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Abstract

Subclonal architectures are prevalent across cancer types. However, the temporal evolutionary 

dynamics that produce tumour subclones remain unknown. Here we measure clone dynamics in 

human cancers using computational modelling of subclonal selection and theoretical population 

genetics applied to high throughput sequencing data. Our method determines the detectable 

subclonal architecture of tumour samples, and simultaneously measures the selective advantage 

and time of appearance of each subclone. We demonstrate the accuracy of our approach and the 

extent to which evolutionary dynamics are recorded in the genome. Application of our method to 

high-depth sequencing data from breast, gastric, blood, colon and lung cancers, as well as 

metastatic deposits, showed that detectable subclones under selection, when present, consistently 

emerged early during tumour growth and had a large fitness advantage (>20%). Our quantitative 

framework provides new insight into the evolutionary trajectories of human cancers, facilitating 

predictive measurements in individual tumours from widely available sequencing data.
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Introduction

Carcinogenesis is the result of Darwinian selection for malignant phenotypes, driven by 

genetic and epigenetic alterations that allow cells to evade normal homeostatic regulation 

and prosper in changing microenvironments1. High throughput genomics has shown that 

tumours across all cancer types are highly heterogeneous2,3 with complex clonal 

architectures4. However, because longitudinal observation of solid tumour growth 

unperturbed by treatment remains impractical, the temporal evolutionary dynamics that 

produce subclones remain undetermined, and consequently, there is no mechanistic basis 

that can be utilised to predict future tumour evolution and modes of relapse. More 

specifically, the magnitude of the fitness advantage experienced by a new cancer subclone 

has remained unknown.

The subclonal architecture of a cancer – as measured by the pattern of intra-tumour genetic 

heterogeneity (ITH) – is a direct consequence of the unobservable evolutionary dynamics of 

tumour growth. Therefore, given a realistically constrained model of subclonal expansion, 

the pattern of ITH in a tumour can be used to infer its most probable evolutionary trajectory. 

ITH represented within the distribution of variant allele frequencies (VAF), as measured by 

high coverage sequencing, is particularly amenable to such an approach.

In this study, we build upon theoretical population genetics models of asexual evolution5 

and Bayesian statistical inference on genetic data6 to measure cancer evolution in human 

tumours. This type of approach is established in the field of molecular evolution, where 

evolutionary processes are also difficult to measure directly7,8, and examples of applications 

of these approaches to human cancers date back to the previous century9,10.

Recently, we have shown that under a neutral “null” evolutionary model (i.e. when all 

selected driver alterations are truncal and present in all cancer cells), the VAF follows a 

characteristic power law distribution11. Subsequent simulations that modelled space and 

subclonal selection demonstrated that genetic divergence in multi-region sequencing data 

could be used to categorize tumours based on the mode of their evolution12 (effectively-

neutral or non-neutral), but the specific evolutionary dynamics that produce subclonal 

architectures, such as the fitness advantage of subclones, remained unmeasured. Here, using 

a combination of a stochastic branching process model of subclonal selection in cancer, an 

explicit sequencing error model, and Bayesian model selection and parameter inference, we 

identify the characteristic patterns of subclonal selection in the cancer genome and measure 

fundamental evolutionary parameters in non-neutrally evolving human tumours.

Results

Theoretical framework of subclonal selection

We developed a stochastic computational model of tumour growth applicable to cancer 

genomic data that accounts for subclonal selection (see Methods). The model is based on a 

classical stochastic branching process approach from population genetics13 that has been 

often used to model malignant populations5,14 and is here extended to be applicable to 

cancer sequencing data. Cells divide and die according to defined birth and death rates and 
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daughter cells acquire new mutations at rate μ mutations per cell per division (Figure 1a). 

The fitness advantage of a mutant subclone is defined by the ratio of net growth rates 

between the fitter mutant (λm) and the background host population (λb)

1 + s =
λm
λb

. [1]

This definition13 provides an intuitive interpretation for the fitness coefficient s: for 

example, s=1 implies that the mutant cell population grows twice as fast as the host tumour 

population, and s=0 implies λm=λb such that the subclone evolves neutrally with respect to 

the background population. Within the model, neutral evolution (s=0) leads to a VAF 

distribution characterised by a power-law distributed subclonal tail of mutations11,15–17 

(Figure 1b), where the cumulative number of mutations at a frequency f is proportional to 

the inverse of that frequency, 1/f (in the non-cumulative VAF distribution such as Figure 1b, 

this shows as ~1/f2). Alternatively, clonal selection (s>0) produces characteristic ‘subclonal 

clusters’ within the VAF distribution that have been observed in cancer genomes18 (Figure 

1c). Importantly, as neutral mutations continue to accumulate within each subclone, the 1/f 

tail is also present in tumours with selected subclones (Figure 1c).

A mathematical analysis of the model indicates how subclonal clusters encode the 

underlying evolutionary dynamics of a subclone: the mean VAF of the cluster is a measure 

of the relative size of the subclone within the tumour, and the total number of mutations in 

the cluster (i.e. the area of the cluster) indicates the subclone’s relative age (as later-arising 

subclones will have accumulated more mutations). Together, these two measures allow the 

fitness advantage s to be estimated19. We provide a summary derivation below and refer to 

the Supplementary Note for full details.

We define t0=0 to be the time when the first transformed cancer cell begins to grow. At a 

later time t1, a cell in the tumour acquires a subclonal ‘driver’ somatic alteration that confers 

a fitness advantage, giving rise to a new phenotypically distinct subclone that expands faster 

than the other tumour cells. We note that to measure selection dynamics it is not important 

what the actual driver event is: genetic (point mutation or copy number alteration), 

epigenetic, or even microenvironmental drivers will all cause somatic mutations in the 

selected lineage to ‘hitchhike’20 to higher frequencies than expected under the neutral null 

model. The number of hitchhiking mutations, Msub acquired by the founder cell of the fitter 

subclone which has experienced Γ successful divisions between t0 and t1 is therefore

Msub = μ Γ . [2]

The relationship between the mean number of divisions of a lineage, Γ and time measured in 

population doublings is Γ = 2log(2)t1 (see Supplementary Note). The mutation rate per 

population doubling can be estimated from the 1/f-like tail11. For a subclone that emerges at 

time t1, we would expect to observe Msub mutations at some frequency fsub/2 (for a subclone 

at a cancer cell fraction fsub in a diploid genome, and assuming a sample with 100% tumour 
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purity), and given the limited accuracy of VAF measurement inherent to next generation 

sequencing this will appear as a cluster of mutations with a mean fsub/2 in the VAF 

distribution. Therefore, Equation [2] provides an estimate of t1, the time when the subclone 

appeared.

