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ABSTRACT: The emergence of SARS-CoV-2 and its variants that
critically affect global public health requires characterization of
mutations and their evolutionary pattern from specific Variants of
Interest (VOIs) to Variants of Concern (VOCs). Leveraging the
concept of equilibrium statistical mechanics, we introduce a new
responsive quantity defined as “Mutational Response Function
(MRF)” aptly quantifying domain-wise average entropy-fluctuation
in the spike glycoprotein sequence of SARS-CoV-2 based on its
evolutionary database. As the evolution transits from a specific
variant to VOC, we find that the evolutionary crossover is
accompanied by a dramatic change in MRF, upholding the
characteristic of a dynamic phase transition. With this entropic information, we have developed an ancestral-based machine
learning method that helps predict future domain-specific mutations. The feedforward binary classification model pinpoints possible
residues prone to future mutations that have implications for enhanced fusogenicity and pathogenicity of the virus. We believe such
MRF analyses followed by a statistical mechanics augmented ML approach could help track different evolutionary stages of such
species and identify a critical evolutionary transition that is alarming.

■ INTRODUCTION
Severe Acute Respiratory Syndrome (SARS) has recently re-
emerged in China in December 2019.1 The rapid spread of the
virus results in the selection of SARS-CoV-2 variants with
varying mutations in the Receptor Binding Domain (RBD)
and N-Terminal domain (NTD)2−4 predominantly among its
other structural domains (Figure 1). Consequently, the virus
left its fresh footprints over its evolutionary trajectory,
intervened by several Variants of Interest (VOIs) and Variants
of Concerns (VOCs). This trajectory, although short-term,
may carry a critical characteristic evolutionary signal; therefore,
a thorough statistical analysis of this short-term trajectory is of
utmost necessity at the current time.
The transition from one class of variant to the other involves

mutational fluctuation both at the genomic level and amino
acidic level. To unveil the detailed nature of the fluctuation
during such transition, we have borrowed fundamental
concepts concerning the fluctuations of systems described by
statistical mechanics.
One of the most fundamental and general results described

by statistical mechanics is deriving the relation between the
spontaneous fluctuations and the response to external fields of
physical observables concerning a system.5 Although the
fluctuation relations receive more attention by the phenomena

involved far from equilibrium, nonetheless, a generic
fluctuation−dissipation relation of statistical mechanics is
rather relevant as a general concept, regardless of the
Hamiltonian or equilibrium behavior of the system.6

For example, using equilibrium fluctuation of thermody-
namic observables, we connect the heat capacity (as the
response to an energy perturbation) to the energy fluctuations
and entropy fluctuation, isothermal compressibility to fluctua-
tion in volume, and number density.7 On the other hand, using
fluctuations in nonequilibrium statistical mechanics, one can
derive celebrated Einstein’s relation between diffusion and
mobility.8 These response functions often exhibit a sudden
change when the system approaches the transition point where
it is about to change its phase.9,10 Systems undergoing such
phase/state transitions often appear in the natural and social
sciences.11,12 Therefore, a lot of effort has been put into
identifying an appropriate responsive order parameter for the
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development of early warning signals. An early warning signal
may also involve an increase in variance and correlation time of
that sensitive order parameter as the system approaches the
transition point. A response function uniquely provides a
quantitative measure of the response of a system to an external
perturbation. In equilibrium statistical mechanics, such
response functions are defined in terms of mean square
fluctuations in the conjugate system properties. Near a phase
transition or/and instability point, these response functions
exhibit dramatic changes that essentially signal a change in the
state of the system, for example, a critical temperature in gas−
liquid or magnetic systems. Here, we follow the concept of
probing phase/state transition from equilibrium statistical
mechanics and attempted to capture mutational state transition
by quantifying the mean value of mutational entropy and its
mean square fluctuation for each domain, as described in the
Methods. It is worth mentioning here that mutational
fluctuations are always present in an evolving sequence due
to the stochastic nature of the elementary mutation process

