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Abstract: We develop a new mathematical model for rotational sedimentation of particles for steady
flows of a viscoplastic granular fluid in a concentric-cylinder Couette geometry when rotation of the
Couette cell inner cylinder is prescribed. We treat the suspension as a micro-polar fluid. The model is
validated by comparison with known data of measurement. Within the proposed theory, we prove
that sedimentation occurs due to particles’ rotation and rotational diffusion.
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1. Introduction

The classical water-based drilling muds contain only water and clay and their perfor-
mances are generally poor. Polymers used in drilling fluids improve stability and cutting
removal. Currently, the polymer-based drilling fluids represent 15 to 18% of the total cost
(about 1 million) of petroleum well drilling [1]. The reason is that such fluids appear to have
load carrying capabilities, or, in other words, a yield stress, associated with the solid-like
state and which primarily arises from the colloidal forces between the smallest suspended
particles. Furthermore, in such systems, when the agitation is increased, a fluid-like state is
recovered. Even in the fluid state, these materials usually show highly nonlinear behavior.
The complex rheology related to the change of the internal state in the suspensions is still
rather poorly understood.

Due to scale separation between colloidal and non-colloidal particles, polymer-based
drilling muds with cuttings and other materials (concrete casting, foodstuff transport, etc.)
can be considered as suspensions of noncolloidal particles embedded in a yield stress
fluid. Substantial progress in the understanding of the behavior of such materials can thus
be made by studying the impact of adding noncolloidal particles to a yield stress fluid
of known properties [2]. Here, we develop a new mathematical model for suspensions
embedded in a polymer-based fluid. To validate the approach, we consider rotation
flows between two concentric cylinders when the external cylinder is fixed and the inner
one rotates with a prescribed speed. The principal feature of such flows is the particles’
migration toward the external boundary.

It is proved by Svedberg [3] that the particles’ migration effect occurs also in pure
colloidal suspensions. Moreover, sedimentation happens at high rotations. Currently,
Svedberg’s ultracentrifugation is known as an effective tool for studies of interaction
between macromolecules of colloidal systems [4]. In this method, a highly disperse
colloidal solution is enclosed in a wedge-shape cell rotating about an axis coinciding with
the apex of the wedge [5]. Samples are centrifuged at speeds to produce sedimentation and
shallow concentration gradients. A great progress in the study of such a flow was achieved
by applying the diffusive Lamm equation based on the special empirical sedimentation
coefficient [6]. Here, we restrict ourself to rotation flows of suspensions between two
concentric cylinders paying attention to comparison with known laboratory experiments.
We use methods of mechanics of a continuum by applying conservation laws only and
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not involving the concept of sedimentation coefficient inherent in the Lamm equation.
However, we also obtain the sedimentation effect.

We take into account particles rotation and rotational diffusion. To this end, we
apply the theory of micropolar fluids which allows for particles rotation and microinertia.
According to this theory, which is a part of rational mechanics, any infinitesimal volume
contains sufficiently many particles. This is why such an approach is good for colloidal
solutions. However, the micropolar fluid theory turned out to be useful in the study of
suspension of noncolloidal particles and also including granular fluids. As is proved in [7],
it is due to particle rotation that the Segré–Silberberg effect occurs [8]. Such an effect is
known as a tubular pinch phenomenon stating that particles tend to migrate towards a
concentric annular region for the laminar flow of neutrally buoyant dilute suspension of
rigid spheres through a circular tube.

Important sectors handling granular fluids include civil engineering (bitumen, con-
crete, embankments, ballast trains, soil stability), mining (extraction, transport), the chemi-
cal industry (fuel and catalysts are often deployed in the form of grains in order to maximize
the surface of exchange), the pharmaceutical industry (from the handling of powders for
the manufacture of medicine to the handling of drugs themselves) and the food industry
(animal food, cereals), to name but a few.

