early phase trials that tend

to be conducted over short timescales (e.g. 6 weeks to 6

months), these factors present significant barriers in deter-

mining therapeutic efficacy. Given this, our review will

focus on scientific approaches to identify biomarkers of

clinical disease progression in mitochondrial disorders

with a unique emphasis on emerging preclinical tech-

niques. We are aware that mitochondrial abnormalities

may be secondary to various cellular processes including

calcium metabolism, neurode generation and various meta-

bolic diseases; however, the role of mitochondria in these

diseases needs further investigations (Pyle et al., 2015).

Therefore, we focus this update on primary mitochondrial

disorders.
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Figure 1 Potential impact of biomarkers on clinical trials.
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Metabolomics
A fundamental feature of primary mitochondrial disorders

is deficient oxidative phosphorylation, with both up- and

downstream metabolic perturbations arising secondarily.

Abnormalities in lactate, pyruvate, creatine kinase, amino

acids and carnitines are firmly established in the clinical

investigation of mitochondrial diseases. However, their

diagnostic sensitivity and specificity is poor (Petty et al.,

1986; Campos et al., 1993; Jackson et al., 1995; Sim

et al., 2002; Jeppesen et al., 2006a; Haas et al., 2008;

Suomalainen et al., 2011; Yamada et al., 2012; Davis

et al., 2013) and there are limited natural history studies

studying change in relation to disease progression. To date,

metabolomic approaches have been highly successful in

identifying potential biomarkers in a diverse range of dis-

orders including: cancers (Puchades-Carrasco et al., 2013;

Rocha et al., 2015; Cui et al., 2016), vascular disease (Jove

et al., 2015; Naz et al., 2015), renal transplantation

(Kienana et al., 2015), respiratory diseases (Adamko

et al., 2015), immunological disorders (Young et al.,

2013; Saegusa et al., 2014), liver disease (Gao et al.,

2015), and diabetes (Balderas et al., 2013; Drogan et al.,

2015). With secondary mitochondrial dysfunction arising

in several of these conditions (Wallace, 2012; Yu et al.,

2012; Begriche et al., 2013; Cloonan and Choi, 2016),

alongside the association of diabetes with primary mito-

chondrial diseases, the application of metabolomics in gen-

etically determined mitochondrial cohorts is timely and

holds great potential.

For a multi-systemic disorder, a particularly attractive

feature of metabolomic analysis is that it can be undertaken

using CSF, blood, urine, saliva, or solid biopsy samples. It

is unknown at present which of these is optimal in mito-

chondrial disorders specifically, but non-invasive (urine/

saliva) or minimally invasive (blood) samples would facili-

tate repeated measurements in both longitudinal and thera-

peutic settings. Initial study of the urinary proteome and

metabolome in patients with heterogeneous mitochondrial

disorders identified key differences between carriers,

healthy controls and those manifesting symptoms (Hall

et al., 2015).

Analysis can be undertaken using either nuclear magnetic

resonance spectrometry (NMR spectrometry) or mass spec-

trometry (MS) techniques. NMR spectrometry can utilize

samples in both solid and liquid states; is highly reprodu-

cible, and is better at analyte quantification than mass spec-

trometry (Emwas, 2015). However, mass spectrometry

techniques have significantly higher sensitivity than NMR

spectrometry, enabling detection of analytes at low concen-

trations (femto–attomolar) thereby facilitating recognition

of metabolites not traditionally measured in routine clinical

practice, with a relevant example being the alteration of

sphingomyelins and phosphatidylcholines in a cohort with

Leber’s hereditary optic neuropathy (Chao de la Barca

et al., 2016).