(similar to a biomolecular reaction in a cellular system). These
fluctuations exert more profound effects and can induce new
functional activities in small-scale systems (like mutation
occurs only in a few sites compared to the whole genomic/
protein sequence but render a functional change), which may
not be predicted or well captured by any mean-field/mean
value description.
The viral mutation in the real world is a stochastic

phenomenon.13 Such stochasticity is always associated with
any mutational event as a random/chance event.14,15 Although
the mutational transition is a complex nonequilibrium process,
in a given VOI or VOC, certain mutations are still observed to
survive in a time-invariant manner within a limited span and
can be considered as a unique mutational steady state. When
the number of such random mutational events uprises, it may
be captured by a relevant fluctuation relation near a dramatic
mutational transition which governs a mutational state to
evolve from an old to a new mutational steady state.
Information entropy has long been utilized as a parameter to

Figure 1. Illustration of the spike surface glycoprotein sequence of SARS-CoV-2 and its specific structural domains. (a) Surface glycoprotein
sequence of SARS-CoV-2 shows major regions and their positions (upper panel). Yellow color corresponds to the N-Terminal Domain ranging
from position 13 to 304. Red color corresponds to the Receptor Binding Domain ranging from position 319 to 541. Green color corresponds to the
S1/S2 Cleavage Region (CR). Cyan color represents the Fusion Peptide, and blue color represents the Internal Fusion Peptide (IFP). Purple color
corresponds to the S2 domain of the glycoprotein sequence. Lower panel corresponds to the 3D representation of a single chain of spike
glycoprotein. The colored regions correspond to the upper panel representation (b) 3-dimensional representation of the spike protein of SARS-
CoV-2. The figure shows the trimeric chain with Chain A (red), Chain B (blue), and Chain C (magenta) in the closed state. (c) 3-Dimensional
representation of the single spike chain depicting the key mutations of the Delta variant (B.1.617.2) highlighted in yellow color.
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analyze epidemics by evaluating the time of maximum diffusion
of an epidemic or pandemic,16 analyzing phylogenetically
informative genetic regions, helping design primers for PCR
amplification,17 and studying genetic mutations by analyzing
the entropy spectrum of the genomes.18 Thus, we surmise that
information entropy and its relevant fluctuation may
collectively capture such random mutational effect during the
transition from one mutational state of a variant to a new
one.19

The surge of mutational events, with ten mutations
occurring in the surface glycoprotein of the Alpha variant
(B.1.1.720,21) to 37 mutations occurring in the surface
glycoprotein of the Omicron variant (B.1.1.52922), raises an
important question: Is it possible to predict future mutations?
How accurately can we predict these mutations? Predicting the
mutational pattern of a species may provide insights into the
mutation process and future activity of the species and may
help design potential drugs targeting the viral species.23,24

Machine Learning techniques offer assistance for analyzing the
available mutational data with several models utilizing different
methods to predict the mutations in different scenarios, such as

Long−Short-Term Memory (LSTM) models25 and Neural
Networks and Rough Set theory26 to predict mutations in viral
species, Statistical Relational Learning for generating resistant
mutations in HIV reverse transcriptase inhibitors,27 Deep
Convolutional Neural Network28 to classify and predict
mutation from histopathology images of lung cancer, Varia-
tional Autoencoders (VAE) to examine the heterogeneity and
fluctuation of chromatin structure,29 Interactive Interface to
analyze biomedical and clinical data sets,30 Supervised
Machine Learning Model of coarse-grained molecular dynamic
force fields,31 and Multilayer Perceptron classifier32 to predict
mutations in the influenza virus. As a new approach,
information entropy can be utilized for data compression
and transmission and to calculate the target-class imbalances in
binary classification models of machine learning.
In the present study, we analyze both genetic and protein

sequence in different variants of SARS-CoV-2 and introduce a
mutational response function (MRF) to quantify the entropic
fluctuation during the transition from one variant to another.
The fluctuation parameter captures the transition pattern both
at the genomic and protein level and exhibits a clear transition

Figure 2. Mutational Entropy (ME) variation of each genomic position as time evolves. The figure shows the entropy change at the genomic level
with time evolution. Upper panel corresponds to the genomic sequence of SARS-CoV-2 with distinct domains. For the B.1 variant (Ancestral
variant), the mutational entropy of the NTD region (cyan box) gradually decreases with minor changes occurring in the RBD region (dark gray
box) from November 2020 until January 2021 (a−c). On the other hand, the entropy change obtained in the Delta variant (B.1.617.2) starts to
decrease in the RBD region (d−f) from February 2021 to April 2021.
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from one variant to another. In the study of phase transitions,
the significance of such critical fluctuations that abound in the
vicinity of a critical point has often been highlighted. The
current investigation also attempts to establish a cause−
mutation relationship as we have quantified the randomness
for the spike surface glycoprotein of SARS-CoV-2 and we can
compare the parent−daughter sequences along the branch of
the phylogenetic tree to quantify the occurrence and
nonoccurrence of the mutations (see Figure S1 for the process
overflow). Moreover, we classify the occurrence and non-
occurrence of the mutations as unity and zero, respectively,
and explore the domain of classification problems.

