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Abstract
Pharmacometric models can enhance clinical decision making, with covariates expos-
ing potential contributions to variability of subpopulation characteristics, for exam-
ple, demographics or disease status. Intuitive visualization of models with multiple 
covariates is needed because sparsity of data in visualizations trellised by covariate 
values can raise concerns about the credibility of the underlying model. V2ACHER, 
introduced here, is a stepwise transformation of data that can be applied to a variety 
of static (non-ordinary-differential-equation-based) pharmacometric analyses. This 
work uses four examples of increasing complexity to show how the transformation 
elucidates the relationship between observations and model results and how it can 
also be used in visual predictive checks to confirm the quality of a model. V2ACHER 
facilitates consistent, intuitive, single-plot visualization of a multicovariate model 
with a complex data set, thereby enabling easier model communication for modelers 
and for cross-functional development teams and facilitating confident use in support 
of decisions.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Efficient communication of pharmacometric models through visualization is essential 
for drug development decision making, and trellis and visual predictive check (VPC) 
plots are standard tools.
WHAT QUESTION DID THIS STUDY ADDRESS?
It presents an alternative visualization method to help understand, evaluate, interpret, 
and communicate pharmacometric models.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
V2ACHER facilitates model communication by enhancing visualization of pharma-
cometric analyses with covariate effects, including population pharmacokinetics, 
population pharmacokinetics–pharmacodynamics, and model-based meta-analyses 
models. The method accounts for covariate effects on the dependent and independ-
ent variables (and, optionally, for random effects, a.k.a. between-subject variability), 
retaining the response curve of a selected reference population. Applying V2ACHER 
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INTRODUCTION

Pharmacometric (PMx) models, including pharmacokinetics 
(PK), pharmacodynamics (PD), and exposure–response mod-
els, are used to quantify and interpret observations, support op-
timal experimental nonclinical and clinical design, and, thus, to 
accelerate drug discovery and development.1 There is increasing 
endorsement of PMx modeling from regulatory agencies (US 
Food and Drug Administration, European Medicines Agency, 
International Conference on Harmonisation), especially with 
the publication of the model-informed drug discovery and 
development white paper.2-4 Despite widespread regulatory 
support of, and even requirement for, model-informed drug 
discovery and development, the impact of models on decisions 
can be reduced if nonmodeling team members, key stakehold-
ers, or regulators have less experience in interpreting and evalu-
ating the properties of PMx models.

Nonlinear mixed-effects (nlme) PK-PD models have been 
used for more than 40 years to describe the relationship between 
dosing parameters and physiological outcomes in a clinical 
population that includes multiple subgroups as well as across 
multiple clinical trials and nonclinical experiments.5,6 This ap-
proach differs from standard group statistical analysis in that 
the data from all individuals are considered together, but the ef-
fects of individual characteristics, such as age, sex, and disease 
status, can be used to account for between-subject variability 
(BSV).7 Incorporation of covariates into the model reduces un-
explained variability in the results by reducing the confounding 
effects of these variables and permitting meaningful evaluation 
of efficacy and safety from sparser data sets on fewer subjects. 
These model results can also be used to inform dose selection 
and dose modification during the drug discovery and develop-
ment process, thereby minimizing the costs of testing ineffec-
tive dosing regimens. Modeling with covariates is essential to 
consider when there are different types of observations, obser-
vation sites, formulations, and (for translational modeling from 
nonclinical data) species. Clinically, it is especially important 
for understanding the impact of drugs on subpopulations, such 
as children or patients with renal or hepatic impairment, whose 
responses are typically represented by small populations, and 
who might require adjustment to dosing regimens based on dif-
ference in exposure to standard populations.

One challenge in communicating results of population-
based nlme PMx models or of model-based meta-analyses 
(MBMAs) is a lack of visualization tools that account for 
the impact of covariates on BSV and allow the original data 
(often sparse) to be shown in the context of the model (often 
with complex structure, random effects, and covariates). 
The objective of this work is to share a PMx tool/method 
that (1) fills this need by providing intuitive visualization 
of variability-aligned, covariate-harmonized effects with a 
reference (V2ACHER), (2) results in easier and even more 
productive communication with nonmodelers about model 
properties and results, and (3) can also substantially in-
crease the interpretability of visual predictive checks (VPCs; 
often used to ensure the quality of a model and its covariate 
structure).

An overview of V2ACHER will be followed by a descrip-
tion of the algorithm details. Three examples with increasing 
complexity will show how the transformation steps work to-
gether to achieve the desired visualization in the presence of 
random effects (BSV) and/or one or more covariates. A fourth 
example will illustrate how using V2ACHER-transformed 
data to create a VPC (V3PC, for V2ACHER-VPC) can sub-
stantially simplify the interpretation of a VPC and enhance 
the ability to detect model misspecification.

METHODS

Overview of the V2ACHER data 
transformation algorithm

The V2ACHER method transforms the raw data (original ob-
servations) in several steps, resulting in more effective visual-
ization of the data and the model in a single plot. The method 
assumes that the data have already been modeled using nlme, 
generalized nonlinear least squares (gnls), or related meth-
ods. The goal of the transformation steps is to match the dif-
ference between a transformed data point and the reference 
curve to the distance between that point and the model curve 
corresponding to that point's covariate values. Here, “differ-
ence” typically means vertical distance on the visualization 
appropriate to the model structure: for log-normal variability, 

to VPCs (V3PC) also simplifies model qualification, enhancing the properties of 
prediction-correction VPCs, and potentially facilitating the communication of mod-
eling results to nonmodelers.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
V2ACHER and V3PC are intuitively interpretable visualizations able to reveal model 
strengths and weaknesses. They can help engage discovery and development teams in 
modeling and, thus, increase the likelihood of appropriate model impact on decisions.
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for example, the difference preserved would likely be on a 
logarithmic axis and, thus, correspond to preserving the ratio 
between the value and the (covariate-adjusted) prediction 
(which is the same as preserving arithmetic difference be-
tween the logarithms of those two values).