Furthermore, data arising from metabolomics studies can

be used in a variety of clinically meaningful ways. In add-

ition to genotype or phenotype specific cohort analysis

identifying specific disease manifesting and carrier

Table 1 Active clinical trials of potential disease modifying agents for primary mitochondrial diseases,

ClinicalTrials.gov April 2017

Study title Phase Design IMP

The effect of arginine and citrulline supplementation on endothelial dysfunction in

mitochondrial diseases

II R, PC, DB, CO Arginine, citrulline

Study to assess the efficacy and safety of Raxone in LHON patients (LEROS) IV OL Idebenone

An exploratory, double-blind, randomized, placebo-controlled, single-center, two-way

cross-over study with KH176 in patients with the mitochondrial DNA

tRNALeu(UUR) m.3243A4G mutation and clinical signs of mitochondrial disease

II R, PC, DB, CO KH173

A study of bezafibrate in mitochondrial myopathy II OL Bezafibrate

RTA 408 capsules in patients with mitochondrial myopathy - MOTOR II R, PC, DB RTA408

Efficacy study of GS010 for the treatment of vision loss up to 6 months from

onset in LHON due to the ND4 mutation (RESCUE)

III R, Sham C, DB GS010

EPI-743 for metabolism or mitochondrial disorders II R, PC, DB, CO EPI-743

MNGIE allogeneic hematopoietic stem cell transplant safety study (MASS) I OL Hematopoietic

allogeneic

stem cells
A study investigating the safety, tolerability, and efficacy of elamipretide (MTP-131)

topical ophthalmic solution for the treatment of Leber’s hereditary optic

neuropathy

II R, PC, DB MTP-131

Safety study of an adeno-associated virus vector for gene therapy of Leber’s hereditary

optic neuropathy (LHON) caused by the G11778A mutation (LHON GTT)

I OL scAAV2-P1ND4v2

Long term safety and efficacy study of EPI-743 in children with Leigh syndrome II R, PC, DB EPI-743

CO = crossover; DB = double blinded; IMP = investigational medicinal product; OL = open label; PC = placebo controlled; R = randomized; Sham C = sham controlled.
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‘signatures’ (Hall et al., 2015), longitudinal ‘n-of-1’ studies

can be undertaken to facilitate analysis of metabolomic

change with an individual’s clinical disease progression

(Alonso et al., 2015). The ability to combine these

approaches is particularly attractive and could help with

the presymptomatic identification of ‘disease onset’ in car-

rier individuals—a factor of clear importance for clinical

trial design.

Circulating serum markers

Circulating cytokines

In the past 5 years, serum fibroblast growth factor-21

(FGF-21) and serum growth and differentiation factor-15

(GDF-15) (Kajiyama et al., 1989; Suomalainen et al., 2011;

Davis et al., 2013; Kalko et al., 2014; Fujita et al., 2015;

Yatsuga et al., 2015) have emerged as two promising diag-

nostic biomarkers for mitochondrial diseases. Identified first

in mouse models of mitochondrial disease they were subse-

quently validated in patient cohorts. Presently, both mar-

kers are more sensitive and specific than currently used

clinical diagnostic markers of mitochondrial disorders but

are yet to be incorporated into formal diagnostic pathways

(Suomalainen et al., 2011; Yatsuga et al., 2015; Davis

et al., 2016). In part, this has been due to concerns that

both have been associated with a range of non-mitochon-

drial disorders, encompassing obesity, cancer, renal disease,

diabetes, and liver disease, with the latter two frequently

co-existing in patients with mitochondrial disorders (Semba

et al., 2012; Chow et al., 2013).

Although preliminary data suggested that FGF-21 may

correlate with disease severity and disease progression

(Suomalainen et al., 2011), this was not subsequently sub-

stantiated in adult cohorts with the m.3243A4G mutation

(Koene et al., 2014, 2015). Their utility in determining dis-

ease progression and severity therefore needs further assess-

ment in broader, well characterized mitochondrial cohorts.

Additionally, it is not known whether they are influenced

by therapeutic agents, but both markers should be con-

sidered for inclusion as study endpoints in relevant clinical

trials, particularly as emerging work suggests that GDF-15,

and FGF-21 in particular, appear to be more specific mar-

kers for mitochondrial disorders arising due to mitochon-

drial translation and mtDNA maintenance defects, as

opposed to those resulting from impaired respiratory

chain complex or assembly factors (Lehtonen et al., 2016).