■ RESULTS
Entropy Variation with Time and Mutational Re-

sponse Function. The entropy pattern observed in the
genomic sequence of the virus shows the pattern change with
the progression of time (Figure 2). The entropy of the B.1
variant slowly increases over time, especially in the region
22000 to 22500, which corresponds to the N-Terminal
Domain (NTD) region of the SARS-CoV-2. This pattern
holds true considering the fact that the Delta variant
(B.1.617.2) buds off from the B.1 variant. Thus, the entropic
amplitude will slowly increase in the B.1 variant over time. On
the other hand, the entropic variation of the Delta variant
slowly goes down as the variant starts to acclimatize with the
host population. A similar pattern is observed in the Delta
strain from February 2021 (first detected in India) to April
2021. This pattern of entropic behavior lays out a framework
to predict the evolution of a variant and whether the variant
has the potential to fall in the category of VOIs or VOCs. The
study reveals a significant result of the sudden drop of entropy
variation in the NTD region of the B.1 variant. As the Delta

variant was first detected in February 2021 in India, we expect
to observe an increasing entropic variation in the B.1 variant
until the month of January 2021. However, the entropy
variation of the B.1 variant suddenly drops in January 2021,
suggesting that the Delta variant was already in circulation in
the host population from January 2021. This observation
becomes more critical as it leaves a characteristic to understand
when to expect the possible emergence of a new variant. A
similar pattern is observed for the Beta variant (Figure S2), the
Gamma variant (Figure S4) and the Kappa variant (Figure S6)
suggesting a common transitional behavior throughout differ-
ent variants.
Mean Entropy and Mutational Response Function

(MRF) Distinguishing Mutational States and the
Emergence of VOC. At a genomic level, the mean variation
and fluctuation of information entropy may indicate the
emergence of a new variant. When we measure the mean
entropy of the surface glycoprotein of the B.1 variant (Figure
3a, red) it shows a sudden increment after September 2020
until December 2020. The sudden drop of mean entropy of the
B.1 variant in January 2021 corresponds to the emergence of
the Delta variant as is evident from Figure 3a blue curve. This
drastic mean entropic change indeed suggests that the sudden
increment of the entropic variation depicts the emergence of a
new variant. As soon as a new variant emerges, the entropic
fluctuation of the ancestral variant again decreases rapidly. N-
Terminal Domain (Figure 3b) shows a higher entropic
variation as compared to the Receptor Binding Domain
(RBD) (Figure S9a). This phenomenon is important to notice,
as the key region of mutation accumulation is the NTD for
majority of VOCs (except Omicron; see Figure S13)
suggesting the plausibility of the NTD domain showing a
mutational fluctuation. Our analysis indicates the importance

Figure 3. Mean Entropy and Mutational Response Function (MRF) for the Surface Glycoprotein and N-Terminal Domain of the B.1 and Delta
variants (genomic sequence). (a) Mean entropy of surface glycoprotein for the B.1 (red) and Delta variants (blue) shows the point of emergence of
the Delta variant corresponding to January−March 2021. (b) Mean entropy (domain-wise) for the NTD domain of the B.1 (red) and Delta
variants (blue). The mean entropy for the NTD domain corresponds to a higher amplitude variation compared to the RBD domain (see Figure
S8). (c) MRF capturing the mutational phase transition from the B.1 variant (red) to the Delta variant (blue) with a drastic jump in MRF values at
the crossover point of the two variants. (d) MRF for the NTD domain for both variants showing a similar pattern specifically contributing to the
transitional shift.
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of NTD in modulating the change of the viral protein. The
localized mutations of NTD, such as recurrent deletion regions
(RDRs33), might play an essential role in modulating the viral
mechanics; for example, deletions at position 69/70 (Δ69/70)
might allosterically change the protein conformation.34