Assuming exponential growth and well mixed populations, and considering that the 

subclone grows 1+s times faster than the background tumour population as defined by 

Equation [1], the frequency of the subclone will grow in time according to:

f sub(tend) = e
λb(1 + s)(tend − t1)

e
λbtend + e

λb(1 + s)(tend − t1) . [3]

This equation leads to an expression for the fitness advantage s given the frequency fsub and 

the relative time of the subclones appearance t1,

s =
λbt1 + ln

f sub
1 − f sub

λb(tend − t1) . [4]

Given an estimate of the age of the tumour expressed in population doublings tend, equations 

[2] and [4] provide a means to measure the selective advantage of a subclone directly from 

the VAF distribution (Figure 1d). tend can be derived from the final tumour size Nend by the 

relation 2tend = (1 – fsub) × Nend. In the case of multiple subclones, Equation [4] takes a 

slightly modified form (Supplementary Note). We note that Equations [1-4] are known 

results in population genetics and have been previously used to describe the dynamics of 

asexual haploid populations 13.

Our previously presented frequentist approach to detect subclonal selection from bulk 

sequencing data involves an R2 test statistic19 to reject the hypothesis of neutral evolution 

(s=0), the null model in molecular evolution21. Here we extended our previous work to 

examine different test statistics for assessing deviations from the null neutral model (see 

Supplementary Figures 1-3 & Methods). However, the frequentist approach has limitations: 

it requires to choose the interval of the VAF distribution to test, and importantly only allows 

for the rejection of the null hypothesis (which is not necessarily evidence for the null itself).

To address these shortcomings, we implemented a Bayesian statistical inference framework 

(Supplementary Figure 4 & Methods) that fits our computational model incorporating both 

selection and neutrality to sequencing data, and simultaneously estimates the subclone 

fitness, time of occurrence, and the mutation rate. This method allowed us to perform 

Bayesian model selection22 for the number of subclones within the tumour and specifically 

calculate probabilities that a tumour contained 0 subclones (s=0, neutral evolution), 1 or 

more subclones (non-neutral evolution). The advantage of the Bayesian approach is that we 

can directly ask which model (neutral or non-neutral) is best supported by the data, using the 

whole VAF distribution.
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Our framework models mutation, selection and neutral drift using a classical stochastic 

branching process13, while integrating several confounding factors and sources of noise in 

bulk sequencing data, principally allele sampling and depth of sequencing (see Methods and 

Supplementary Note). This approach allows sample-based schemes designed such that the 

data-generating process can be mimicked to account for complex experimental biases. 

Despite these confounding factors, we found that the 1/f tail accurately measures the 

mutation rate even in the presence of subclonal clusters (Supplementary Figure 5), and our 

inferred value of 1+s is largely insensitive to the final tumour size (Nend) when this value is 

realistically large (Nend>109) (Supplementary Figure 6 and Supplementary Note).

We note that the theoretical framework is based upon the assumption of exponential growth, 

which is a growth pattern well supported by empirical data in many cancer types23–25. The 

impact of alternate models of growth, such as logistic and Gompertzian growth, is explored 

in the Supplementary Note. We also implemented a cancer stem cell model where only a 

subset of cells has unlimited proliferation potential and found that for the purposes of this 

study this has little impact on the expected VAF distribution, which in this scenario only 

measure events that occur in the stem cell compartment (Supplementary Figure 7).

Recovery of evolutionary dynamics in synthetic tumours

First, we assessed the degree to which subclonal selection is detectable within VAF 

distributions by performing a frequentist power analysis to examine the conditions under 

which we correctly reject the null when the alternative (selection present) is true. We 

performed simulations to measure the values of t1 (time of subclone formation) and s 

(magnitude of selective advantage of subclone) that lead to observable deviations from the 

null neutral model (see Methods) in high depth sequencing data (100X). Only subclones that 

arise sufficiently early (small t1) or that were very fit (large s) were able to produce 

detectable deviations in the clonal composition of the tumour (Figure 1e).

We then applied our Bayesian framework to estimate evolutionary parameters from synthetic 

data (VAF distributions derived from computational simulations of tumour growth with 

known parameters). Our framework identified the correct underlying model with high 

probability for representative examples of a neutrally growing tumour (Figure 2a), a tumour 

with a single subclone (Figure 2b) and a tumour with 2 subclones (Figure 2c), and also 

recovers the evolutionary parameters in each case (Figures 2d-g). Given that we modelled 

tumour growth as a stochastic process, variability in our estimates was expected (see 

Supplementary Note). In a cohort of 100 synthetic tumours (20 examples selected in 

Supplementary Figure 8), where the ground truth was known, the mean percentage error on 

parameter inference was below 10% (Figure 2h). The stochasticity also explains the width of 

the posterior distributions (Figures 2d-g). In particular, the rate of stochastic cell death has a 

large effect on the variability of lineage age and consequently can cause a slight over-

estimation of the mutation rate and variability in the time taken for a lineage to clonally 

expand increases with increased cell death (see Supplementary Note).

Monte Carlo analysis indicated that accurate measurement of subclonal evolutionary 

dynamics required high depth (>100X) for both whole-exome and whole-genome 

sequencing (Supplementary Figure 9). This analysis demonstrates how the clonal structure 
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becomes progressively obscured as the sequencing depth decreases. Depths of sequencing of 

less than 100X preclude a robust quantification of subclonal dynamics, and moreover the 

neutral model is preferred by our Bayesian model selection framework, even when it is false 

(Supplementary Figure 9). Importantly, this analysis showed that even in some cases when 

selection is present (particularly weak selection), neutral evolution is the most parsimonious 

description of the data. In other words, the observed dynamics are then ‘effectively neutral’. 