Results from laboratory experiments, numerical simulations, and theoretical ap-
proaches from other fields have enriched and renewed our understanding of granular
fluids. In many rheological papers on shear flows, particle rotation is ignored. Instead, the
authors apply the theory which states that microstructural non-homogeneous particles
distribution is due to anisotropy. To this end, the rheological equations involve not only
shear stress but normal stress differences as well [9]. The micro-polar fluid theory stands
out among other approaches since it handles particle rotations and micro-inertia effects
within the mechanics of continua. Such a theory finds many applications in granular
flows [10], electrorheology [11,12], ferrofluids [13], visco-elastic micro-polar fluids [14], and
liquid crystals [15]. Some results concern blood rheology [16–18]. Particularly, explanations
were provided for phenomena including the Fåhræus–Lindqvist effect, the Fåhræus effect,
and the plasma skimming effect [19–22]. Any new theory involves additional unknown
rheological constants. This restricts applications and further progress. In the micro-polar
theory, one such constant is a relative viscosity. What is it? First, we comment on the
ordinary fluid viscosity.

In simple shear flows of typical Newtonian or non-Newtonian fluids, viscosity
ηs[Pa · s] is given by the formula ηs = τ/γ̇ or

τ = ηsγ̇, (1)

where τ is the shear stress and γ̇ is the shear rate. The rates’ definition will be given below.
In the micro-polar fluid theory allowing for internal spins, stress tensor loses symmetry,

couple stress appears, and the angular momentum equation should be included into
conservation laws. Instead of Equation (1), one writes for simple shear flows the following
equation:

τ =
√
(ηsγ̇)2 + (ηskγ̇a)2, (2)

where γ̇a is a shear rate related to particle rotation, and ηsk is an additional viscosity. In what
follows, we call ηsk skew-symmetrical viscosity motivated by rheological relationships
which will be discussed later.

When the volume concentration of particles φ is equal to zero, the viscosity ηs of the
interstitial fluid is assumed to be known. Clearly, ηs is the usual shear viscosity and it is
well known how it can be measured. The skew-symmetric viscosity manifests itself when
φ > 0, and poor knowledge of it hampers applications of the micro-polar fluid models.
The above description of possible applications supports the view that it is of importance
to know how skew-symmetric viscosity depends on the particle concentration. The goal
of the first sections of the present paper is to get a better insight of how ηsk depends on φ.
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In Sections 1–5, we validate some formula for the skew-symmetric viscosity and apply it in
Section 6 to the problem of particles migration for the steady flows of yield stress granular
fluids in a concentric-cylinder Couette geometry when rotation of the Couette cell inner
cylinder is prescribed.

2. Micro-Polar Fluids

Here, we remind notions concerning a micropolar fluid within the theory of the
Cosserat continuum. Such a fluid exhibits micro-rotational effects and micro-rotational in-
ertia; the fluid can support couple stresses and body couples and possesses a non-symmetric
stress tensor. The theory of micro-polar fluids goes back to [23–25], where gyration tensor,
inertial spin, conservation of micro-inertia, and objectivity of micro-deformation rate ten-
sors are derived and discussed. For an overview of developed theories, we refer the reader
to [26,27].

In the Cosserat continuum [28], each material point is treated as a rigid body in the
following sense. To such a point with the Lagrange coordinates (t, ξ), one can assign
a position vector x(t, ξ) in the three-dimensional Euclidean space and three orthogonal
directors di(t, ξ), i = 1, 2, 3. Rotation of the vectors di is governed by a rotation orthogonal
tensor Q(t, ξ). The rotation velocity tensor

Ω(t, x) = QtQ∗

is skew-symmetric, and it enjoys the representation formula

Ω · h = ω× h ∀ h ∈ R3, (Ω · h)i ≡ Ωijhj,

where ω(t, x) is the micro-rotational velocity vector,

2ω = ei × (Ω · ei) = ε : Ω.

Here, {ei}3
1 is any orthogonal basis in R3, and ε is the Levi–Civita third order tensor,

ε〈a, b, c〉 = a · (b× c), ei × ej = εsijes, εsij ≡ ε〈es, ei, ej〉, (ε : Ω)i ≡ εijkΩjk.