Again, the entropic fluctuation between variants is efficiently
captured by Mutation Response Function (MRF, a statistically
relevant response function capturing mutational phase
transition under external perturbation, as defined in the
method part, eq 7) (Figure 3c). This response function is
calculated considering a steady-state condition under the
interval of three months period achieved by a constant, small
influx of domain mutation. Moreover, MRF also captures the
similar response pattern of the NTD (Figure 3d) of both the
variants again pointing to the importance of NTD in
modulating the fluctuation. The role of NTD in modulating
the viral mechanics becomes clearer, as the virus evolves from
the B.1 to the Kappa to the Delta variant (Figure S8).
Furthermore, a similar signature is obtained when performing
the same examination on protein sequences of the B.1 and
Delta variants (Figure 4). The mean entropy of the surface
glycoprotein sequence (Figure 4a) and NTD (Figure 4b)
captures the mutational jump from one variant to other. MRF
also captures a similar transition between the B.1 and the Delta
variant for their surface glycoprotein (Figure 4c) and NTD
(Figure 4d) suggesting the role of NTD in modulating the viral
dynamics for the Delta variant. MRF captures a similar trend
for the Beta variant (Figure S3) and the Gamma variant
(Figure S5). Here, we find the discontinuity in the mutational
response function (mean square fluctuation of mutational
entropy, Figure 3c,d) because the mean value of the domain

entropy shows a discontinuous pattern (similar to the first
order phase transition according to the Ehrenfest classification)
(Figure 3a,b). It amplifies, in the form of mutational response,
when we calculate the mean square fluctuation of that domain
entropy. As the evolution transits from a specific variant to
VOC, the biological mutations in a particular domain
collectively bear that signature of discontinuity. We have
observed this signature across several variants (as per the
availability of mutational data), including Omicron. Thus,
tracking the genomic fluctuation using information entropy
and quantifying the mutational response by MRF calculation
may provide a way to better understand/predict the emergence
of a new variant or a new mutational phase. These outcomes
make all the more sense because the Delta variant was first
identified in February 2021, but the genomic level response
became evident in January 2021 (Figure 3). The lag of 1
month before capturing the variant in the patient samples, we
assume, might have given the Delta variant an added advantage
to propagate in the host population.
Toward Developing a Statistical Mechanics Guided

Machine Learning Model. With the rapid mutations being
transpired in the spike glycoprotein of SARS-CoV-2, random-
ness seems to play a crucial role in engineering the mutations
of the virus because randomness insinuates the maximum
probability with which a spike surface glycoprotein would
occur with a rapidly changing environment. Since both MRF
and mean entropy bolster the significance of entropy-based
information and capture the evolution of SARS-CoV-2 during
mutational phase transition between the B.1 and Delta variants,
we rely on such entropic details to build a Machine Learning
(ML) model to further predict possible mutational positions in

Figure 4. Mean Entropy and Mutational Response Function (MRF) for the Surface Glycoprotein and N-Terminal Domain (NTD) of the B.1 and
Delta variants (protein sequence). (a) Mean entropy of B.1 (red) and Delta variant (blue) showing a clear jump when the Delta variant comes into
existence. (b) Mean entropy (domain-wise) for the NTD domain of the B.1 (red) and Delta variants (blue). The mean entropy for the NTD
domain corresponds to a higher amplitude variation, showing a similar trend obtained for genomic sequence (Figure 2b). Moreover, NTD has a
higher entropy compared to the RBD domain (see Figure S10). (c) MRF capturing the mutational phase transition from the B.1 variant (red) to
the Delta variant (blue) with a drastic jump in MRF values at the crossover point of the two variants. (d) MRF for the NTD domain for both
variants, showing a similar pattern specifically contributing to the transitional shift. The same signature is obtained for the transitional pattern for
the B.1 to the Delta variant if one uses either protein or genomic sequence.
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the surface glycoprotein sequence. As the current model
(Figure 5a) focuses on the primary sequence of the protein,
the predictions were structured in mainly two ways: (i)
predicting the possible mutational position in the spike surface
glycoprotein sequence and (ii) the would-be mutated amino
acid residue at the predicted position.
Feature Selection. Feature selection is an essential aspect