MicroRNAs

MicroRNAs are non-coding genomic regions, around 20

nucleotides long, that control gene expression through tran-

scription silencing. Several studies have used serum

microRNAs in the diagnosis of inherited muscle disease

(Cacchiarelli et al., 2011; Endo et al., 2013; Hu et al.,

2014), and serum circulating, muscle-specific microRNAs

have been linked to disease progression in myotonic dys-

trophy (Koutsoulidou et al., 2015). Distinctive microRNA

patterns have also been associated with various metabolic

processes including non-alcoholic fatty liver disease (Leti

et al., 2015), diabetes (Raffort et al., 2015), brown adipo-

genesis (Zhang et al., 2015), as well as exercise capacity in

healthy individuals (Mooren et al., 2014). Their interaction

with the mitochondrial genome has not been fully eluci-

dated but a recent study in cybrid cells carrying the

m.3243A4G mutation identified that microRNA-9/9* pat-

terns associated with mitochondrial disorder phenotypes

[mitochondrial encephalomyopathy, lactic acidosis and

stroke-like episodes (MELAS) and myoclonic epilepsy

with ragged-red fibres (MERRF)] (Meseguer et al., 2015).

Given that serum samples are straightforward to collect,

further study of microRNAs in relation to mitochondrial

disease phenotype and disease progression would be rap-

idly feasible.

Exercise physiology
The functional assessment of mitochondrial aerobic cap-

acity in the adult patient population has been extensively

studied using exercise physiology for over 10 years. Key

differences are seen in peak oxygen consumption (peak

VO2), peak power (Wmax), and peak arterial-venous

oxygen difference between individuals with mitochondrial

disorders and healthy controls (Jeppesen et al., 2003,

2006b; Bates et al., 2013). As an indicator of oxygen

uptake from the capillary network during circulation, the

reduced peak arterial-venous oxygen difference seen in

those with mitochondrial disorders is believed to be a key

mechanism underpinning the widespread experience of ex-

ercise intolerance (Jeppesen et al., 2006b; Bates et al.,

2013).

To date, exercise testing has been used both to support a

diagnosis of mitochondrial disease (Jensen et al., 2002) and

to demonstrate efficacy of treatment (Drinkard et al., 2010;

Glover et al., 2010), including when exercise is used as a

therapy itself (Taivassalo et al., 1998, 2001, 2006; Jeppesen

et al., 2006a, b, 2009; Murphy et al., 2008; Bates et al.,

2013). To our knowledge, no longitudinal studies using

exercise physiology parameters as markers of disease pro-

gression have been undertaken in a mitochondrial cohort to

date. While exercise testing is safe in mitochondrial popu-

lations, there are several potential limitations with its use in

this way. First, studies have largely focused on those with

myopathic symptoms and application to other mitochon-

drial phenotypes is likely to require further exploration.

Second, little is published on the exercise capacity of chil-

dren with mitochondrial disorders, although a small study

reviewing exercise as a therapeutic intervention did not

identify problems with the exercise itself (Schreuder et al.,

2010). Third, participants with cardiac involvement and

significant intellectual or physical disabilities would be

unable to exercise at the level required for a valid test.
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Finally, the test requires specialist equipment and trained

staff to administer which could limit its widespread use and

reliability in longitudinal settings.

In addition to maximal exercise testing, recent work on

gait physiology has identified distinct abnormalities in the

m.3243A4G and m.8344A4G mitochondrial popula-

tions (Galna et al., 2014). These characteristics correlate

with disease severity and furthermore, affected individuals

can be distinguished from healthy controls at an early dis-

ease stage.