Given a 3× 3-matrixes A and B, we use the notation A∗ for the adjoint matrix such that

a · (A · b) = b · (A∗ · a) ∀a, b ∈ R3, (A∗)ij = Aji,

and the scalar product A : B is defined by A : B = AijBij.
With v(t, x) standing for the velocity of the mass center of the Cosserat material point

(t, ξ), the micropolar fluid is characterized by two rates of strain tensors B and A:

B = ∇v−Ω, A = ∇ω. (3)

Here, we use the notations (∇v)ij = ∂vi/∂xj, (∇v)∗ij = ∂vj/∂xi. An instant stress state
of such a fluid is characterized by the couple stress tensor N(t, x) in addition to the Cauchy
stress tensor T(t, x). Let S stand for the viscous part of the stress tensor, T = −p I + S. In
what follows, we use the symmetric and skew-symmetric parts of a matrix D:

Ds =
D + D∗

2
, Da =

D− D∗

2
.

In the typical stress–strain relation

T = −pI + 2ηs · (∇v)s, (4)

of Newtonian or non-Newtonian fluids, the scalar factor ηs is the viscosity, p is the pressure,
with I and T being the identity and stress tensors. The tensor T is symmetric as is well
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known in the classical fluid mechanics theory, i.e., T∗ = T. Such a symmetry results from
momentum and angular momentum laws. On the other hand, the angular momentum law
is valid automatically if we postulate symmetry of T. This is why nobody invokes such a
law in applications.

We remind readers that the constitutive laws of a simple micropolar fluid are [26]

T = −pI + S, S = 2ηsBs + 2ηskBa, N = 2γA, (5)

where ηs, ηsk are the viscosities and γ is angular viscosity. The first rheological equation
in (5) suggests that the contributions of the symmetric part Bs = (∇v)s and skew-symmetric
part Ba of the rate of strain tensor B into local stress state are different. It is proved in [25]
that both the rate of strain tensors B and A are objective.

Let us introduce the relative angular velocity

ωr = ω− rot v/2.

Observe that in fluid mechanics shear stress and shear rates in (1) are defined as fol-
lows:

τ =
√

S : S/2, γ̇ =
√

2Bs : Bs, γ̇a =
√

2Ba : Ba = 2|ωr|.

Due to the identity 2(∇v)a · h = rot v× h ∀h, we have

Ba · h = −ωr × h ∀h.

Thus, the skew-symmetric viscosity characterizes how relative micro-rotations con-
tribute into the local stress state.

Observe that in the Cosserat continua the Cauchy stress tensor is not symmetric and
the vector

t = ei × (T · ei) = ε : T

is a stress symmetry defect measure in the sense that the equality t = 0 implies T∗ = T and
vice versa. By definition of t, we have the formula

t ·ω = T : Ω. (6)

The momentum and the angular momentum laws are

∂(ρv)
∂t

+ div(ρv⊗ v) = −∇p + div S + ρf, (7)

J
(

∂(ρω)

∂t
+ div(ω⊗ ρv)

)
= div N − ε : S, (8)

where ρ is the density, J is the micro-inertia scalar, f is the mass force vector and

(div N)i ≡ ∂Nij/∂xj, (ω⊗ v)ij = ωivj.

The density ρ satisfies the mass conservation law

ρ̇ + ρdiv v = 0. (9)

3. Skew-Symmetrical Viscosity of Dilute Suspensions of Rigid Particles

Let us consider Couette-like steady flows of suspensions between two parallel planes
in the x-direction when the upper plane y = h is fixed and the lower plane y = 0 moves
in the x-direction with the velocity V. The volume particle concentration φ is assumed to
be fixed.

We outline the method for determination of the skew-symmetrical viscosity ηsk. As-
sume that the stress applied to the moving plate can be measured. By continuity, one can
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tell the fluid stress in the nearby fluid region. On the other hand, one can calculate such a
fluid stress by one or another mathematical model. First, we determine the stress Sm

1 at the
moving plane by applying the micro-polar fluid theory. Then, we calculate the stress Sv

1 at
the moving plane by applying the Navier–Stokes theory. We equate the two stresses and
derive the skew-symmetrical viscosity ηsk from the equality Sm

1 = Sv
1 .