of developing an ML model. In the current study, four features
were taken to quantify the protein sequences for the model to
learn. These are as follows: (i) The first feature focused on the
pair-predictability of the amino acids in the protein sequence.
Pair occurrence of the amino acids is a vital aspect to consider
while examining the mutational occurrence as a point mutation
can change the number of pairs appearing together (see
Supplementary Methods). (ii) The second feature focused on
the distribution probability of the amino acids in a protein
sequence. The distribution pattern of amino acids is an
important aspect to consider because this property quantifies
why amino acids are clustered together rather than
homogeneously spreading throughout the sequence length.
Thus, any change in the amino acid position will change the
way the distribution naturally appears (see Supplementary
Methods). (iii) The third feature focused on the current and
future composition of the amino acids. Understanding the
composition of amino acids in the protein sequence and how
this composition is affected due to mutations may provide us
with the probability of a certain amino acid mutating into
another particular one. This quantification is compiled based
on the RNA codon table mutational probability (Figure 5b)
(see Supplementary Methods). (iv) The fourth feature focused
on the entropy of the amino acid residues. As a unique feature,
entropy provided us with the mutational pattern in the
genomic and protein sequences of SARS-CoV-2 (see
Supplementary Methods). Feature assignment of the protein
sequence (Table S1) was followed by hyperparameter
optimization in order to find the optimal model architecture.
After comparing different parameters (Figure S18), and

training the model with different activation functions (Figure
S19a,b) and learning rates (Figure S19c,d), 4−8−8−1
feedforward neural network architecture was found to be the
optimal framework (Figure 5a). Table S1 shows the assign-
ment of each feature to the residues of the surface glycoprotein
of delta sequence (PubMed Accession ID: QYJ09734.1). The
target is determined by comparing two delta sequences
(QYJ09734 and UCL70994).
Mathematically, target assignment can be represented

according to eq 1:

l
m
ooo
n
ooo=

=aa aa

aa aa
target

0, if

1, if

i i

i i

1 2

1 2
(1)

Here, aai1 corresponds to an amino acid at the ith position of
first sequence and aai2 corresponds to the amino acid at the ith
position of the second sequence.
An important aspect of model development is determining

whether the model can capture the relationship between the
input features and the target output. To resolve this, we
compared the predicted with the actual mutational position
and classified the predicted mutational position as positives,
false positives, negatives and false negatives. With this
classification, we quantified the model performance in terms
of model accuracy, precision, recall, and F1 score which can be
described according to eqs 2,3,4, and eq 5:

= +
+ + +

×accuracy
TP TN

TP TN FP FN
100

(2)

=
+

×precision
TP

TP FP
100

(3)

=
+

×recall
TP

TP FN
100

(4)

Figure 5. Feedforward model architecture and mutational probability of amino acid residue. (a) Model architecture used for mutation prediction.
The model used for the current study has a 4−8−8−1 multilayer perceptron architecture. The input layer has four neurons (red) corresponding to
four features, two hidden layers each with eight neurons (blue), and a single output for classification (green). The input layers correspond to the
four features with a “tanh” activation function for the first three layers and a sigmoid activation function for the output layer. (b) Circos plot
representing the mutational probability of respective amino acids. The mutational probability is derived from the RNA Codon table. The color bar
represents the magnitude of the probability of mutations.
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= × ×
+

×F1 score
2 recall precision

(recall precision)
100

(5)

Here, TP, TN, FP, and FN stand for true positive, true
negative, false positive, and false negative, respectively. Figure
6a shows the mutation prediction in the Delta variant sequence
(PubMed Accession ID: UAP60488). The model predicts five
possible positions that have the potential to mutate in the
upcoming generations of the Delta variant. The dotted line
corresponding to a value of 0.3 is the cutoff value for the
mutation, suggesting those residues with a mutational
probability of more than 0.3 have a higher chance of occurring
in the future generation. Residues having a mutational
probability less than the cutoff value have a lower chance of
occurring in future generations. The would-be mutated
residues were confirmed from the RNA codon table.
Moreover, the model (labeled as upgraded model, see Figure
S20) exhibits an optimistic accuracy of 98.5% (see Figure S22)
with a precision score of 99% (see Figure S22). The F1-score
of 99.25% (see Figure S22) corresponds to a good balance
between precision and recall. We further trained the model
with the first three features (labeled as the original model, see
Figure S20), excluding the fourth feature (amino acid entropy)
to examine model performance differences. The original model
exhibited a decrease in the performance, achieving a training
loss and accuracy of approximately 48% and 83% (Figure S20,