In addition, we note that while the increased mutational information provided by WGS and 

higher sequencing depths makes quantification of subclonal structure more robust, this can 

also reveal (neutrally) drifting populations that may be falsely ascribed as a selected clone 

(Supplementary Figure 10). We also investigated the robustness of the inference method to 

tumour purity and cancer cell fraction of the subclone finding that at 100X sequencing depth 

a minimum purity of 50% is needed to confidently identify subclones with cancer cell 

fraction >30% (15% VAF in a diploid genome), see Supplementary Figure 11.

Detectable subclones have a large selective advantage

We first used our approach to quantify evolutionary dynamics in primary human cancers 

where high depth (>150X) and validated sequencing data were available. We considered 

whole-genome sequencing (WGS) of a single AML sample26, WGS of a single breast 

cancer sample18 and multi-region high-depth whole exome sequencing (WXS) of a lung 

adenocarcinoma27. To avoid the confounding effects of copy number changes, we exploited 

the hitchhiking principle and restricted our analysis to consider only somatic single 

nucleotide variants (SNVs) that were located within diploid regions (see Methods). After 

correction for cellularity the ‘clonal cluster’ at VAF=0.5, and a potentially complex 

distribution of mutations with VAF<0.5 representing the subclonal architecture were clearly 

observable.

The AML and breast cancer cases both showed evidence of 2 subclonal populations, 

corroborating the initial studies but instead finding the lowest frequency cluster to be a 

consequence of all within-clone neutral mutations18,26 (Figure 3a,b,h). Measurement of the 

evolutionary dynamics showed that for both cancers the subclones had considerably large 

fitness advantages (>20%, Figure 3i) and emerged within the first 15 population doublings 

(Figure 3j). In the AML sample, subclone 1 (highest frequency subclone) had putative driver 

mutations in IDH1 1 and FLT3 and subclone 2 had a distinct FLT3 mutation and a FOXP1 
mutation. In the breast cancer sample, no putative driver point mutations were found in the 

subclonal clusters but we note that the original analysis found that subclone 1 (highest 

frequency subclone) had lost one copy of chromosome 13. Interestingly, the breast cancer 

sample also exhibited a 100-fold higher mutation rate per tumour doubling compared to the 

AML sample (Figure 3k). We note that our mutation rate estimate corresponds to the 

number of mutations per base per population doubling. Due to the high cell death and 

possibly differentiation in cancers (both leading to lineage extinction), doubling in volume 

may require several rounds of cell division. To derive the mutation rates per base per 

division an independent measurement of the probability β of a cell division to give rise to 

two surviving lineages is required (see Methods, Equation [9] and Supplementary Note). 

Mutational signature analysis28 of subclonal mutations provided support for the assumption 
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of a constant mutation rate during subclone evolution (Methods and Supplementary Figure 

12).

In the lung adenocarcinoma case, multiple tumour regions (n=5) had been sequenced to high 

depth. Amongst these regions, only one region (region 12) showed strong evidence of a new 

subclone (Figures 3c,h, BF = 1.49) with a measured selective advantage of 30% (Figure 3j), 

while for all other regions a neutral evolutionary model was most probable (Figures 3d-g, 

BF = 6.36-29.92). Region 12 had unique copy number alterations on chromosome 3 that 

could plausibly have caused the subclonal expansion (Supplementary Figure 13). Together 

these data show spatial heterogeneity of the evolutionary dynamics within a single tumour.

We then applied our analysis to 4 additional large cohorts of variable sequencing depth: 

WXS colon cancers from TCGA29 (Supplementary Figure 14), WGS gastric cancers from 

Wang et al30 (Supplementary Figure 15), WXS lung cancers from the TRACERx trial31 

(Supplementary Figure 16), and WXS metastasis samples (multiple sites) from the MET500 

cohort32 (Supplementary Figure 17). Based on our previous analysis of minimum data 

quality needed (see Supplementary Figure 11), we selected samples with purity >40% and 

number of subclonal mutations ≥25 for further analysis. Differentially selected subclones 

were detected in 29% (5/17 cases) of the gastric cancers and 21% (15/70 cases) of the colon 

cancers (Figure 4a). Interestingly the MET500 (51%, 58/113) data had a higher proportion 

of tumours with selected subclones. The measured selective advantage of these subclones 

was large (>20%) and emerged during the first few tumour doublings across all cohorts 

(Figures 4b,c). We note that in the metastases case, time is measured relative to the founding 

of the metastatic lesion, and differential selection of the subclone is measured relative to the 

other cells in the metastasis. Eventual founder effects in the metastasis are, by definition, 

clonal events in the sample, and so do not appear in the subclonal VAF spectrum. We also 

observed similarly large fitness advantages of subclones within the TRACERx cohort, where 

97% of cases (36 out of the 37 cases suitable for our analysis) were characterised by non-

neutral dynamics (Supplementary Figure 16 and 18).

Forecasting cancer evolution

Measuring the evolutionary dynamics of individual human tumours facilitates prediction on 

the future evolutionary trajectory of these malignancies33. Specifically, we can predict how 

the clonal architecture of a tumour is expected to change over time (in the absence of new 

drivers): such predictions could be useful, for instance, to decide how often to sample a 

tumour when making treatment decisions. We note we can only predict the future subclonal 

structure of a tumour assuming that environmental conditions stay the same – e.g. that 

subclone selective advantages are constant and intervention such as treatment is likely to 

invalidate this assumption.

Suppose a biopsy is taken and fitness of a subclone measured at some time t, we can then 

ask how long it will take for the subclone to become dominant (>90% frequency) in the 

tumour. From our model, the time for a subclone to shift from a frequency f1 to a frequency 

of f2 given a relative fitness advantage s is:
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Δ T =
log

f 2
1 − f 2

− log
f 1

1 − f 1
λs

[5]

Figure 5 shows an in silico implementation of this method. The fitness advantage of a 

subclone was measured within a tumour at size N=105 using the Bayesian inference 

framework (Figure 5a), and the inferred values then use to predict subsequent growth of the 

subclone. The prediction well represented the ground truth (Figure 5b).

In the case of the examined AML sample (Figure 3a), the measured fitness advantages 

predict the future clonal structure of the malignancy (in the absence of treatment). 

Specifically, the larger of the two subclones present at the point when the tumour was 

sampled is predicted to take over the tumour, while the smaller clone is projected to become 

too rare to remain detectable (Figure 5c). Despite the assumption of constant conditions, our 

framework could be extended in the future to simulate treatment effects when those 

mechanisms are known.