Let us first treat the suspension as a micropolar fluid with the prescribed volume
particle concentration φ. The above assumptions upon the flows suggest that the velocity
vector v, the micro-rotational velocity vector ω and the pressure p depend on the vertical
variable y only:

v = v(y)(1, 0, 0)T , ω = ω(y)(0, 0, 1)T , p = p(y), 0 < y < h.

For such flows, the matrices ∇v and Ω become

∇v =

0 vy 0
0 0 0
0 0 0

, Ω =

 0 −ω 0
ω 0 0
0 0 0

,
∂v
∂y

= vy.

Hence,

Bs =

 0 vy/2 0
vy/2 0 0

0 0 0

, Ba =

 0 vy/2 + ω 0
−vy/2−ω 0 0

0 0 0


Projections of the momentum and the angular momentum equations on the x and

z-directions become
0 =

∂S12

∂y
, (10)

0 =
∂N32

∂y
+ S21 − S12, (11)

respectively, where the tensor components are given by the formulas

S21 = ey · S〈ex〉, S12 = ex · S〈ey〉, N32 = ez · N〈ey〉.

Constitutive laws (5) take the form

S12 = (ηs + ηsk)
∂v
∂y

+ 2ηskω, S21 = (ηs − ηsk)
∂v
∂y
− 2ηskω. (12)

We note that system (10)–(11) does not contain pressure. As is well known, it can be
restored from the momentum equation projected on the y-direction.

The viscosity ηsk(φ) vanishes when φ→ 0. The same is true for the relative viscosity

ε(φ) =
ηsk(φ)

ηs
,

which we represent via the expansion series

ε(φ) = Λφ + Λ2φ2 + · · · .

Whereas the velocity v satisfies the no-slip boundary conditions, we require that

ω = α(φ)rot v/2 at y = 0 and y = h, (13)

where α(φ) = α0φ. The latter condition implies that the micro-rotations agree with macro-
rotations at the boundary [29]. For the Couette-like flows, we arrive at the following
boundary-value problem in the domain 0 < y < h:
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∂

∂y

[
(1 + ε(φ))

∂v
∂y

+ 2ε(φ)ω

]
= 0, (14)

2γ
∂2ω

∂y2 − 2ηsε(φ)

(
∂v
∂y

+ 2ω

)
= 0, (15)

v|y=0 = V, v|y=h = 0, ω|y=0,h = −α0φ

2
∂v
∂y

∣∣∣
y=0,h

. (16)

We solve the boundary value problem (14)–(16) looking for (v, w) as the asymptotic
expansion series

v(y, φ) = v0(y) + v1(y)φ + · · · , ω(y, φ) = ω0(y) + ω1(y)φ + · · · . (17)

Setting these series in (14)–(16), one can write each equality in (14)–(16) in the form

φ0(· · · )0 + φ1(· · · )1 + · · · = 0.

The coefficients vi and ω j are determined from the conditions (· · · )k = 0 for any k.
Particularly, if k = 0, we derive the following boundary value problems for the

functions v0(y), ω0(y):

∂2v0

∂y2 = 0, v0|y=0 = V, v0|y=h = 0, (18)

0 =
∂2ω0

∂y2 , ω0|y=0 = ω0|y=h = 0. (19)

Similarly, we find that the function v1 satisfies the boundary value problem

∂

∂y

[
∂v1

∂y
+ Λ

(
∂v0

∂y
+ 2ω0

)]
= 0, v1|y=0 = v1|y=h = 0. (20)

Solving these problems, we find that

ω0 = 0, v1 = 0, v0 = V(1− y/h).

Starting from the definitions (12) related to the micro-polar fluid theory, we can write
the expansion series for the stress S12(φ) as follows:

S12(φ) = S0
12 + S1

12φ + o(φ).

Clearly,

S0
12 = ηs

∂v0

∂y
, S1

12 = ηs
∂v1

∂y
+ ηsΛ

(
∂v0

∂y
+ 2ω0

)
.