red curve). On the other hand, the upgraded model shows a
better model performance (Figure S20, blue curve). The
difference in the model performances was further confirmed by
calculating the Receiver Operating Curve (ROC) (Figure
S21). ROC curve is a graphical plot that represents the
indicative capacity of a binary classifier framework as its
segregation limit is changed. The upgraded model (Figure S21,
red curve) shows a higher Area Under the Curve (AUC) value
of 0.996, whereas the original model (Figure S21, black curve)
shows an AUC of 0.532. This analysis shows the impact of
selecting a relevant model feature in increasing the model
accuracy.
We confirm the possible mutational positions and found that

leucine (L, position 141) and proline (P, position 681) are
predicted as the possible residues that can mutate. The
prediction from the model can be supported by the fact that in
the Delta variant the mutation at position 681 is an important
one causing proline to mutate into arginine (P681R) resulting
in an increased fusogenicity (the proficiency of the viral species
to fuse with the host membrane) and pathogenicity of the
Delta variant.35

■ DISCUSSION
We examine the genomic sequences of different VOCs of
SARS-CoV-2 to understand the spread and transition of the
variants from one form to another. During such transition, we

Figure 6. Mutation prediction from 4 to 8−8−1 feedforward model. (a) The model predicts five possible mutational positions in the delta
sequence, out of which two major positions are 141 and 681. The cutoff value of 0.3 corresponds to the probability of mutating in future sequences.
Our model predicted that two important residues are leucine and proline. (b) Radar plot of the predicted amino acids. The plot represents the
probability of mutating the respective amino acids into other amino acids. The color of the radar plot corresponds to the categories to which these
residues belong: yellow representing amino acid with nonpolar aliphatic side chain and cyan representing amino acid with polar uncharged side
chain.
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quantify the mutational response of different variants by
calculating the mutational entropy fluctuations introducing a
new parameter, MRF, for different surface glycoprotein
domains accounting for their genetic and protein sequences.
MRF indeed distinguishes the crossover point between any
two drastically different mutational states/phases as the viral
sequence evolves. In the later part of this study, we also
attempt to build a feedforward neural network model including
such information entropy as one of the essential features,
aiming to predict the possible mutational residues in the
protein sequence of SARS-CoV-2. Such an investigation of
over 30 000 base pair long genomic sequences of SARS-CoV-
236 and its variants is important to gain an insight into the
mutational pattern and the viral spread. Moreover, SARS-CoV-
2 appears to show an exceptionally high recurrence of
recombination emerging because of the absence of proofread
mechanism and diversity.37,38 Therefore, genomic level
information on different domains of surface glycoprotein also
helps to examine the transmission pattern of the virus to
understand the spread of the disease and the efficacy of
administrated vaccines and drugs.39,40

On one hand, as the incorporation of different mutations
makes the dormant space of spike genes sequentially more
disordered, the emergence of such disorderedness has become
a useful monitoring parameter in our ML model to characterize
the viral mutational trajectory as the virus evolves from one
variant to another. We analyze the spike sequences submitted
to GISIAD database (gisaid.org) for different VOCs. After
filtering out the ambiguous, redundant, and incomplete
sequences, genomic entropy was calculated in a month-wise
manner to analyze the transmission dynamics. The mutational
entropy (Figure 2) depicts a clear domain-wise trajectory of
the B.1 and Delta variants. This trajectory is more pronounced
if we track the spread of the B.1 and Delta variants for a longer
duration (see Figure S7), suggesting a clear tipping point when
a new variant emerges (January 2021 in the case of the Delta
variant). A similar pattern is also observed for other VOCs (see
Figure S2, S4, and S6), suggesting a typical behavioral pattern
of viral transmission.
Apart from characterization of mean genomic entropy, the

fluctuation of entropy is well quantified with MRF, which acts
as an order parameter capturing the mutational phase-
transition point; for instance, a clear depiction of viral entropic
fluctuation showing a pronounced difference between the B.1
and the Delta variant (Figure 3).
Interestingly, we find that the entropic fluctuation becomes

more clustered toward the NTD as the variant evolves from
the B.1 to the Kappa to the Delta variant (see Figure S8). This
chaotic behavior of NTD seems true as more mutations
accumulate in the NTD (Omicron is an exception, see Figures
S13 and S14). Nevertheless, we believe that the decreasing
chaotic behavior of RBD can be studied by employing time
delay dynamics, as is done in gene networks.41 However, this
unique behavior raises an important question of exploring the
potential role of NTDs in viral infectivity. In our early work,42