Imaging
Imaging findings are being increasingly identified in a broad

range of neuromuscular disorders, including as markers of

disease progression (Morrow et al., 2013, 2016). The main

focus is on the measurement of muscle volume, and the

relative amount of intramuscular fat and water (reviewed

in Carlier et al., 2016). The majority of studies to date have

been carried out in patients with inherited muscular dystro-

phies and inflammatory myopathies, but similar features

have also been shown in mitochondrial diseases, suggesting

potential applications for the diagnosis and monitoring of

these disorders. However, large longitudinal studies have

not been performed to date. The array of imaging available

to study the impact of mitochondrial disorders encom-

passes structural imaging using CT or magnetic resonance,

to functional imaging using magnetic resonance spectros-

copy (MRS) and PET. All modalities are established in

diagnostic and research settings and provide non-invasive,

quantitative measurements in a variety of tissues, making it

attractive to patients and researchers alike, particularly as

stronger magnetic fields (7 T) and novel software algo-

rithms enable shorter scan times.

Structural imaging

Structural brain imaging using MRI is well described in

mitochondrial disorders. While common clinical features

include cerebral and cerebellar atrophy, bilateral high

signal in deep grey structures, leukoencephalopathy and

stroke-like episodes in non-vascular territories (reviewed

in Saneto et al., 2008); these findings are non-specific and

highly variable (Tzoulis et al., 2006; Engelsen et al., 2008),

making them unsuitable for further development as bio-

markers. In contrast, extra-ocular muscle T2 signal in indi-

viduals with chronic progressive external ophthalmoplegia

(CPEO) correlates with eye movement restriction thereby

providing a quantitative method of assessing disease sever-

ity (Yu-Wai-Man et al., 2013; Pitceathly et al., 2016).

Similarly, in a cohort with the m.3243A4G mutation,

structural cardiac abnormalities have been identified in

the absence of both high symptom load and cardiac abnor-

mality on routine clinical tests (Hollingsworth et al., 2012).

Furthermore, the specific pattern of cardiac involvement

appears dependent on patient genotype and is distinct

from more common causes of cardiac impairment

(Florian et al., 2015). Longitudinal studies using these mod-

alities would be relatively straightforward, and both would

be potentially attractive as trial endpoints in appropriate

cohorts.

Functional imaging with existing
techniques

Magnetic resonance spectroscopy

MRS enables the quantitative assessment of tissue metab-

olites in steady state, with 31P and 1H spectra most com-

monly used in mitochondrial cohorts. 1H enables capture

of tissue-specific metabolites such as lactate, choline, and

N-acetyl aspartate, while 31P captures the relative propor-

tions of phosphorus metabolites. Although skeletal muscle

can be examined by 31P-MRS in resting, exertional or post-

exertional states, the evaluation of oxidative capacity de-

pends on measuring the phosphocreatine recovery time—a

direct reflection of mitochondrial ATP production—follow-

ing phosphocreatine depletion through exercise.
31P-MRS on skeletal muscle has identified key differences

in tissue bioenergetics in a range of neuromuscular dis-

orders, including mitochondrial disease (Lodi et al., 1999,

2004b; Cea et al., 2002; Jeppesen et al., 2007). To date

these metabolic alterations have been used to support a

diagnosis of mitochondrial disease (Walker et al., 1996;

Bernier et al., 2002) and as an endpoint in several thera-

peutic studies (Penn et al., 1992; Barbiroli et al., 1995,

1997; Kornblum et al., 2005). However, some involved

single patients only (Penn et al., 1992; Barbiroli et al.,

1995) while in others, trial design was not optimal

(Pfeffer et al., 2012). Similar abnormalities of tissue bio-

energetics have also been identified using 31P-MRS of car-

diac muscle in those carrying the m.3243A4G mutation

(Lodi et al., 2004a), and have been used to assess the ef-

fectiveness of an exercise intervention programme (Bates

et al., 2013). Longitudinal studies correlating clinical dis-

ease progression in mitochondrial cohorts with findings

from 31P-MRS studies are notably lacking.