Now, we can calculate the relative stress at the moving plane:

Sm
12(φ)

Sm
12(0)

≡ S12(φ)

S12(0)

∣∣∣
y=0

= 1 + φΛ + o(φ). (21)

It is assumed that both the stresses Sm
12(φ) and Sm(0)12 are measured at the same

velocity V of the moving plate.
Let us consider flows within the same Couette geometry, starting from the Navier–

Stokes theory. In such a theory, the stress tensor S is symmetric. Denoting S = S12, one can
find the velocity v(y) by solving the boundary-value problem

0 =
∂S
∂y

, S = η(φ)
∂v
∂y

, v|y=0 = V, v|y=h = 0, (22)
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where η(φ) is the effective viscosity.
Let Sv

1 stand for the stress S at the moving plate, Sv
1 = S|y=0. Given Sv

1 , one can derive
from (22) the following formula for the apparent viscosity η(φ):

η(φ) = −
hSv

1
V

(23)

Observe that Sv
1 has negative values since v(y) is a decreasing function of y. It follows

from (23) that
η(φ)

η(0)
=

Sv
1(φ)

Sv
1(0)

, η(0) ≡ ηs. (24)

It is assumed that both the stresses Sv
1(φ) and S1(0)v are measured at the same velocity

V of the moving plate.
For dilute suspensions, the left-hand side of (24) is given by the Einstein formula [30]

η(φ)

ηs
= 1 + Eφ + o(φ), E ' 2.5. (25)

We equate the relative stresses: Sm
12(φ)/Sm

12(0) = Sv
1(φ)/Sv

1(0). Now, it follows from
(21), (24) and (25) that

1 + Eφ = 1 + φΛ + o(φ).

Hence, Λ = E. By the above arguments, we conclude that the skew-symmetric
viscosity for dilute suspensions satisfies the representation formula

ηsk(φ)/ηs = Eφ + o(φ), (26)

where E ' 2.5 is the Einstein factor.

Remark 1. By the same asymptotic arguments, we can conclude that for the Couette flows between
two concentric cylinders formula (26) becomes

ηsk(φ)/ηs = G · Eφ + o(φ), (27)

where G is the geometrical factor equal to (R2/R1)
2, with R1 being the smaller radius.

One more conclusion from the above arguments is that there is a correlation between
the Navier–Stokes theory and the micro-polar fluid theory:

η(φ)/η(0) = 1 + ηsk(φ)/ηs + o(φ), ηs = η(0), (28)

where ηs, ηsk are the micro-polar fluid viscosities of the suspension and η(φ) is the apparent
viscosity of the same suspension described by the Navier–Stokes rheology. The law (28) is
verified by the asymptotic series argument for dilute suspensions, with the left-hand side
given by the Einstein law η(φ) = η(0)(1 + Eφ)+ o(φ).

On the other hand, there is an extended Krieger–Douhgerty empirical closure [31]

η(φ)/η(0) = (1− φ/φ∗)−Eφ∗ , E = 2.5, (29)

for dense suspensions, where φ∗ is a maximal volume concentration. Such a closure
suggests that, by setting (29) in (28), we can define the skew-symmetric viscosity ηsk(φ)
as follows:

(1− φ/φ∗)−Eφ∗ = 1 + ηsk(φ)/ηs. (30)

In the next sections, we verify this empirical formula by studying flows of dense
suspensions paying attention to particle rotation.
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4. Flows of Suspensions of Rigid Particles in the Herschel–Bulkley Fluid

By the theoretical approach of Chateau et al. [32], Ovarlez et al. [9] showed that the
flows of yield stress suspensions in a concentric-cylinder Couette geometry can be modeled
by a Herschel–Bulkley behavior of same index as their interstitial fluid. The theory was
proved to be in an agreement with the laboratory experiments based on the magnetic
resonance imaging techniques [9].