we have demonstrated a key interchain interaction at the
interface of NTD and RBD, bestowing thermodynamic
stability to the viral mechanics. NTD has been classified in
terms of Recurring Deletion Regions (RDRs)33 which play an
essential role in allowing the virus to escape the immune
system. The highly flexible loop of NTD stabilizes the surface
exposed tertiary design43 of the viral protein. These pieces of
evidence indicate an important contribution of NTDs in viral

infectivity. It may be a possibility that the occurrence of
recurrent deletions in specific regions makes the NTD more
compact allowing for better interchain interaction between
NTD and RBD and allowing for better viral mechanics leading
to viral infectivity. It will be important to see how the
molecular level information changes for different variants to
gain more insight into the potential of NTD in the viral spread
and disease severity. Moreover, with the increasing stability of
the later viral strains as compared to early, higher entropic
variants,44 it becomes imperative to dissect the role of different
spike domains.
To further explore the question of mutational occurrence,

we trained a feedforward neural network to predict possible
mutational residues in the surface glycoprotein sequence. The
major challenge was to quantify the random event of a
mutational occurrence, which was achieved by developing four
features namely: Amino Acid Pair Predictability (AAPP),
Amino Acid Distribution Probability (AADP), Future
Composition of Amino Acids (FCAA), and the Amino Acid
Residual Entropy (AARE). The trained model was able to
achieve an accuracy of 99% and predicted five possible
mutational sites in the protein sequence. The reliability of the
model comes from the fact that the model predicts two
important mutational sites: P681R (proline to arginine) and
L141 (Recurrent Deletion Region33). Although we trained the
model on protein sequences, the prediction model can also be
used to train the genomic sequences to predict disease
severity45 or classify COVID-19.46

In summary, this statistical mechanical concept of entropy-
guided mutational response function (MRF) followed by
neural network modeling appears like a powerful approach to
capturing and understanding the mutational signature of
SARS-CoV-2. However, from such modeling aspects, there
are unchartered areas that remain to be addressed to further
fine-tune the model because of the following limitations: (i)
SARS-CoV-2 does not have a tremendous amount of historic
data. Thus, data availability becomes one of the key factors in
making the model more robust. (ii) Here, we have explored a
new feature (Amino Acid Entropy) to understand and predict
new mutation points for SARS-CoV-2.33,47 Similarly, other
features can also be explored that can serve as an early warning
signal to predict not only future mutational position but also a
timeline when a new mutation will be expected to evolve.

■ METHODS
Data Procurement. There is the availability of over 2.9

million genomic sequences of SARS-CoV-2 in the GISAID
database (https://www.gisaid.org/). To ensure that genomes
with only full sequences and less than 5% N content were
included in the current investigation, a preliminary data set was
created using the options “complete”, “high coverage”, “low
coverage exclusion”, and “collection date complete”. The
genomic sequence data were then downloaded in a month-wise
manner for the variants in the current study. The month-wise
data were selected based on the emergence of the variant in the
particular country.
Multiple Sequence Alignment (MSA). Following the

data collection in fasta format, the MAFFT (https://mafft.
cbrc.jp/alignment/server/)48,49 server was used for the
execution of multiple sequence alignment. For every month,
we obtained an MSA file that was used for further calculation.
Entropy Calculation. In sequence analysis, entropy refers

to the measure of character (column) variance across various
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sequences. Shannon’s Entropy,50 Schneider’s Entropy,51

Shenkin’s Entropy,52 Gerstein’s Entropy,53 and Gap Normal-
ized Entropy54 are some of the entropy formulas that may be
used to forecast the entropy plot by multiple sequence
alignment. There are mainly two steps involved in the entropy
calculation of an MSA: (i) Performing multiple sequence
alignment of the sequences and (ii) calculation of entropy for
each column in order to get a consensus entropic value.
For the current study we employed the Shannon entropy to

calculate residue wise entropic fluctuation. The entropy of a
random variable X with potential outcomes X1, X2, ..., Xn that
appears with a probability P(x1), P(x2), ..., P(xn) can be defined
as

= ·H x p x p x( ) ( ) log( ( ))i i (6)