While impaired ATP production and elevated lactate

levels are established findings of brain MRS studies

(Barbiroli et al., 1993; Kaufmann et al., 2004; Lindroos

et al., 2009), little has been published on the use of brain

MRS to monitor disease progression or to study the effects

of pharmaceutical agents (Barbiroli et al., 1999; Lee et al.,

2010). Recent work using 1H-MRS brain imaging has iden-

tified fundamental differences between healthy controls,

those manifesting disease due to the m.3243A4G muta-

tion, presymptomatic individuals converting to affected in-

dividuals and presymptomatic individuals not converting

(Weiduschat et al., 2014); once more supporting the

notion of specific disease state ‘signatures’ (Hall et al.,

2015). Natural history studies to further understand this

in relation to both symptom progression and in broader

mitochondrial patient populations would be timely and
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highly relevant given current interest in biomarker

development.

Positron emission tomography

In contrast to MRS, which provides steady state measure-

ment of metabolites, PET measures metabolic flux, thereby

permitting the study of tissue metabolic and haemodynamic

properties. Several radioisotopically labelled metabolites are

relevant to the study of mitochondrial disorders and in-

clude 15O, 2-deoxy-2 18F-fluoro-D-glucose (FDG) and 11C

pyruvate enabling the study of tissue-specific bioenergetics.

To date, PET has identified a variety of metabolic abnorm-

alities in the mitochondrial disease population. MELAS pa-

tients with the m.3243A4G point mutation are the best

studied population, with reports of PET imaging of heart

(Arakawa et al., 2010), brain (Nariai et al., 2001; Shelly

et al., 2007; Lindroos et al., 2009) and muscle tissue

(Arakawa et al., 2010; Rodan et al., 2015), both in back-

ground states (Lindroos et al., 2009), acute post stroke-like

episodes (Shelly et al., 2007; Ikawa et al., 2009), and in

response to potential therapies (Arakawa et al., 2010). Key

findings from cerebral studies include: global impairment of

cerebral oxygen metabolic rate (CMRO2) (Nariai et al.,

2001; Lindroos et al., 2009) and regional glucose hypome-

tabolism of the occipito-parietal regions (Nariai et al.,

2001; Shelly et al., 2007). These perturbations are sup-

ported by findings from heterogeneous mitochondrial

populations, which include reduced molar ratio (of glucose

and oxygen) (Frackowiak et al., 1988); impairment of

CMRO2 (Frackowiak et al., 1988; Shishido et al., 1996);

and reduced cerebral metabolic ratio glucose (CMRglu)

(Frackowiak et al., 1988; Haginoya et al., 2016), including

in a family with mitochondrial neurogastrointestinal en-

cephalopathy (MNGIE) with no clinically overt CNS fea-

tures (Lehnhardt et al., 2008). Additionally, perturbations

in cerebral oxygen extraction fraction (OEF) have been

identified, with the OEF representing the percentage of

oxygen removed from the blood by tissue during the pas-

sage through the capillary network (Frackowiak et al.,

1988; Lindroos et al., 2009). It is therefore analogous to

the ‘arterial-venous oxygen difference’ measured during

sub-maximal exercise testing, although no studies exist

that examine the relationship between the two. Further

study could therefore be warranted although PET scanning

has several limitations impeding its widespread use in both

clinical and research settings. In particular, due to the use

of radioactive isotopes (Duncan et al., 1995), there are no

natural history studies of mitochondrial populations, and

restricted studies in children with mitochondrial disorders.

Functional MRI

These limitations have provided impetus to develop magnetic

resonance protocols that facilitate study of tissue haemo-

dynamics. MRI using gradient echo sampling of spin echo

(GESSE) sequences has emerged as a technique enabling

quantitative assessments of cerebral haemodynamics, in par-

ticular the OEF (He and Yablonskiy, 2007). Key advantages

of OEF measurement over cerebral blood flow, are its rela-

tive uniformity despite regional variations in cerebral blood

flow or oxygen metabolic rate (Gusnard et al., 2001) and its

interindividual stability (He and Yablonskiy, 2007). Initial

application in a small MELAS (m.3243A4G) cohort

demonstrated reduced cerebral OEF irrespective of relation-

ship to stroke-like episode, with further reduction in OEF in

the acute and subacute phases of the stroke-like episode (Yu

et al., 2013).