At a summary level, V2ACHER creates a consistent, in-
tuitive, single plot showing the model predictions (including 
confidence intervals) along with the raw data that underlie 
the model. The transformation of the data relative to the ref-
erence curve adjusts for covariate effects (CEs) for the inde-
pendent and/or dependent variables, depending on the model. 
For the independent variable, the units are (if required by 
CEs) effectively matched to those of the reference data by 
a multiplicative factor (or the equivalent shift in logarithmic 
units). In a PK-PD Emax (sigmoidal) model, for example, if 
male subjects have fourfold higher EC50 values than females 
(and no other CEs), this step scales male concentrations by 
¼ so that the male and female curves (and, thus, data fit well 
by the model) would coincide since concentrations would 
now be consistent relative to the reference EC50 value (i.e., 
in EC50 units). (EC50 is the concentration producing 50% of 
the maximal effect.)

The dependent variable data values may also be scaled 
(linearly) to account for the CEs on them. Scaling in this 
step can be illustrated by a compound with linear PK and 
with bioavailability of 2f in males and only f in females. 
To properly visualize concentration data on the same plot 
using the female dose-concentration model as a reference 
curve, the data for male subjects should be multiplied by 
½. Confidence intervals (if any) associated with the obser-
vations are scaled so that they visually represent, in an ap-
propriate manner, the variation in the data relative to the 
position of the reference curve. (Typically the end points 
of the confidence interval would be transformed in the 
same way as the measurement, but the intervals could be 
unchanged or a different technique used in cases where that 
was considered to yield an overly stringent or flexible im-
pression for the purpose at hand.)

Details of the V2ACHER data 
transformation algorithm

The four steps of the method are shown in Figure 1.
In Step 1, a PMx model with covariate(s) and/or random 

effect(s) is identified: this model can be described using gnls, 
nlme, empirical, or mechanistic models.

In Step 2, if the data set is derived from individuals or 
multiple groups, such as separate clinical trials, Equation (1) 
is used to shift the data to account for BSV (with trials treated 
as subjects in MBMA):

Rcov represents the response value (dependent physiological 
or clinical value, the datum ordinate) and Ripred and Rpred rep-
resent (respectively) the corresponding individual and typical 
responses predicted by the model. This step removes the BSV 
and transforms the observations to the values they would have 
if the data could be completely explained using the typical pre-
diction and the residual error. Depending on the intended use 
of the visualization, this step might be omitted from the scaling 
process (see Examples 1 and 2): as explained in Example 4, 
this step might need to be omitted when V2ACHER is used in 
the context of model qualification using V3PC.

Step 3 accounts for CEs impacting the independent vari-
able (IDV); for example, dose for a PK model, or exposure for 
a PK-PD model. This could include attributes such as types of 
observations, observations sites, formulations, and (for trans-
lational modeling from nonclinical data) species. The CEs are 
relative to those for a “reference curve,” the model prediction 
for typical response in the “reference population,” where a 
“population” is effectively a particular combination of covari-
ate values such as low birth weight, male, born at full term. (By 
analogy, the “covariate,” or “nonreference” curve refers to one 
for nonreference covariate values.) The reference population is 
defined as the population to which other populations’ model 
curves will be aligned (by Steps 3 and 4). The selection of this 
population is completely arbitrary (as long as its response is 
predicted by the model) and is typically based on the interest of 
the modelers and/or development team, for example, the target 
population for a compound that also has response data in other 
populations. Equations (2) to (5) (next) show how the IDV val-
ues should be transformed for the nonreference population and 
will be used both for its model prediction (covariate curve) and 
its associated data points.

The effect of a covariate (cov) on a model parameter is 
here assumed (without loss of generality) to have the form in 
Equation (2), 

where θcov is the covariate-adjusted value for the model param-
eter θ. The CE can, for example, be defined as a fraction using 
Equation (3) for a categorical covariate and Equation (4) for a 
continuous covariate: 

 

where cov is the covariate value and θcov is the model CE im-
pacting the model parameter θ (such as EC50). It is assumed that 
θ, and θcov,x, were determined during model building. Typically 
the definition of the “reference population” (defined in the text 
between Equations (1) and (2)) and the parameterization would (1)RBSV = Rcov − Ripred + Rpred.

(2)�cov = �model ⋅ CE,

(3)CE =
(

1 + cov ⋅ �cov,categorical

)

,

(4)CE =

(

cov

median (cov)

)�cov,continuous

,
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be arranged so that that CE  =1 for the reference curve (i.e., 
there are no CEs because the effects are defined relative to the 
model curve for the reference population).

CE is then used to adjust the value of the independent 
variable, IDV, transforming it to IDVtr to account for CEs 
using Equation (5a),

The response curve, Rnonref(x), of typical predicted values 
for the nonreference population at the transformed IDV = x, 
is now plotted at the abscissa value IDVtrans(x) (instead of 
at x) creating the curve (x, Rstep3(x)) so that Rstep3 is defined 
using Equation (5b),

This means that, if the original point was plotted at (x, 
y)  =  (IDVcov, RBSV), that point is now plotted (as shown in 

Figure 1) at (IDVtr, RBSV), where IDVtr is the transformed value 
of IDV corresponding to the original (untransformed) value 
IDVcov. Analogously, before Step 3 the nonreference curve is 
plotted as R(x) versus x with R(x) = Rnonref(x) (x is the value on 
the IDV axis). In Step 3, the curve goes through the same trans-
formation as an observation (IDVcov, RBSV), and so after Step 3 
the curve would be plotted as R(x) versus x with R(x) = Rstep3(x) 
(as shown in Figure 1). This means that the value of the typical 
prediction curve at IDV = x is now used (plotted) at the value of 
x transformed to the equivalent reference coordinate IDVtrans(x). 
So if the EC50 of my reference curve is 1, and that of my co-
variate curve is 2, the values of the covariate curve at x = 1, 2, 
and 3 would be used to form the transformed curve at x = 0.5, 
1, 1.5 (respectively), as illustrated by the left shift in the dashed 
purple curve relative to the blue curve in Figure 1.