Discussion

Here we have demonstrated how the VAF distribution can be used to directly measure 

evolutionary dynamics of tumour subclones. We confirmed that subclonal selection causes 

an overrepresentation of mutations within the expanding clone, manifested as an additional 

‘peak’ in the VAF distribution, as suggested by many recent studies18,26,34. However, 

irrespective of subclonal selection, the tumour will still show an abundance of low frequency 

variants (a 1/f-like tail) as the natural consequence tumour growth, wherein the number of 

new mutations is proportional to the population size.

Our quantitative measurement of the selective advantage (relative fitness) of an expanding 

subclone revealed that detectable subclones had experienced remarkably large fitness 

increases, in excess of 20% greater than the background tumour population. Large increases 

in subclone fitness were also observed in metastatic lesions, indicating that there can still be 

on-going adaption even in late-stage disease, perhaps as a consequence of treatment. 

Because selection is inferred using only SNVs that shift in frequency due to hitchhiking, 

differential fitness can be measured by our analysis regardless of the underlying mechanism. 

Genetic driver mutations found within a subclone are one possible cause for the fitness 

increase.

The values of fitness advantage we infer in human malignancies are similar to reports from 

experimental systems. Evidence from growing human pluripotent stem cells indicates that 

TP53 mutants may have a fitness advantage as high as 90% (1+s=1.9)35 and that single 

chromosomal gains can provide a fitness advantage of up to 50%36 (range 20%-53%). A 

study of the competitive advantage of mutant stem cells in the mouse intestine during 

tumour initiation (at constant population size) showed that KRAS and APC mutant stem 

cells have a ~2-4 fold increased fixation probability in single crypts37 and TP53 mutant 
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cells in mouse epidermis exhibited a 10% bias toward self-renewal38. Moreover, our 

inferred fitness advantages compare to large fitness advantages measured in bacteria39. 

Nevertheless, we acknowledge that experimental systems may differ significantly from in 
vivo human tumour growth and that new experimental systems are necessary to test these 

measurements. We also note that we are only able to measure large changes in fitness, and 

additional efforts will be needed to measure the complete distribution of fitness effects 

(DFE) within cancers. Furthermore, the inferred fitness value is sensitive to the underlying 

stochastic evolutionary model and thus caution is warranted in directly comparing fitness 

values.

Our inferred in vivo mutation rates per population doubling are also in line with 

experimental evidence. Seshadri et al.40 reported somatic mutation rates in normal 

lymphocytes of 5.5x10-8-24.6x10-8 and a 10-100 fold increase in mutation rate in cancer cell 

lines such as B-cell lymphoma (5.2x10-7-13.1x10-7) and ALL (66.6x10-7). A recent analysis 

of a mouse tumour model indicates somatic mutation rates in neoplastic cells are 11x higher 

than in normal tissue.

Our analysis highlights that even if cancer subclones experience pervasive weak selection, it 

is not sufficient to alter the clonal composition of the tumour and therefore to cause the VAF 

distribution to deviate detectably from the distribution expected under neutrality. It is 

important to note that the (initial) growth of tumours makes them peculiar evolutionary 

systems, as tumour growth dilutes the effects of selection41. Thus, our analysis does not 

discount the possibility of a multitude of ‘mini-drivers’42 but shows that these must have a 

corresponding ‘mini’ effect on the subclonal composition of a tumour (and that the VAF 

distribution in mini-driver tumours is well described by a neutral model). We note however, 

that the ratio of non-synonymous to synonymous variants (dN/dS), a classical test for 

selection, identified only a small subset of genes (<20 in a pan-cancer analysis) with extreme 

dN/dS values indicative of strong selection21,43.

Our previous analysis11 suggested that neutral dynamics were rejected in a higher 

percentage of colon cancers (approximately 65%) than the 21% reported here. The 

discrepancy is explained by the stochasticity in the evolutionary process where chance 

events can lead to deviations from the neutral 1/f distribution. Unlike our previous analytic 

derivation, the Bayesian model selection framework presented here captures this 

stochasticity (and hence neutral evolution is preferred in a greater proportion of samples).

Our measurement of evolutionary trajectories facilitates mechanistic prediction of how a 

tumour changes over time as demonstrated in our in silico prediction (Figure 5a,b), with 

implications for anticipating the dynamics of treatment resistant subclones. This may have 

particular value for novel evolutionary therapeutic approaches such as ‘adaptive therapy’, 

where the goal is to maintain the existence of competing subclones that mutually supress the 

growth of another44,45. Our measurements of relative clone fitness could potentially be 

used to optimize treatment regimes in order to maintain the coexistence of competing 

populations.
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We acknowledge that features not described in our model, e.g. the spatial structure of the 

tumour, could affect the estimates of the evolutionary parameters46. Indeed, our analysis 

shows that there can be heterogeneity in the evolutionary process within a tumour (only 1/5 

regions of a single lung tumour showed strong evidence of subclonal selection). Spatial 

models of tumour evolution can help elucidate other important biological parameters such as 

the degree of mixing within tumour cell populations, a purely spatial phenomenon which 

cannot be quantified using non-spatial models such as ours. We have recently shown how 

multiple samples per tumour increase the power to detect selection, in part because of the 

increased probability of sampling across a ‘subclone boundary’ where selection is evident12. 

We also acknowledge that complex, undetectable intermediate dynamics in the evolution of 

subclones, such as multiple small subclonal expansions before a subclone becomes 

detectable, are not modelled within our framework.

In summary, we have developed a quantitative framework to infer timing and strength of 

subclonal selection in vivo in human malignancies. This is a step towards enabling 

mechanistic prediction of cancer evolution.

Methods

Simulating tumour growth

We implement a stochastic birth-death process simulation of tumour growth, followed by a 

sampling scheme that recapitulates the ‘noise’ of cancer sequencing data. The sampling 

scheme is required to ensure that the underlying evolutionary dynamics measured from the 

data are not confounded by such noise. We first introduce the simulation framework for an 

exponentially expanding population where all cells have equal fitness, and then show how 

elements of the simulation are modified to include differential fitness effects and non-

exponential growth (see Supplementary Note for details).