Similar techniques to enable measurement of skeletal

muscle OEF have already been applied in small cohorts

of healthy individuals (Zheng et al., 2014; Wang et al.,

2016) and future assessment in patients with mitochondrial

disorders would be relevant given the reduction in tissue

oxygen extraction (peak arterial-venous oxygen difference)

widely identified during sub-maximal exercise tests in

these cohorts (Taivassalo et al., 2006). Should the muscle

OEF technique be further assessed and validated, it could

have advantage over submaximal exercise testing in a mito-

chondrial cohort because of its application to those unable

to exercise, for example, those with significant weakness,

cardiovascular disease, children or intellectual disabilities.

Functional imaging with novel
techniques

With conventional FDG-PET and NMR spectroscopy both

lacking the necessary sensitivity to identify substrates in

low tissue concentrations, researchers have developed a

relatively new MRI technique—dynamic nuclear polariza-

tion (DNP). DNP facilitates real time functional imaging,

using 13C-MRS, of substrates and their metabolites in ex-

istence at low tissue concentrations—such as reactive

oxygen species—in vivo (Ardenkjaer-Larsen et al., 2003).

Although hyperpolarized [1-13C] pyruvate has been the

most widely studied substrate, enabling both functional

imaging of key tumour metabolites (Brindle et al., 2011;

Nelson et al., 2013) and cellular response to chemotherapy

(Day et al., 2007; Ward et al., 2010), use of hyperpolarized

[1-13C] glucose permits more direct study of the glycolytic

pathway.

To date, a key limitation in the technique has been the

short half-life of the hyperpolarization period (10–40 s for

pyruvate; 51 s for glucose), necessitating the ensuing meta-

bolic processes to occur rapidly, and resulting image gen-

eration to occur in 52 min (Brindle et al., 2011).

Deuteration is one means of overcoming this challenge

and recently, hyperpolarized, deuterated [U-2H, U-13C] glu-

cose was used to image glycolysis in real time (Rodrigues

et al., 2014). Initial results suggest the technique allows the

sensitive study of lactate accumulation in murine cancer

models pre- and post-chemotherapy.

Such techniques, although relatively early in develop-

ment, have clear application in mitochondrial disease, po-

tentially providing a minimally invasive, yet quantitative,

means of diagnosis—as well as a way of monitoring the
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systemic, or indeed tissue-specific, impact of a given treat-

ment. DNP is under active development in cancer medicine

and requires further validation in man before preliminary

assessments are made in mitochondrial disease specifically.

Preclinical work is also underway using novel PET lig-

ands, for example 18F-BCPP-EF, to enable quantitative

analysis of complex I activity. To date the technique has

been used following induced ischaemia in monkey brain

(Tsukada, 2014; Tsukada et al., 2014) and its application

to primary dysfunction of mitochondria has not been es-

tablished. However, the use of ligands with the ability to

interrogate specific mitochondrial complexes may in future

enable the non-invasive assessment of respiratory chain

function.

Emerging techniques

Small molecule reporters

Small molecule reporters enable the quantifiable measure-

ment of mitochondrial function, mitochondrial-specific me-

tabolites and reactive oxygen species generation in vivo.

Tailor-made probes, administered intravenously to an

intact organism, accumulate within mitochondria and

react with a substrate of interest. In doing so, the probes

are modified to produce an ‘exomarker’ (exogenous

marker), which can then be extracted to enable its quanti-

tative analysis, and inferences to be made about the react-

ing substrate. Currently, the technique is in preclinical

development, with analysis of the exomarker using mass

spectrometry only being feasible following destruction of

the organism (Logan et al., 2014). However, it is antici-

pated that further study of exomarkers in urine may facili-

tate analysis of probes in vivo and facilitate future work in

animal models and eventually, humans.