Step 3 can be repeated multiple times (once per covari-
ate) if covariates act independently on the model parame-
ters. (Generalization to interacting covariates can often be 
achieved by reparameterization of the model in terms of inde-
pendent covariates.) The result of Step 3 is that observations 
are aligned along the IDV axis in a way that results in the 

(5a)
IDVtr = IDVtrans

(

IDVcov

)

,

where IDVtrans (x) =
x

CE
.

(5b)Rstep3(IDVtrans(x)) = Rnonref(x).

F I G U R E  1   Schematic of the visualization of variability-aligned, covariate-harmonized effects with a reference (V2ACHER) method. Symbols 
are defined in the main text. Illustration plots are of response (R) versus independent variable (IDV). Both axes are here assumed to be on a 
logarithmic scale for consistency with the scaling used to illustrate Steps 3 and 4. The purple points correspond to data transformed using all steps 
through the current step (the number of which appears above the point), the grayed-out points correspond to data from previous steps. The red and 
solid blue curves are the reference and covariate curves defined in Step 3, respectively. The dashed purple curve has been transformed by Step 3, 
and the dashed purple curve on top of the red curve by all steps. Gray arrows indicate the general direction of transformation in each step. Step 1 is 
model creation, and no transformation is performed. In Step 2 (which is optional), only data are transformed, and the shift will generally be toward 
the typical value Rpred. Step 3 transforms both data and the corresponding covariate model curve along the IDV axis. Step 4 transforms them on the 
R axis so that the vertical distance from point 4 to the reference curve is the same as the distance from point 1 to the solid blue curve. When the blue 
curve has been transformed using all steps, it will coincide with the red curve, as shown. BSV, between-subject variability
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ability to more easily interpret the IDV independent of any 
CE. The reason for this can be illustrated by considering a 
dose–response relationship that depends on the population, 
such as when the pediatric dose needs to be half of that for 
adults to obtain the same response, CE = 0.5 (e.g., the EC50 
for a typical child is half that of an adult). Thus, scaling the 
dose (IDV) from pediatric to adults (i.e., using adults as the 
reference population) would use IDVtr =IDV/0.5. As the re-
sult, all pediatric doses “move” to equivalent adult doses. The 
covariate(s) can include discrete and/or continuous variables.

Covariates such as level of disease severity and demo-
graphics can, of course, also impact a response, for example, 
a sex effect on exposure–response in which females experi-
ence twice the effect as males at the same concentration. Step 
4 will transform the typical predicted response curve for the 
nonreference population, Rstep3(IDV), so that its predicted 
(BSV-corrected, IDV-transformed) response curve, Rtr(IDV), 
will (with Rtr defined using the transformation defined in 
Equation (6a)) appear to be identical to that of the reference 
population. Furthermore, transformed versions of the obser-
vations preserve the (plotted vertical) distances from original 
observations to their respective prediction curves. This prin-
ciple ensures that the transformed curve and data will trans-
parently represent the degree of fit of data, conveying the 
same attributes of model fit (or lack thereof) as the original 
plots comparing observations to model curves. Stated more 
rigorously, the transformation must be chosen so that, when 
the observed (BSV-corrected) data, RBSV, are transformed the 
same way as their (typical) prediction curve, the (plotted ver-
tical) distance from point to prediction (curve) is the same as 
when the original (untransformed) point is compared with its 
corresponding curve in the original (untransformed) plot (cf. 
Figure 1).

To obey these principles, Step 4 plots data and predictions 
as R (ordinate) versus IDV (abscissa) after transformation. 
Step 4 scales an observed data point that is at (IDVtr, RBSV) 
after Step 3 so that it is now plotted at (IDVtr, Rtr), with IDVtr 
defined in Equation (5a) and the transformed value of the 
observation, Rtr, given by Equation (6a) (next). Step 4 scales 
the response curve in the new visualization so it is plotted as 
Rtrans(x) versus x (instead of Rstep3(x) versus x) with the trans-
formed curve, Rtrans(x), given in Equation (6b): 

 

with the transformed value, IDVtr, of IDV and definition of 
Rstep3  given in Equation (5a,b). The cancellation of terms in 
Equation (6b) (resulting in Rtrans (x) = Rref (x)) is because 
of the definition of Rstep3 in Equation (5b) and shows that the 
transformation of points and curves has the desired property of 
relating everything to the reference curve: if all the observed 
points were exactly on their respective predicted covariate 
curves, all the transformed points would be on the reference 
curve. For an additive error model, multiplication and division 
in Equation (6a,b) are replaced by addition and subtraction, re-
spectively. For a mixed error model, both shifting and scaling 
are needed in proportion to the coefficients of the respective 
terms (in this case the preservation of plotted vertical distance 
could be approximate).

Software

For Examples 1 and 3, R version 4.0.2 (2020–06–22) was 
used for all modeling, simulation, data processing, and plot-
ting.8 For Examples 2 and 4, NONMEM (version 7.4.3) was 
used for modeling and simulation using PsN version 4.8.1,9 
and R (version 4.0.2 [2020–06–22]) was used for data pro-
cessing and plotting. The Certara tidyvpc package10 (version 
1.1.0 [2020–09–28]) provided VPC percentiles and predic-
tion intervals for Example 4.