Tumour growth is assumed to begin with a single transformed cancer cell that has acquired 

the full set of alterations necessary for cancer expansion. In our model, this first cell will 

therefore be carrying a set of mutations (the number of these mutations can be modified) that 

will be present in all subsequent lineages, and thus appear as clonal (present in all cells and 

thus will generate the cluster of clonal mutations at frequency ½ for a diploid tumour) within 

the cancer population.

To simulate tumour, and subclone evolution, we specify a birth rate b and death rate d (b>d, 

for a growing population), meaning that the average population size at time t is:

N(t) = e(b − d)t [6]

We set b=log(2) for all simulations, such that in the absence of cell death the population will 

double in size at every unit of time. The tumour grows until it has reached a specified size 

Nend, where the simulation stops. At each division, cells acquire v new mutations, where v is 

drawn from a Poisson distribution with mean μ, the mutation rate per cell division. We 

assume new mutations are unique (infinite sites approximation). Not all divisions result in 
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new surviving lineages because of cell death and differentiation. The probability of a cell 

division producing a surviving lineage β expressed can be expressed in terms of the birth 

and death rates:

β = b − d
b . [7]

Simulating subclonal selection

To include the effects of subclonal selection, a mutant is introduced into the population that 

has a higher net growth rate (birth minus death) than the host population. We only consider 

the cases of one or two subclonal populations under selection at any given time. We deem 

this simplification to be reasonable as the number of large-effect driver mutations in a 

typical cancer is thought to be small (<10 see ref44). Additionally, we found that sequencing 

depth >100X is required to resolve more than 1 subclone (Supplementary Figure 9). Fitter 

mutants can have a higher birth rate, a lower death rate, or a combination of the two, all of 

which results in the mutant growing at a faster rate than the host population. Given that the 

host/background population has growth rate bH and death rate dH, and the fitter population 

has growth rate bF and death rate dF, we define the selective advantage s of the fitter 

population as:

1 + s =
bF − dF
bH − dH

[8]

Fitter mutants can be introduced into the population with a specified selective advantage s 
and at a chosen time t1, allowing us to explore the relationship between the strength of 

selection and the time the mutant enters the population.

Simulation method and parameters

We used a rejection kinetic Monte Carlo algorithm to simulate the model45. Due to the 

small number of possible reactions (we consider at most 3 populations with different birth 

and death rates) this algorithm is more computationally efficient than a rejection-free kinetic 

Monte Carlo algorithm such as the Gillespie algorithm. The input parameters of the 

simulation are given in table 1.

The simulation algorithm is as follows:

1. Simulation initialized with 1 cell and set all simulation parameters.

2. Choose a random cell, i from the population.

3. Draw a random number r~Uniform(0, bmax+dmax), where bmax and dmax are the 

maximum birth and death rates of all cells in the population.

4. Using r, cell i will divide with probability proportional to its birth rate bi and die 

with probability proportional to its death rate di. If bi+di <bmax+dmax there is a 
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probability that cell i will neither divide nor die. If β = 1, ie no cell death then in 

the above dmax = 0.

5. If cell divides, daughter cells acquire v new mutations where v ~Poisson(μ).

6. Time is increased by a small increment 1
N(bmax + dmax)τ, where τ is an 

exponentially distributed random variable47.

7. Go to step 2 and repeat until population size is Nend.

The output of the simulation is a list of mutations for each cell in the final population.

Generating millions of simulations for parameter inference

A number of simplifications to our simulation scheme were made to improve 

computationally efficiency when used in our Bayesian inference method, a procedure that 

requires potentially many millions of individual simulations to be run in order to get 

accurate inferences. Our ultimate goal was to measure the time subclones emerge and their 

fitness. These parameters are measured in terms of tumour volume doublings, not in terms of 

cell division durations (as this is unknown in human tumours). Our approximations allow us 

to quantify relative fitness of subclones, measured in units of population doubling, from the 

VAF distribution. The approximations are:

Approximation 1: We model differential subclone fitness by varying the birth rate only, and 

setting the deth rate to 0 (e.g. β = 1, all lineages survive). This increases simulation speed 

because a smaller number of time steps are required to reach the same population size and 

ensures that tumours never die out in our simulations.

Timing the emergence of subclones depends on the number of mutations that have 

accumulated in the first cell that gave rise to the subclone. This is the product of the number 

of divisions and the mutation rate (n × μ), or equivalently the number of tumour doublings × 

the effective mutation rate (ndoublings × μ
β ) . Given we measure everything in terms of tumour 

doublings and the effective mutation rate (μ/β) is the only measure available to us from the 

VAF distribution (from the low frequency 1/f tail), we reduce our search space by fixing β = 

1 and varying μ, recognizing that in reality the effective mutation rate is likely to have β < 1.

We do note however that cell death (β < 1) can affect our inferences in two ways. First of all, 

in the presence of one or more subclones, the low-frequency tail which encodes μ
β  consists 

of a combination of two or more 1/f tails. If there are large differences in the β value 

between subclones, then the inference on the effective mutation rate from the gradient of the 

low-frequency tail may be incorrect. For example, a fitter subclone could arise due to 

decreased cell death rather than increased proliferation. To quantify this effect, we simulated 

subclones with differential fitness due to decreased cell death and measured the error on the 

inferred μ
β . Even in cases where the death rate was dramatically different in the subclone 

compared to the host population (β = 1.0 vs β = 0.5) the mean error on the estimates of the 

mutation rate was 42% (Supplementary Figure 5), significantly less than the order of 

magnitude previously measured between cancer type11 and so we conclude that the constant 
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β assumption is therefore acceptable. We do acknowledge however that we may 

underestimate the effects of drift, which will be accentuated in tumours with high death 

rates.

Approximation 2: We simulate a smaller tumour population size compared to typical tumour 

sizes at diagnosis, and scale the inferred values a posteriori. We note that the VAF 

distribution holds no information on the population size (it measures only relative 

proportions) and furthermore simulating realistic population sizes (in the order of tens or 

hundreds of billions of cells in human malignancies) is computationally unfeasible. To 

circumvent this, we generate synthetic datasets that capture the characteristics relevant to 

measuring the fitness and time subclones emerge, namely the effective mutation rate ( μ
β )

encoded by the low frequency part of the distribution, the number of mutations in any 

subclonal cluster and their frequency. Theoretical population genetics is then used to 

transform these measurements into values of fitness and time (via Equations [2] and [4]), 

and values are scaled by the realistic population size Nend = 1010.