We are going to address the same experiments as in [9] to verify formula (30). First,
we extend the constitutive laws (5) to allow for the yield stress rheology. According to [33],
the Cosserat–Bingham fluid rheology is defined as follows:

S =

{
2ηsBs + 2ηskBa + τ∗

B0
|B0|

, if B(x, t) 6= 0,
Sp(x, t), if B(x, t) = 0,

(31)

N =

{
2γA + τn

A
|A| , if A(x, t) 6= 0,

Np(x, t), if A(x, t) = 0,
(32)

where

B0 = Bs + εBa, ε(φ) =
ηsk(φ)

ηs

and τ∗ and τn are yield stresses; the unknown plug tensors Sp and Np obey the restrictions

|Sp| ≤ τ∗, |Np| ≤ τn.

It is proved in [34] that the formulation (31) is equivalent to the inclusion S ∈ ∂V∗(B0),
where the scalar potential V∗(D) is defined for any matrix D ∈ R3×3 by the formula
V∗(D) = ηs|D|2 + τ∗|D|. We remind that the subdifferential formulation S ∈ ∂V∗(B0)
implies that

S : (D− B0) ≤ V∗(D)−V∗(B0) for all D ∈ R3×3.

Similarly, the constitutive law (32) is equivalent to the inclusion N ∈ ∂Vn(A) with
Vn(D) = γ|D|2 + τn|D|, ∀D ∈ R3×3. The meaning of the plug zone |N(x, t)| ≤ τn is
discussed in [35].

Let T0 be a characteristic time. We denote the dimensionless second invariant of the
rate of strain tensor B0 by I: I = T0|Bs|. To transform the Cosserat–Bingham fluid constitu-
tive laws (31) and (32) into the Cosserat–Herschel–Bulkley fluid rheological equations, we
assume that

ηs = ηs0 In−1 and
ηsk(φ)

ηs
= ε(φ), where ε(φ) = (1− φ/φ∗)−Eφ∗ − 1. (33)

Observe that the classical Hershel–Bulkley model results from the constitutive laws
(31)–(33) if the particle volume concentration φ vanishes.

We consider steady axially symmetric flows of a suspension between two coaxial
cylinders centered on the z-axis. The inner cylinder of the radius R1 rotates with the
angular velocity Ω0[s−1] and the external cylinder of the radius R2 is fixed. The volume
particle concentration φ is assumed invariable along the radial coordinate. The case of
variable φ will be addressed in Section 6.

In what follows, we use the unit vectors er, eϕ, ez of the cylindrical coordinate system.
The assumption of axially symmetry of flows suggests that the velocity vector v, the micro-
rotational velocity vector ω and the pressure p depend on the radial variable r only:

v = v(r)eϕ, ω = ω(r)ez, p = p(r), rot v =

(
∂v
∂r

+
v
r

)
ez, rot ω = −∂ω

∂r
eϕ. (34)
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For such flows, the matrices ∇v and Ω in the cylindrical coordinate system become

∇v =

 0 −v/r 0
∂v 0 0
0 0 0

, Ω =

 0 −ω 0
ω 0 0
0 0 0

, ∇ω =

 0 0 0
0 0 0

∂ω 0 0

,

where we denoted ∂v/∂r by ∂v for simplicity. Here,

(∇v)ij = ei · v′(x)〈ej〉, i = (r, ϕ, z), v′(x)〈a〉 = d
dλ

v(x + λa)
∣∣
λ=0.

Hence,

B =

 0 −v/r + ω 0
∂v−ω 0 0

0 0 0

,

Bs =

 0 ∂v−v/r
2 0

∂v−v/r
2 0 0
0 0 0

, Ba =

 0 ω− ∂v+v/r
2 0

∂v+v/r
2 −ω 0 0

0 0 0


As for the rate of strain tensor A, we have that Azr = ∂ω/∂r and Aij = 0, otherwise.

Projections of the momentum Equation (7) and the angular momentum law (8) on the
vectors eϕ and ez become

0 =
∂Sϕr

∂r
+

Sϕr + Srϕ

r
, (35)

0 =
∂Nzr

∂r
+

Nzr

r
+ Sϕr − Srϕ, (36)

respectively, where the tensor components are given by the formulas

Sϕr = eϕ · S〈er〉, Srϕ = er · S〈eϕ〉, Nzr = ez · N〈er〉.