Research Involving Human Participants

The studies involving human participants were approved by 
the appropriate institutional and/or national research ethics 
committee and were performed in accordance with the ethi-
cal standards as laid down in the 1964 Declaration of Helsinki 
and its later amendments or comparable ethical standards.

RESULTS

Example 1: model with single discrete covariate 
and without BSV

To evaluate the methodology with relatively little uncer-
tainty and noise, a simulation data set was taken from a 
published example where a different method was used to 
visualize the data11 and for which only Step 4 of Figure 1 
is needed. The simulation data provided exposure–response 
in which the males responded differently than the females. 
The V2ACHER method was then applied to this example to 
adjust for sex effects on the dependent variable. There were 
two simulated arms in the study: one with 500 males and the 
other with 500 females. A gnls model was fit to the simu-
lated data (Step 1) using the gnls function in the R package 

(6a)

(

IDVtr, Rtr

)

=
(

IDVtr, Rtrans

(

IDVcov

))

=

(

IDVtr, RBSV ⋅

Rref

(

IDVtr

)

Rnonref

(

IDVcov

)

)

.

(6b)

(

x, Rstep3 (x)
)

→

(

x, Rtrans (x)
)

, in which

Rtrans (x) =Rstep3 (x) ⋅
Rref (x)

Rnonref (z)
=Rref (x) , where

x= IDVtrans (z)
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“nlme,” accounting for the sex effect. To enable relatively 
direct comparison with results of the previous method,11 
the male and female data sets were each divided into seven 
binned exposure quantiles representing 7 different “dose” 
levels, and the mean responses and 95% confidence inter-
vals were calculated. Since there was no BSV and the co-
variate affected the dependent variable only, neither Step 2 
(BSV correction) nor Step 3 (transformation of exposure) 
were required, leaving only Step 4 (response transforma-
tion). The predicted values for a typical male individual 
were selected as a reference in this example. Applying Step 
4 (Figure  1) scaled the female response data to the male 
reference curve using Equation (6a).

Figure  2 compares four approaches to visualizing this 
simulated exposure–response data set, illustrating the impact 
of scaling the response for sex as the population covariate. 
Figure 2a shows the original data. Figure 2b shows how each 
sex grouping fits its respective (covariate-adjusted) model; 
it does not allow immediate, intuitive understanding of the 
relationship between the two sets of data. The V2ACHER-
transformed data (Figure 2c) reveal the relationship between 
the data set and a single, coherent model. Although the dif-
ference between Figure 2b,c is likely to be less impactful in 
a relatively simple example with parallel model curves (as 
seen here), it is often an impediment when there are more 
(combinations of) covariate values and in the presence of 

F I G U R E  2   Visualization of raw and transformed exposure–response data for Example 1. Data are from a simulation of the model in 
Overgaard et al.,11 showing the exposure (area under the curve [AUC]) and response for 500 male and 500 female subjects binned into seven 
exposure (AUC) quantile groups separately for each sex. Shown are the mean ± 95% confidence interval for the response in each group. The red 
symbols and curves are for simulated males, the blue symbols and curves are for simulated females in (a), (b), and (c), and the axes scales are 
the same for all four panels (a)-(d). (a) Unclear exposure–response relationship in the data set with sex information. The data show high apparent 
(sex-effect confounded) variability prior to adjustment for the effects of sex. (b) Superimposition of data and the separate covariate-adjusted 
prediction curves for males and females. (c) Data from panel (a) are shown after scaling to adjust for the sex effect (using the male curve as the 
reference) elucidating how data from both sexes are fit by a single, coherent model. (d) Visualization of raw data and model curve as proposed in 
the original reference.11 The dark blue points show the medians of the “observed” responses (and 95% confidence intervals) from their respective 
AUC bins, where the dark blue curve is generated similarly using the predicted responses. The light blue curve is the mean of the male and female 
model curves. The data used are from a pseudo-random number generator, and therefore the figure is not expected to be identical to that originally 
published
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covariate-driven changes to curve shapes. If the data are com-
bined using the method originally proposed (Figure 2d),11 the 
predominance of lower exposure values among the males bi-
ases the apparent model fit, potentially complicating assess-
ment of the model's goodness of fit to the data.

Example 2: model with two discrete covariates

This example is intended to illustrate the impact of either in-
cluding or excluding correction for BSV (as described in 
Figure 1) and to demonstrate the use of V2ACHER when there 
is more than one covariate, and the covariates were assumed to 
impact only the dependent variable. (The example does not in-
clude any IDV scaling.) A simulation analysis was constructed 
based on a published PK analysis of neonatal phenobarbital 
clearance with multiple demographic covariates12 (additional 
details in Supplementary Material S5). Birth weight and age 
were found to impact clearance, and weight the volume of dis-
tribution. The simulation parameters were the following: body 
weight at birth (BW) in kg = 0.5, 1.5, and 3.5; postnatal age in 
days at first dose administration (AGE) = 1, 11, and 21; single 
intravenous dose (DOSE) = 4 to 40 mg/kg; and infusion rate 
(INF) = 36 to 72 mg/h. The weight at first dose administration 
was highly correlated with age and birth weight, thus the model 
used Equation (7) to simulate the weight:

where “noise” represents multiplicative variability distributed 
normally with a mean of 1 and a standard deviation (SD) of 
0.1.

The CEs were modeled as follows:

Where:

where CLx is the effect of covariates on clearance for covariate 
x = AGE, BW, or (for COV) both.