Simulation length was required to allow the single cell that gives rise to the subclone 

sufficient time to accumulate the number of mutations ultimately observed in the empirical 

datum. In general, we found Nend=103 to be sufficient, except for the breast cancer and 

AML samples where we used the more conservative Nend=104. In general, Nend=104 is 

sufficient to be able to measure the range of parameters considered in Figure 1e.

To appropriately scale the estimates of s requires an estimate of the age of the tumour in 

terms of tumour doublings. Using Equation [4] with a final population size of Nend, we can 

calculate tend as:

tend =
log((1 − f sub) × Nend)

log(2) , [10]

where fsub is the frequency of the subclone. We assumed a realistic Nend = 1010, for 

generating the posterior distributions in Figures 3 & 4. We also generated posterior 

distributions for s as a function of Nend, for the AML, breast and lung cancers. For 

realistically large Nend (>109) the exact choice has minimal effect on our inferred values of s 
(Supplementary Figure 6).

To confirm that these assumptions do not invalidate our approach, we generated synthetic 

datasets with cell death and large final population size (106). We then used our inference 

method (detailed below) with the simplifying assumptions to infer the parameters used to 

generate these synthetic tumours. This demonstrated that we were able to accurately recover 

the input parameters when the simplifications were applied (Figure 2).

Sampling

To mimic the process of data generation by high-throughput sequencing we performed 

various rounds of empirically-motivated sampling of the simulation data. Sequencing data 

suffers from multiple sources of noise, most importantly for this study is that mutation 
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counts (VAFs) are sampled from the true underlying frequencies in the tumour population 

(both because of the initial limited physical sampling of cells from the tumour for DNA 

extraction, and then due to the limited read depth of the sequencing). Additionally, it is 

challenging to discern mutations that are at low frequencies from sequencing errors, and the 

limited sampling of sequencing assays means that many low frequency mutations are likely 

not measured at all. Consequently only mutations above a frequency of around 5-10% with 

100X sequencing are observable with certainty48. The ability to resolve subclonal structures 

is thus dependent on the depth of sequencing.

Our sampling scheme to generate synthetic datasets was as follows. For mutation i with true 

frequency VAFtrue, the sequence depth Di is Binomially distributed:

Di ∼ Bo n = N, p = D
N

for a tumour of size N. The sampled read count with the mutant is Binomially distributed 

with the following parameters:

f i ∼ Bo n = Di, p =
V AFtrue

N

or if over-dispersed sequencing is modelled49,50 we use the Beta-Binomial model, which 

introduces additional variance to the sampling:

f i ∼ BetaBin n = Di, p =
V AFtrue

N , ρ

where ρ is the overdispersion parameter, and ρ = 0 reverts to the Binomial model. Finally, 

the sequenced VAF for mutation i is given by:

V AFi =
f i
Di

Modelling stem cells

Stem cell architecture was modelled with two-compartments: long lived stem cells and short 

lived non-stem cells. Stem cells divided symmetrically to produce two stem cells with 

probability α and asymmetrically to produce a single stem cell and a single differentiated 

cell with probability 1 − α. Differentiated cells divided n further times before dying. At each 

division all cells accumulated mutations as described above. We used α = 0.1 and n=5. If α 
= 0.1 then the model is equivalent to the above exponential growth model.

Bayesian Statistical Inference

We used Approximate Bayesian Computation (ABC) to infer the evolutionary parameters. 

We evaluated the accuracy of our inferences using simulated sequencing data where the true 
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underlying evolutionary dynamics was known. The simulation approach to generate 

synthetic data was taken instead of a purely statistical approach, as the simulation naturally 

accounts for effects that would be difficult to represent in a pure statistical model (such as 

the convolution of multiple within subclone mutations at lower frequency ranges). 

Furthermore, the posterior distribution reported from this method naturally account for 

uncertainties due to experimental noise and stochastic effects such as Poisson-distributed 

mutation accumulation and stochastic birth-death processes. For in-depth discussion on 

these stochastic effects, see the Supplementary Note.

As in all Bayesian approaches, the goal of the ABC approach was to produce posterior 

distributions of parameters that give the degree of confidence that particular parameter 

values are true, given the data. Given a parameter vector of interest θ and data D, the aim 

was to compute the posterior distribution π(θ D) = p(D θ)π(θ)
p(D) , where π(θ) is the prior 

distribution on θ and p(D|θ) is the likelihood of the data given θ. In cases where calculating 

the likelihood is intractable, as was the case here where our model cannot be expressed in 

terms of well-known and characterized probability distributions, approximate approaches 

must be sought. The basic idea of these ‘likelihood free’ ABC methods is to compare 

simulated data, for a given set of parameter values, with observed data using a distance 

measure. Through multiple comparisons of different input parameter values, we can produce 

a posterior distribution of parameter values that minimise the distance measure, and in so 

doing accurately approximate the true posterior. The simplest approach is called the ABC 

rejection method and the algorithm is as follows51:

1) Sample candidate parameters θ* from prior distribution π(θ)

2) Simulate tumour growth with parameters θ*

3) Evaluate distance, δ between simulated data and target data

4) If δ < ε reject parameters θ*

5) If δ ≥ ε accept parameters θ*

6) Return to 1

We used an extension of the simple ABC rejection algorithm, called Approximate Bayesian 

Computation Sequential Monte-Carlo (ABC SMC)22,52. This method achieves higher 

acceptance rates of candidate simulations and thus makes the algorithm more 

computationally efficient than the simple rejection ABC. It achieves this increased efficiency 

by propagating a set of ‘particles’ (sample parameter values) through a set of intermediate 

distributions with strictly decreasing ε until the target εT is reached, using an approach 

known as sequential importance sampling53. The ABC SMC algorithm also allows for 

Bayesian model selection to be performed by placing a prior over models and performing 

inference on the joint space of models and model parameters, (m, θm). In contrast to many 

applications of ABC that use summary statistics, we use the full data distribution, thus 

avoiding issues of inconsistent Bayes factors due to loss of information54,55. For further 

details on the algorithm see references22 and the Supplementary Note on the specific details 

of our implementation. Bayes factors for all data are shown in Supplementary Tables 4 and 

5. We found that the probability of neutrality was significantly correlated with our 
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frequentist based neutrality metrics and that the inferred mutation rates were highly similar 

(Supplementary Figure 19).