Given a vector e, we apply the notation (S〈e〉)i = Sijej. Observe that the other
components of S and N are equal to zero. In what follows, we use the equation

ρv2

r
=

∂p
∂r

, (37)

resulting from projection of the momentum equation (7) onto the vector er.
We calculate that

I = 2−1/2T0

√
(∂v/∂r− v/r)2 + ε2(∂v/∂r + v/r− 2ω)2.

The constitutive laws (31)–(32) become

Srϕ =

(
2ηs +

τ∗T0

I

)[
1
2

(
∂v
∂r
− v

r

)
− ε

2

(
∂v
∂r

+
v
r
− 2ω

)]
if I 6= 0, (38)

Sϕr =

(
2ηs +

τ∗T0

I

)[
1
2

(
∂v
∂r
− v

r

)
+

ε

2

(
∂v
∂r

+
v
r
− 2ω

)]
if I 6= 0, (39)

|Srϕ|2 + |Sϕr|2 ≤ τ2
∗ if I = 0, (40)

Nzr = 2γ
∂ω

∂r
+ τnsign

(
∂ω

∂r

)
if

∂ω

∂r
6= 0, |Nzr| ≤ τn if

∂ω

∂r
= 0, (41)

The boundary condition (13) for the angular velocity ω and the no-slip condition for
v become

ω|r=Ri =
α0φ

2

(
∂v
∂r

+
v
r

)∣∣∣
Ri

, v|r=R1 = R1Ω, v|r=R2 = 0. (42)



Polymers 2021, 13, 1072 10 of 20

To study numerically the boundary-value problem (33)–(42) in the annulus R1 < r < R2,
we pass to dimensionless variables:

r′ =
r

R1
, v′ =

v
V

, ω′ =
ω

ω0
, S′rϕ =

Srϕ

S0 , S′ϕr =
Sϕr

S0 , N′zr =
Nzr

N0
, γ1 =

γ

R2
1ηs0

,

with

V = R1Ω0, ω0 = Ω0, T0 =
1

Ω0
[s], S0 = ηs0Ω0, τ∗1 =

τ∗
ηs0Ω0

, τn1 =
τnR1

γΩ0
, N0 = R1ηs0Ω0.

Observe that the dimensionless yield stress τ∗1 is the inverse of the Bingham number
for the Couette flows:

τ∗1 =
1

Bn
, Bn =

ηs0Ω0

τ∗
.

In new variables,

I = 2−1/2
√
(∂′v′/∂r′ − v′/r′)2 + ε2(∂′v′/∂r′ + v′/r′ − 2ω′)2,

ηs

ηs0
= In−1. (43)

S′rϕ =

[
1
2

(
∂′v′

∂r′
− v′

r′

)
− ε

2

(
∂′v
∂r′

+
v′

r′
− 2ω′

)](
2In−1 +

τ∗1
I

)
if I 6= 0, (44)

S′ϕr =

[
1
2

(
∂′v′

∂r′
− v′

r′

)
+

ε

2

(
∂′v′

∂r′
+

v′

r′
− 2ω′

)](
2In−1 +

τ∗1
I

)
if I 6= 0, (45)

|S′rϕ|2 + |S′ϕr|2 ≤ τ2
∗1 if I = 0, (46)

N′zr = γ1

(
2

∂′ω′

∂r′
+ τn1sign

∂′ω′

∂r′

)
if

∂′ω′

∂r′
6= 0, |N′zr| ≤ τn1 if

∂′ω′

∂r′
= 0, (47)

0 =
∂′S′ϕr′

∂r′
+

S′ϕr + S′rϕ

r′
, (48)

0 =
∂′N′zr

∂r′
+

N′zr
r′

+ S′ϕr − S′rϕ, (49)

ω′|r′=1,a =
α0φ

2

(
∂′v′

∂r′
+

v′

r′

)∣∣∣
r′=1,a

, v′|r′=1 = 1, v′|r′=a = 0. (50)