A sparse, randomly sampled data set containing 50 sam-
ples from 20 neonates was generated based on the pub-
lished model simulation.12 Model parameters for the 
two-compartment model with first-order absorption and 
elimination, including BSV on clearance and central vol-
ume of distribution, were then re-estimated using the smaller 
data set (original and re-estimated parameter values are in 
Supplementary Material S1). The 50 data points were then 
adjusted either:

a.	 Without correction for BSV, scaling data points with Step 
4 of Figure  1 using Equation (6) to account for the ef-
fects of AGE and BW using the reference curve for the 
typical individual with BW = 1.5 and AGE = 11  days 
with DOSE  =  38.8  mg and INF  =  50  mg/h or

b.	 With BSV correction prior to the steps performed in (a), 
applying Equation (1) to account for the effects of BSV.

Transformation of exposure as in Step 3 of the scaling 
process was not required in either of these since covariates 
affected only the dependent variable.

Figure 3a shows the simulated data, with high variability 
and a trend of decreasing maximum concentration with time 
after dose. Figure 3b shows the simulated data stratified by 
age and birth weight; the sparsity of data and variability 
are evident when trellised by subgroup, and, although there 
is no clear relationship between concentration, group, and 
time, the trend of decreasing maximum can be seen in some 
groups. In Figure 3c, after V2ACHER transformation with 
scaling for AGE and BW CEs, the random distribution of 
the transformed data around the curves reveal that they 
are consistent with the covariate-dependent PK time pro-
file. Figure  3d shows how accounting for effects of BSV 
in clearance and central volume of distribution in the scal-
ing on top of the steps taken in Figure 3c shifts data points 
further toward the red (re-estimated) and blue (simulated) 
model curves, which helps to identify the extent of remain-
ing residual variability in the model. Also, although it is not 
clear from Figure 3a,b that the simulated data are sufficient 
to support model re-estimation, the proximity (not depen-
dent on V2ACHER) of re-estimated and simulated curves in 
Figure 3c show that the data are sufficient to re-estimate the 
model consistently.

Example 3: model with three 
discrete covariates

An analysis data set was assembled from 17  clinical trials 
containing three key covariates (meta-data summarized in 
Table 1). An MBMA model was created to describe the dis-
ease incidence rates as a function of PD biomarker values, as 
shown in Equation (8).13

IR (the response) represents an incidence rate, IRmax rep-
resents the maximum IR, IRmin represents the minimum pos-
sible IR, C represents the PD biomarker value of titer, suppr 
represents the inhibition depending on C, EC50 represents 

(7)WEIGHT = (BW + (0.04 × AGE)) × noise,

(7a)CLCOV = CLAGE ⋅ CLBW,

(7b)CLAGE = (1 +ΘAGE ⋅ (AGE − 4.50)),

(7c)CLBW = (1 +ΘBW ⋅ (BW − 2.59)),

(8)

IR = IRmax ∗ e
log

(

IRmin

IRmax

)

∗suppr

where suppr =
log (C)

�

log (C)
� + log

(

EC50

)� ,
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the C at which 50% inhibition is achieved; and γ determines 
the maximum slope of the sigmoidal curve.

CEs were modeled as follows: 

 

where EC50x is the effect of covariates on clearance for covari-
ate x = FORMULATION, POPULATION, or (for COV) both. 
IRmaxy is the CE for y=POPULATION, DISEASE (disease se-
verity 1, 2, or 3), or a combination thereof (for COV). Random 
effects for each trial were modeled to impact IRmax proportion-
ally with IRmaxtrial = IRmax. e�i, where IRmax is the typical 
trial maximum response and �i reflects the random effect for trial 
i (between-trial variability). We can arbitrarily choose IRmaxx = 1  
for one population and for one disease severity level.

Because the data depend on three covariates and on random 
effects as well as C, understanding and communicating the 
model and data required the creation and use of V2ACHER.

(8a)
EC50COV =EC50FORMULATION ⋅EC50POPULATION

EC50FORMULATION = (1 +ΘFORMULATION)

EC50POPULATION = (1 +ΘPOPULATION),

(8b)

IRmaxCOV = IRmaxPOPULATION ⋅ IRmaxDISEASE

IRmaxPOPULATION = (1+ΘPOPULATION)

IRmaxDISEASE =ΘDISEASE

F I G U R E  3   Visualization of raw and transformed pharmacokinetic data for Example 2. Raw data from a simulation of the phenobarbital 
concentration over time after a single intravenous dose in neonates12 are shown (a) combined into a single graph without adjusting for covariate 
effects, (b) trellised by AGE (1, 11, and 21 postnatal days) and body weight at birth (BW; 0.5, 1.5, and 3.5 kg), (c) after scaling for covariate effects 
where gray symbols represent the original data and colored data points the data points scaled (using V2ACHER) to the reference typical individual 
(BW 1.5 kg and AGE 11 days), and (d) after both adjustment for between-subject variability (BSV) and scaling for covariate effects with gray and 
colored symbols as described in (c). No independent variable scaling was performed in any of the plots, that is, data points were only moved in 
vertical direction. The blue curve shows the predicted phenobarbital pharmacokinetics for a typical reference individual (see the text) based on the 
original model and the red curve (near or over the blue curve) shows the predicted phenobarbital pharmacokinetics for a typical reference individual 
after re-estimation of the model parameter using the smaller, simulated data set
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In this example, there is a mechanistic reason to expect 
a proportional variability between trials, and the key results 
of interest involve the relative (within-trial) effect of active 
versus placebo arms. Thus, the raw data were adjusted for 
between-trial variability using Equation (1) and for differ-
ences in formulation using Equation (5a,b) of Step 3 (this 
adjustment has no impact on the key results of interest). IR 
was then scaled to account for population attributes and dis-
ease severity using Equation (6a,b). The results, shown in 

Figure 4, were plotted on a semilogarithmic scale to improve 
visualization of proportional differences, especially at low 
IR.