The clonal structure of the cancer is encoded by the shape of the VAF distribution, we 

therefore used the Euclidean distance between the two cumulative distributions (simulated 

and target datasets) for our inference.

Testing for Selection in the Frequentist paradigm

We also refined a simple analytical test in order to rapidly determine what evolutionary 

parameters of selection lead to an observable deviation of the VAF distribution from that 

expected under neutrality. Previously, we showed that under neutrality, the distribution of 

mutations with a frequency greater than f is given by11:

M( f ) = μ
β

1
f − 1

f max
[11]

We fit a linear model of M(f) against 1/f and used the R2 measure of the explained variance 

as our measure of the goodness of fit.

Another approach is to use the shape of the curve described by Equation [5] and test whether 

our empirical data collapses onto this curve. To implement this approach, here we defined 

the universal neutrality curve M( f ) . Given an appropriate normalization of the data, the 

mutant allele frequency distribution governed by neutral growth will collapse onto this 

curve, although we recognize that deviations due to stochastic effects are possible. We can 

normalize the distribution described by Equation [5] by considering the maximum value of 

M(f) at f=fmin.

max(M( f )) = μ
β

1
f min

− 1
f max

[12]

M( f ) =

μ
β

1
f − 1

f max
max(M( f )) [13]

M( f ) =

1
f − 1

f max
1

f min
− 1

f max

[14]

M f  is independent of the mutation rate and the death rate and therefore allows comparison 

with any dataset. To compare this theoretical distribution against empirical data we used the 
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Kolmogorov distance, Dk, the Euclidean distance between M f  and the empirical data and 

the area between and the empirical data. The Kolmogorov distance Dk is the maximum 

distance between two cumulative distribution functions. Supplementary Figure 1 provides a 

summary of the different metrics.

To assess the performance of the 4 classifiers we ran 105 neutral and non-neutral simulations 

and compared the distribution of the test statistics for these two cases. Due to the stochastic 

nature of the model, not all simulations that include selection will result in subclones at a 

high enough frequency to be detected, therefore to accurately assess the performance of our 

tests we only included simulations where the fitter subpopulation was within a certain range 

(20% and 70% fraction of the final tumour size). All 4 test statistics showed significantly 

different distributions between neutral and non-neutral cases (Supplementary Figure 2). 

Under the null hypothesis of neutrality and a false positive rate of 5%, the area between the 

curves was the test statistics with the highest power (67%) to detect selection, slightly 

outperforming the Kolmogorov distance and Euclidean distance, with the R2 test statistics 

showing the poorest performance with a power of 61% (Supplementary Tables 1 and 2).

We also plotted receiver operating characteristic (ROC) curves by varying the discrimination 

threshold of each of the tests of selection and calculating true positive and false positive 

rates (using a dataset derived from simulations with subclonal populations at a range of 

frequencies, Supplementary Figure 3). This analysis showed that R2 had the least 

discriminatory power, with the other 3 performing approximately equally well (see 

Supplementary Table 3 for AUC). Increasing the range of allowed subclone sizes decreased 

the classifier performance, likely because the subclone could merge into the clonal cluster or 

1/f tail when it took a more extreme size.

Code Availability Statement

Code for the simulation and inference method, frequentist based neutrality statistics and 

bioinformatic scripts are available at: https://marcjwilliams1.github.io/quantifying-selection

Bioinformatics analysis

Variant calls from the original studies were used for the AML data26, TRACERx31 data and 

MET500 data32. Our analysis of the TCGA colon cancer cohort and gastric cancers is 

explained in our previous publication11.For both these cohorts, we required the 

cellularity>0.4 to perform the analysis. For the breast cancer data18 and lung cancer data27, 

bam files from the original study were obtained and variants were called using Mutect256 

and filtered to require at least 5 reads reporting the variants in the tumour and 0 reads in the 

normal. To mitigate the effects of low frequency mutations arising from paralogous regions 

of the genome we filtered any mutations where 75bp regions either side of the mutations had 

multiple BLAST hits (minimum of 100bp hit length, maximum of 3% mismatching bases).

Copy number aberrations could also potentially result in the multi-peaked distribution we 

observe, hence we only used mutations that were found in regions identified as diploid (and 

without copy-neutral LOH). The original AML study found no evidence of copy number 

alterations. For the TCGA colon cancer cohort we used paired SNP array data to filter out 
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mutations falling in non-diploid regions. For the TRACERx data and MET500 data we used 

allele specific copy number calls provided in the original studies to filter the data. For all 

other datasets we applied the Sequenza algorithm to infer allele specific copy number states 

and estimate the cellularity57. As the original breast cancer study found evidence of 

subclonal copy number alterations in multiple chromosomes we only used mutations on 

chromosome 3 for our analysis, (Supplementary Figure 20). BAFs of regions called as copy 

neutral by Sequenza in the lung cancer sample were consistent with a diploid genome 

(Supplementary Figure 21).

We used cellularity estimated provided by the Sequenza algorithm to correct the VAFs for 

each individual sample. For a cellularity estimate κ, the corrected depth for variant i will be 

dl = k × di . When cellularity estimates from Sequenza were unavailable (MET500 and 

TRACERx) we fitted the cellularity using our ABC method by including it as an additional 

parameter.

As noted our simulation can account for the over-dispersion of allele read counts. To 

measure the over-dispersion parameter ρ, we fitted a Beta-Binomial model to the clonal 

cluster where we know VAFtrue = 0.5. We used Markov Chain Monte Carlo (MCMC) to fit 

the following model to the right hand side of the clonal cluster so as to minimize the effects 

of the 1/f distribution or subclonal clusters:

f i ∼ BetaBin(n = Di, p = V AFtrue,ρ)

where Di is the sequencing depth, fi is the allele read count and is the overdispersion 

parameter. We then used this estimate for ρ in the simulation sampling scheme. 

Supplementary figure 22 shows the fits to the clonal cluster for the AML data using both the 

Beta-Binomial and Binomial model, and supplementary table S6 reports the over-dispersion 

parameter for each dataset. We also used this analysis to further refine the cellularity 

estimate provided by sequenza, ensuring that the clonal cluster was centred at VAF = 0.5. 