Although current focus of this technique is in the assess-

ment of acquired mitochondrial dysfunction arising due to

ischaemic and reperfusion insults (Chouchani et al., 2014),

the potential application to primary respiratory chain dis-

orders is evident. Such techniques would provide an attract-

ive way of ensuring drug delivery to mitochondria and

quantifying drug activity (Porteous et al., 2010;

Hoogewijs et al., 2016); as well as hypothetically determin-

ing optimal drug dosing for individual patients, or facilitat-

ing the direct assessment of mitochondrial function in

relation to disease progression.

Cutaneous respirometry

The ability to objectively measure respiratory chain func-

tion in vivo, non-invasively, and without need for imaging,

has the potential to revolutionize the follow-up and treat-

ment of those with mitochondrial disorders. Cutaneous

respirometry has been developed by a Dutch research

team investigating mitochondrial dysfunction arising due

to sepsis (Harms et al., 2015). The device, which sits

over the sternum, can measure both mitochondrial

oxygen tension (mitoPO2) and oxygen consumption

(mitoVO2). It does this by using the oxygen dependent op-

tical properties of protoporphyrin-IX, a haem precursor

synthesized within mitochondria, known as the PpIX-triplet

state lifetime technique. Testing in healthy volunteers is at

an early stage, but has confirmed that mitoPO2 and

mitoVO2 measurements are viable (Harms et al., 2016).

Furthermore, aside from minor local skin reactions, the

device was well tolerated. The application to mitochondrial

patients is evident and would be particularly suitable, fol-

lowing further assessment of reliability and validity, in the

setting of a natural history study, clinical trial or even rou-

tine clinic appointment.

Discussion
While mitochondrial disorders unite on a final common

metabolic pathway, their heterogeneous, multi-systemic

and fluctuating nature provides particular challenges in

the identification of biomarkers correlating with overall dis-

ease progression. Functional imaging studies and exercise

physiology are well established for the diagnosis of mito-

chondrial disorders, and both converge on impaired tissue

oxygen extraction. However, their role in measuring dis-

ease progression is less clear, and much could be gained

through well designed longitudinal studies of genotyped

cohorts using these modalities. The combination of bio-en-

ergetic and structural imaging is particularly promising,

particularly in evaluating mitochondrial cardiomyopathy

(Ng et al., 2016), but, the need for specialist equipment

and personnel conceivably limits their use. In contrast, cir-

culating serum markers, such as FGF-21 and GDF-15;

microRNA analysis and metabolomic assessment are ap-

pealing because the samples are relatively easy to collect

in both paediatric and adult mitochondrial populations.

However, it is currently not clear whether any serum or

blood-based biomarkers will be useful as endpoints in clin-

ical efficacy trials, particularly in groups that are genetically

and clinically heterogeneous, or where a tissue-specific

phenotype of interest falls within a multi-system mitochon-

drial disease syndrome. Longitudinal studies in patient co-

horts are required to clarify whether these approaches will

have a role in the future, or whether the integration of

different datasets using multivariate statistical methods,

for example, may help identify collections of markers that

together better reflect the complex nature of disease pro-

gression. Furthermore, as ‘signatures’ reflecting carrier

status have already been identified (Weiduschat et al.,

2014; Hall et al., 2015), the field needs to consider whether

inclusion of asymptomatic carrier individuals in observa-

tional and/or interventional studies should be facilitated.

Patients and their families want the least burdensome and

clear means to monitor progression of their disease so that

clinicians can provide timely and appropriate support.

Clinicians and industry partners urgently need new
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biomarkers to facilitate clinical development of promising

novel treatments. How best to reach these goals and cap-

italize on the advances in biomarker techniques discussed is

a critical issue that needs to be collectively addressed by

clinicians, scientists, industry partners and patients, to

ensure a strategic, integrated and acceptable approach is

taken.
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