Figure  4a shows the sparsity of the data and challenge 
in interpretation without consideration of CEs; the data do 
not show an obvious trend, and variability is high. Figure 4b 
shows that trellising the IR versus C data by population and 
disease severity yields sparse plots that obfuscate any re-
lationship. Figure  4c shows V2ACHER-transformed data 

Population A Population B Population C
All 
Populations

TotalCF1 CF2 CF1 CF2 CF1 CF2 CF1 CF2

Severity 1 5a  1 2 1 13 1 20 3 23

Severity 2 0 0 8 2 6 1 14 3 17

Severity 3 0 0 4 0 9 1 13 1 14

Sum 5 1 14 3 28 3 47 7 54

Total 6 17 31 54

Abbreviation: CF, compound formulation.
aEach data point represents an aggregated incidence rate of one arm of a clinical trial.

T A B L E  1   Properties of the 
54 summary-level published data points 
from 17 clinical trials by population, 
disease severity, and compound formulation 
showing the sparsity and diversity of the 
data

F I G U R E  4   Visualization of raw and 
transformed biomarker–response data for 
Example 3. Raw data for the level of a 
pharmacodynamic biomarker value and 
the disease incidence rate in humans are 
shown (a) combined into a single graph 
without adjusting for covariate effects. Each 
data point represents a clinical trial arm 
with error bars for their 95% confidence 
interval (CI). The symbol indicates the 
disease severity level, and the symbol's 
size indicates the size of the trial arm. 
(b) Trellised by population and disease 
severity level. (c) The final output is shown 
superimposed on the predicted, typical 
biomarker-incidence rate relationship for 
reference Population B at reference disease 
severity Level 2, with an associated 95% CI
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overlaid on model prediction, demonstrating that the trans-
formation helps to more clearly reveal the relationship IR(C; 
covariates).

Example 4: V3PC—creation of a VPC using 
V2ACHER-transformed data

The method presented here is related to the prediction-
corrected VPC (pcVPC) method described by Bergstrand 
et al.14 The VPC method was developed to allow modelers to 
visually assess model quality using a simulation approach. In 
pcVPC, the value of the resulting VPC may be limited by bin-
ning across important covariates. This fourth set of examples 
illustrates how transforming the data first using V2ACHER 
before creating a VPC plot (“V3PC” for V2ACHER VPC) 
can lessen this limitation.

Since VPCs are used to help assess attributes of BSV, Step 
2 of the scaling, which shifts the data to account for BSV, 
should be omitted so that any biases introduced by or into 
estimates of BSV will not be hidden by the visualization.

The use and relative merits of V3PC and pcVPC can be 
illustrated using a simple Emax model:

where Rmin, Rmax, and R correspond to minimum, maximum, 
and simulated response, respectively; C is the concentration 
of the drug; and EC50 is the concentration leading to half-
maximum increase of the response. The CE was modeled using 
Equation (3) with EC50COV = 0 for Population 1 and EC50COV =  
Θpopulation-2 for Population 2.

A rich (Data Set 1) and a sparse data set (Data Set 2) were 
created; both simulations include two populations to allow 
for simulations with two different EC50 values. A multipli-
cative (relative) CE was used on the EC50 for the second 

population (Equation (2)). For simplicity, this was the only 
population difference in the simulation so that no response 
scaling (Step 4) is needed. (The example could be easily ex-
tended to include response scaling.)

Data Set 1 provided 120 observations from 24 subjects, 
Data Set 2 included 30 observations from 10  subjects. 
Responses were simulated in NONMEM based on Equation 
(9) using Rmin and Rmax values of 1 and 10. EC50 of 
Population 1 (reference population) was 0.5, and the EC50 
of the second population was 3. A BSV term shared between 
Rmin and Rmax was included, assuming normal distribu-
tion with mean = 1 and SD = 0.2. In addition, random ad-
ditive (SD  =  0.6) and proportional (SD  =  0.2) noise were 
added. Parameters were re-estimated for each simulated data 
set using NONMEM. The resulting parameter estimates are 
listed in Supplementary Material S2.

A total of 500 replicates of each model were simulated for 
VPC using NONMEM. VPC analysis was then carried out 
using tidyvpc in both normal and prediction-correction (pc) 
modes. V3PC plots were obtained by applying Steps 1 and 
3 of the V2ACHER transformation to both the original and 
simulated data sets, with Population 1 as the reference popu-
lation, followed by a normal VPC analysis on the V2ACHER-
transformed data. The analysis included automatic binning 
into five bins with each containing an equal number of obser-
vations and calculation of the median and respective quan-
tiles as well as 95% confidence intervals, just as was done for 
the VPC and pcVPC.

A comparison between VPC, stratified pcVPC, pcVPC, 
and V3PC plots for the rich and sparse data sets is provided in 
Figure 5. As expected, the median of simulated data in normal 
VPC and pcVPC is an average of the two original simulation 
curves, that is, it does not reflect the properties of either of 
the simulated populations. In contrast, V3PC represents the 
properties of both populations (using representation based 
on Population 1 as a reference). All methods perform well on 
the rich data set if it is not stratified (Figures 5a,e,f), with the 