We note that some of the over-dispersion is likely artificial and introduced by the cellularity 

correction.

Mutational signatures in the breast cancer sample and AML sample (Supplementary Figure 

12) were identified using the deconstructSigs R package58 using the latest mutational 

signature probability file from COSMIC. Signature assignment was restricted to signatures 

known to be active in the respective cancer types. All other parameters were set to default 

values. To generate confidence intervals, we bootstrapped the assignment by generating 50 

datasets by sampling 90% of the mutations and running the regression on each dataset, we 

then report the mean value and the 95% CI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Modelling patterns of subclonal selection in sequencing data.
(a) In a stochastic branching process model of tumour growth cells have birth rate b and 

death rate d, mutations accumulate with rate μ. Cells with fitness advantage (orange) grow at 

a faster net rate (b-d) than the host population (blue). (b) The variant allele frequency (VAF) 

distribution contains clonal (truncal) mutations around f=0.5 (in this example of diploid 

tumour), and subclonal mutations (f<0.5) which encode how a tumour has grown. In the 

absence of subclonal selection, a neutral 1/f2 tail describes the accumulation of passenger 

mutations as the tumour expands. (c) A selected subclone produces an additional peak in the 

distribution while a 1/f2 tail is still present due to passenger mutations accumulating in both 

the original population and the new subclone. (d) In the presence of subclonal selection, the 

magnitude and average frequency of the subclonal cluster of mutations (red) encode the age 

and size of a subclone respectively, which in turn allows measuring the clone’s selective 

advantage. (e) Frequentist power analysis of detectability of an emerging selected subclone 

on simulated data. Only early and/or very fit subclones caused significant alterations of the 

clonal composition of a tumour, resulting in the rejection of the neutral (null) model. 

Tumours were simulated to 106 cells and scaled to a final population size of 1010 with a 

mutation rate of 20 mutations per genome per division, each pixel represents the average 

value for the metric (area between curves) over 50 simulations.
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Figure 2. Accurate recovery of evolutionary parameters from simulated data using Approximate 
Bayesian Computation.
Our method recovered the correct clonal structure in simulated tumour data for 

representative examples of (a) a neutral case, (b) a 1 subclone case and (c) a two subclones 

case. Grey bars are simulated VAF data, solid red lines indicate the median histograms from 

the simulations that were selected by the statistical inference framework (500 posterior 

samples), shaded areas are 95% intervals. The inferred posterior distributions of the 

evolutionary parameters contained the true values (dashed lines) for (d,f) the time of 

emergence of the subclones and (e,g) the selection coefficient 1+s. (h) The mean percentage 

error in inferred parameter values across a virtual tumour cohort (n=100 tumours) was below 

10%. Boxplots show the median and inter quantile range (IQR), upper whisker is 3rd 

quantile + 1.5*IQR and lower whisker is 1st quantile - 1.5*IQR.
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Figure 3. Quantifying selection from high-depth bulk sequencing of human cancers.
Both (a) an acute myeloid leukemia (AML) sample and (b) a breast cancer sample 

sequenced at whole-genome resolution showed evidence of two selected subclones. (c) In 

the case of a multi-region whole-exome sequenced case of lung cancer, one sample showed 

evidence of a single subclone whereas four other samples (d-g) from the same patient were 

consistent with the neutral model. Grey bars are the data, solid red lines indicate the median 

histograms from the simulations that were selected by the statistical inference framework 

(500 posterior samples), shaded areas are the 95% intervals. (h) Bayesian model selection 

reports the expected clonal structure for each case (Bayes Factors reported above 

histograms). (i) Inferred subclone fitness advantages were 20% and 80% faster than the 

original population. (j) Inferred times of subclone emergence indicated subclones arose 

within the first 15 tumour population doublings. (k) Inferred mutation rates were of the 

order of 10-7 mutations per base per tumour doubling in solid tumours but ~10-9 in AML, 

reflecting the respective differences in mutational burden between cancer types. All posterior 

distributions were generated from 500 samples.
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Figure 4. Quantifying selection in large cohorts of primary tumours and metastatic lesions.
(a) 21% of colon cancers (N=70) from TCGA (sequenced to sufficient depth and with high 

enough cellularity for statistical inference), 29% of WGS gastric cancers (N=17) (data from 

ref.30, filtered for cellularity) and 53% of metastases (N=113) from sites had evidence of 

differentially selected subclones. When present, differentially selected subclones were found 

to have (b) large fitness advantages with respect to the host population and (c) emerge early 

during growth. Bayes Factors for subclonal structures for all data are reported in 

Supplementary Table 4. Posterior distributions were generated from 500 samples. Boxplots 
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show the median and inter quantile range (IQR), upper whisker is 3rd quantile + 1.5*IQR 

and lower whisker is 1st quantile - 1.5*IQR.
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Figure 5. Predicting the future evolution of subclones.
(a) VAF distribution of an in silico tumour sampled at 105 cells was used to measure the 

fitness and time of emergence of a subclone. Grey bars are the simulated data, solid red lines 

indicate the median histograms from the simulations that were selected by the statistical 

inference framework (500 posterior samples), shaded areas are the 95% intervals. Inset 

shows error from ground truth. 500 posterior samples were taken to perform the inference. 

(b) These values were then used to predict the spread of the subclone as the tumour grew to 

107 cells, showing the predictions matched the ground truth. Predictions were made by 

extrapolating the posterior distribution of 1+s using equations in the main text. Solid line 

shows the median value from the posterior distribution, shaded area shows the 95% interval. 

(c) Using the same approach in the AML sample, where we measured 1+s, t1 and t2, we 

would predict that subclone 2 would become dominant within 3-4 further tumour doublings 

while subclone 1 will become too small to be detected.
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Table 1
Input parameters for simulation

b Birth rate within host population

d Death rate within host population

bF Birth rate of fitter populations, each new population will have a unique bF

dF Death rate of fitter populations, each new population will have a unique dF

s Selective advantage of fitter populations (calculated from bF and dF)

μ Mutation rate

tevent Time when fitter mutant is introduced

Nend Maximum population size, simulation stops once this maximum is reached
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