In the case of MSA of genomic sequence of variants, x = A,
T, G, and C, whereas, in the case of protein sequence, x ∈ {S},
where S is a set consisting of the 20 amino acids. The
individual probability of respective bases is calculated column-
wise resulting in a consensus entropic value for each position
of the genomic/protein sequence. The resultant values were
then plotted using custom python code, with x-axis
corresponding to nucleotide position and the y-axis corre-
sponding to the entropy value. For instance, in the case of the
B.1 variant for November 2020, we take all the sequences that
are gathered in that month, run them through a multiple
sequence alignment procedure, and then use the aligned
sequences from that month to determine the probability of a
certain site. Now, we did not always discover the same amount
of sequence data deposited for each month. In order to
calculate probabilities, the data set is standardized. To study
how the pattern evolves as time passes (from November 2020
to December 2020 to January 2021), we do this for each
month, as illustrated in Figure 2.
Mutational Response Function. To capture the muta-

tional entropy fluctuation in SARS-CoV-2 variant, we lay out a
new mathematical framework by introducing a new parameter,
Mutational Response Function (MRF). It aptly quantifies the
mutational entropy fluctuation of every ith residue as the
sequence evolves over a given time. Mathematically, MRF for
each ith residue can be defined as,

= = =i
S i

S i

S i S

S
MRF( )

( )
( )

( ( ) )
T t

T2 1
1

2

(7)

where, S(i) is the entropy of the ith nucleotide, S̅ is the time-
averaged entropy of that ith nucleotide for 3 months (T = 3).
From here, we have collectively monitored domain-wise MRF
by adding this residual MRF involved in any concerned
domain (e.g., RBD, NTD, etc.) as shown in Figure 3.
Data Procurement and Preprocessing for Model

Development. Delta variant (B.1.617.2) sequences for
Neural Network Model development were downloaded from
the National Center for Biotechnology Information (NCBI)
Virus (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/sars-
cov-2,55 last accessed on October 4, 2021) database. The
protein sequences were downloaded from two countries: India,
because of the origin of the delta variant, and USA for the high
number of sequence submissions. The initial preprocessing was
done by selecting three filters to download the optimal
sequences. The “Pango lineage” filter was set to “B.1.617.2” to
obtain only the Delta variant sequences. The “Proteins” filter
was set to “Surface Glycoprotein” to obtain only the spike

protein sequences. The “Nucleotide Completeness” filter was
set to “Complete” to obtain only the complete sequences. After
applying these filters, the data sets from both countries were
combined to obtain a total of 2436 sequences.
Once the initial filtered data set was downloaded, it was

preprocessed to remove similar sequences. As a majority of the
substitution mutations in different SARS-CoV-2 variants occur
in the S1 domain, only the S1 domain sequence was kept,
resulting in the final sequence length of 711 amino acids. As
the current model does not account for deletion/insertion
mutation prediction, the data set was again preprocessed to
keep only those sequences that have deletion mutations to
maintain the sequence length throughout the data set. After
the final preprocessing phase, the data set contained 117
sequences.
Model Architecture. We have used the feedforward

backpropagation neural network with a model architecture of
4−8−8−1 (Figure 5a). The first layer of the model
corresponds to four input features, followed by two hidden
layers consisting of eight neurons each and the last layer
consists of one neuron which corresponds to the output
(target). The activation functions were chosen to be
hyperbolic-tangent for the first three layers and sigmoid for
the output layer, which corresponds to an output between zero
and one (i.e., probability of mutation).
Target Selection for Binary Classification. Phylogenetic

analysis was done to understand the evolutionary process of
surface glycoproteins. Going through the same branch of
phylogenetic tree, we compare the surface glycoprotein
sequences and the difference between them indicates the
occurrence of mutation which is tagged as “Unity (1)” and no
difference indicates nonoccurrence of mutation and is tagged
as “Zero (0)”.
Predicting the Mutated Amino Acid. Mutation is a

random process that is sensitive to different parameters. It
becomes very difficult to predict which amino acid a particular
residue would mutate to. Thus, we rely again on the RNA
codon mutation probability to find the possible residues that
can result if a mutation occurs in the predicted position and
their respective probabilities of mutation. The higher the
probability, the more chances are that the residue at the
predicted position would mutate into.
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tuning of the upgraded model, training loss and accuracy
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