(9)R = Rmin + (Rmax − Rmin) ∗
C

C + EC50
,

F I G U R E  5   Comparison of prediction-corrected visual predictive check (pcVPC) and visualization resulting from applying V2ACHER to 
the data used in a visual predictive check (resulting in the “V3PC”) for rich and sparse data. Plots use data from Example 4, and black dotted and 
dashed lines correspond to the median of observations and empirical 90% observation interval, respectively; gray solid lines represent the median 
of simulated data and 90% prediction interval. Gray-shaded areas show 95% confidence intervals around respective simulated quantiles: values 
for each bin are plotted at the center of the bin and then plotted as interpolated between bin centers with a piecewise linear function (assumed to 
have a constant value over the lowest and highest one-half bin width). The prediction curves for Populations 1 and 2 from the re-estimated models 
are included as red and blue solid lines, respectively, to illustrate where the responses would typically be expected. These would normally not 
be included in traditional visual predictive check (VPC) or pcVPC plots and are not intended to be used to assess model appropriateness in this 
example. Data points are color coded by population. (a, b) For VPC plots of rich and sparse data, red and blue points represent the original observed 
data from Populations 1 and 2, respectively. (c–f) For stratified (c, d) and unstratified (e, f) pcVPC plots of rich and sparse data, light red points 
represent the observed data from Population 1, and light blue points represent the observed data from Population 2 after prediction correction. (The 
red and blue solid lines are not prediction corrected.) (g, h) For V3PC plots of rich and sparse data, red points represent the observed data from 
reference Population 1. Purple points indicate data from Population 2 after V2ACHER transformation (adjustment for the covariate effect with Step 
3); they are positioned relative to the (reference) red curve as though they had been obtained from Population 1
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confidence intervals somewhat more separated in the V3PC 
than in pcVPC and the relatively symmetric scatter of the 
points relative to model prediction preserved in V3PC and not 
in the VPC or pcVPC. The larger (better) separation of con-
fidence intervals in V3PC could be because the method does 
not bin across covariates and might thus better represent the 
true uncertainty in the models. Stratifying by population in the 
pcVPC (Figure 5c) results in very little prediction correction 
and a plot similar to stratified VPC (not shown). The stratifi-
cation leads to larger uncertainty in the predictions, which is 
reflected in wider, overlapping confidence intervals even with 
the rich data set. For the sparse data set, the appropriateness 
of the model is harder to assess with VPC and pcVPC: due 
to the binning across covariates, profiles seem erratic, with 
a pattern not representing the expected shape from a simple 
Emax model (Figures 5b,f). The stratified pcVPC (Figure 5d), 
however, helps to identify which population contributes most 
to the estimation of the lower plateau of the curve, as red data 
end before the plateau is reached. In contrast, with sparse data 
V3PC reveals its strength by giving an integrated view of the 
results: it retains (Figure 5f) the expected shape of response 
and the relationship of the data to the underlying model.

DISCUSSION

V2ACHER is a PMx scaling method that adjusts for CEs on 
the dependent and independent variables and, optionally, ac-
counts for random effects, thereby facilitating interpretation 
and assessment of a population PMx model using a single 
graph. The four examples demonstrate that the technique is 
flexible and can be applied to multiple types of PMx data 
and models, including exposure response, PK-PD, biomarker 
response, MBMA, and other models. The technique can be 
applied to data sets with a simple covariate structure as well 
as complex population data sets derived from multiple trials. 
The resulting plot can help communicate modeling results 
to team members who might be most comfortable interpret-
ing the traditional pooled statistical analysis of simple data 
sets. The main purpose of this communication would be to 
highlight population commonalities, that is, how the different 
populations with different properties can be described with 
a single underlying model. Other visualization tools might 
be more appropriate for communicating covariate impact re-
sulting in differences between population responses. In addi-
tion, the version of V2ACHER shown here cannot be used on 
nonstatic (e.g., compartmental) models, although this is the 
subject of future work.15

Visualization of modeling results is critical to understand-
ing, evaluating, interpreting, and communicating them. It is 
often also critical for engaging a preclinical or clinical devel-
opment team in model evaluation, for obtaining their feedback 
to use in model development, and, ultimately, for engaging the 

model to support decision making. By applying the V2ACHER 
stepwise transformation method, complex, dense, or sparse 
data sets with BSV and multiple covariate dependencies can 
be presented in a single plot and overlaid intuitively on a ref-
erence curve. This visualization enhances insight into whether 
and/or how the data might be integrated into a coherent 
model. Furthermore, the use of V2ACHER to transform data 
to a reference in the context of performing a VPC results in 
an intuitively interpretable visualization (V3PC) for evaluating 
(detecting) potential model misspecification.

V2ACHER may improve on the visualizations proposed 
by Overgaard et al.,11 who showed the discrepancy between 
the simplistic summary of the combined data and the model 
prediction11 and proposed a visualization to mitigate this dis-
crepancy. Example 1 showed that V2ACHER-transformed 
data match the model prediction and can provide a more eas-
ily interpreted visualization that demonstrates that data from 
females can be described with the same model structure as 
the one used for males.

PMx models can be particularly useful in the analysis of 
sparse data. Drug development guidelines require that med-
ications be studied in children,16 and these studies typically 
produce sparse data.17 As a result, V2ACHER could be es-
pecially useful for pediatric drug development and dose pre-
diction. Example 2 demonstrates an example of this, showing 
that—after scaling for covariates included in the drug clear-
ance model—V2ACHER can be applied to a sparse neonatal 
PK data set. The resulting plots (Figure 3) show intuitively 
that the underlying structural model is identical for all of the 
subgroups included in the parameter estimation and illustrate 
how the CEs in the model allow prediction of the response 
with that structural model. The visualization thus demon-
strated that all neonatal subgroups share common properties 
that can be described with that model: other visualization 
methods might highlight differences between the populations. 
Figure 3 also illustrates that V2ACHER can visualize how a 
complex model can be reliably estimated from a relatively 
sparse data set. These aspects of V2ACHER can be used to 
increase the trust of development teams in using such models 
for further decision making.

MBMA models can also rely on relatively small data sets, 
and, again, covariate-based grouping of the data can result 
in sparsity that can be particularly challenging. The third ex-
ample demonstrates how V2ACHER can mitigate (although 
not eliminate) the effects of that sparsity in an MBMA by 
producing an integrated visualization across the groups while 
maintaining the group-based effects relative to the reference.

The fourth example demonstrates how applying V2ACHER 
to data before running a VPC (generating a “V3PC plot”) can 
be used in the context of model qualification to improve on 
some limitations in pcVPC arising when binning across covari-
ates. The example demonstrates that V3PC is sometimes able to 
improve visualization of confidence intervals around predicted 
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response quantiles (Figure 5g vs. 5e). For sparse data, it also re-
moves (Figure 5h) erratic, potentially artifactual trends that are 
visible in both VPC and pcVPC profiles (Figure 5b,f). pcVPC 
might trigger questions on the interpretability of the shape of 
the response curve from development teams, whereas V3PC 
retains the response curve of a selected reference population. 
Retaining the response curve can be achieved for both VPC 
and pcVPC by stratifying by population (shown for pcVPC; 
Figure 5c). One advantage of this stratified view is that it helps 
to highlight which population contributes to the end of an es-
timated curve. However, due to the stratification, visualiza-
tion of the response curve can come at the cost of overlapping 
confidence intervals, even in the rich data scenario, which, 
again, can limit the assessment of model appropriateness for 
the pcVPC method. Example 4 included a covariate on the 
independent variable. Differences between pcVPC and V3PC 
might be less apparent if the underlying model only included 
covariates affecting the dependent variable. In such a scenario, 
pcVPC would most likely enable modelers equally well to as-
sess model appropriateness. However, additional value might 
be provided by V3PC, as the response curve would correspond 
to that of a chosen reference population.

Another important question is if the scaling applied in 
V3PC would hide model misspecifications. To address this 
question, a model known to be misspecified (simple linear 
regression) was fit to the data used in Example 4. As shown 
in Figure S3, both pcVPC and V3PC would reveal the model 
misspecification in the rich data scenario, as the central ten-
dency of observed data is not fully contained in the confidence 
interval of median model prediction. This is less apparent for 
the sparse data example, as confidence intervals are very wide: 
V3PC would be expected to perform at least as well as pcVPC, 
although neither visualization can overcome a data set too 
sparse to determine misspecification. Although the main pur-
pose of VPC is usually not to reproduce the shapes of the pre-
diction curves, as an experienced modeler is well equipped to 
correctly interpret pcVPC plots, V3PC is easy to interpret and 
might therefore be better suited for direct communication with 
nonmodelers. The example illustrates how V3PC can improve 
the utility of VPC, especially for complex data sets. V3PC thus 
enhances the use of VPC for model assessment with similar 
principles to those of pcVPC, extending the interpretability to 
data with significant covariate considerations.

The utility of V2ACHER is not limited to applications 
demonstrated by the four examples. For example, disease pro-
gression may be characterized by various scales to quantify 
the severity, such as the American College of Rheumatology 
ACR20, ACR50, and ACR70 scores for rheumatoid arthritis.18 
This is sometimes also combined (in a model) with treatment 
as a covariate altering that progression over time.19,20 The 
V2ACHER methodology is potentially suitable, by analogy 
with Example 3, to align (via the model) and visualize coher-
ence of the measured and predicted scores. Discrete response 

data (specifically, ordered categorical data) described by a 
single model also require clear visualization to demonstrate 
consistency between model and data, and this could also be 
supported by V2ACHER.

Finally, although both V3PC and V2ACHER are demon-
strated without stratification, if useful to do so, modelers can 
also decide to apply V2ACHER techniques for some covari-
ates while stratifying by one or more others—combining the 
benefits of stratification with V2ACHER’s visual alignment 
across selected covariates.

The primary limitation of the V2ACHER method is that, 
as described here, it will not work on nonstatic (e.g., differ-
ential equation-based) models for which time-dependence 
shifts in a nonlinear manner between covariate values. The 
simplest example might be a compound for which the time of 
maximum concentration shifts with dose level and or other 
covariates. The scaling proposed for V2ACHER (as with 
other existing methods) will not align times of data points 
properly to compare their position relative to a reference time 
course. This is under investigation: a simplified version of 
dynamic time warping21,22 is likely to enable generalization 
to nonstatic models.15

It is also possible, under very restricted circumstances, for 
the visualization to mask potential problems with an underly-
ing model, including artifacts created by missing or inaccu-
rate data, or failure to include all the relevant covariates. This 
effect could emerge, for example, when data are combined 
across trials with substantially different designs so that the 
raw data include sources of bias difficult to evaluate in a sin-
gle combined plot. To avoid overinterpretation of the data 
with a scaling procedure,4 it is always important to evaluate 
the underlying data and model, including mathematical and 
scientific assumptions in the chosen model and the statistical 
indicators of model goodness of fit. V2ACHER contributes to 
only one part of a decision-making strategy; the underlying 
biological assumptions in the data, such as the proposed link 
between a surrogate biomarker and a clinical outcome, must 
be supported with information independent from the result-
ing visualization.

In addition, models including BSV can be affected by 
shrinkage.23 As Step 2 of the scaling method makes use of 
individual predictions for correction of data points, the extent 
of model parameter shrinkage should be assessed before ap-
plying this step. In models with high shrinkage, V2ACHER 
visualizations including Step 2 are expected to be influenced 
by this phenomenon in a similar way as, for example, plots of 
individual predictions versus observations, and the evaluation 
of model adequacy might be impaired.23 Using V2ACHER 
without Step 2 does not depend on individual predictions and 
is not influenced by parameter shrinkage. The specific appli-
cation and shrinkage properties will determine if V2ACHER 
plots should be created with BSV correction, without BSV 
correction, or both ways.
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As planning and analysis of clinical trials increasingly re-
quire consideration of MBMAs, more covariates, smaller data 
sets, and adaptive designs, it is increasingly important to enable 
analyses and reporting that support such work. V2ACHER’s 
advantages over previous techniques have already enabled it 
to support these kinds of tasks and decisions.13,24,25 Future 
application is, thus, likely to enable improvement in the effi-
ciency of future drug discovery and development.
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