5. Skew-Symmetric Viscosity versus Particles Concentration

Here, we apply the mathematical model developed in the previous section to justify
formula (30) for the skew-symmetric viscosity. To perform calculations, we fix parameters
of the interstitial Hershel–Bilkley fluid. Rheological constitutive law of such a fluid results
from (31) by setting φ = 0:

S =

{
2ηsBs + τ∗

Bs
|Bs | , if Bs(x, t) 6= 0,

Sp(x, t), if Bs(x, t) = 0,
where ηs = ηs0(T0|Bs|)n−1. (51)

We denote
τy =

√
2τ∗, ηHB = 25/4ηs0T−1/2

0 (52)

and set n = 1/2, R1 = 4[cm], R2 = 6[cm]. Then, it follows from (51) that
√

2S : S = τy + ηHB(
√

2Bs : Bs)
1/2. (53)

The concentrated emulsion obeying Equation (53) was considered in [9] with τy =

22 [Pa] and ηHB =5.3 [Pa·s1/2]. Given the angular velocity Ω [rpm] of the rotating inner
cylinder, we calculate that T0 = 1/Ω0 = (60/Ω)[s]. We consider the same fluid as in [9],
hence one can define the consistency ηs0 and the yield stress τ∗ as follows:
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ηs0 = 2−5/4ηHB[Pa · s1/2]

(
60
Ω

)1/2
[s1/2], τ∗ = τy/

√
2[Pa]. (54)

Observe that consistency depends on Ω because of the special choice the characteristic
time T0 and the definition of the dimensionless invariant I of the rate of strain tensor Bs.

It is proved in [35] that the rotation yield stress τn causes the appearance of clusters of
particles, with each cluster being a plug zone which rotates as a rigid body. Conglomerates
of particles were not observed in [9] for the Couette flows of suspensions between two
rotating cylinders; this is why τn and τn1 can be neglected. As for the dimensionless angular
viscosity γ1 and the boundary-value dimensionless parameter α0, we variate them to fit
experimental data.

Approximate solutions of the system (43)–(50) can be obtained by regularization [36].
Given a small positive δ, we substitute the dimensionless invariant I in (44) and (45) by Iδ,
where

Iδ = 2−1/2
√
(∂′v′/∂r′ − v′/r′)2 + ε2(∂′v′/∂r′ + v′/r′ − 2ω′)2 + δ2,

with δ↘ 0.
First, we tune the model (43)–(50) by setting φ = 0 and addressing the pure interstitial

Herschel–Bulkley fluid with τy(0) = 22[Pa] and ηHB(0) = 5.3[Pa · s1/2] as in [9]. Equations
become

I = 2−1/2
√
(∂′v′/∂r′ − v′/r′)2,

ηs

ηs0
= In−1, n = 1/2. (55)

S′rϕ = S′ϕr =
1
2

(
∂′v′

∂r′
− v′

r′

)(
2In−1 +

τ∗1
I

)
if I 6= 0, (56)

2|S′rϕ|2 ≤ τ2
∗1 if I = 0, (57)

0 =
∂′S′ϕr′

∂r′
+

2S′ϕr

r′
, (58)

v′|r′=1 = 1, v′|r′=R2/R1
= 0. (59)

Observe that in such a case the model (55)–(59) depends on one parameter τ∗1(0) only.
Given the angular velocity Ω[s−1], we find from (52) the value of the Bingham number
Bn(0) by the formula

Bn(0) =
ηHB(0)Ω

1/2
0

23/4τy(0)
. (60)

Figures 1 and 2 depict very good agreement of calculation results for φ = 0 with
experiment data [9] for different angular velocities Ω0[s−1] but in the case of passage to
the effective Bingham number Bne(0):

Bne(0) = 1.5 · Bn(0), (61)

We think that such a discrepancy between the measured and effective Bingham
numbers is due to the following reasons. Real 3D-flows are described by 1D-equations.
The gravitation, the height of the annulus region, and the lateral boundaries effect are not
taken into account. It may be that viscoelastic fluid property is also of importance, which
calls for more adequate modeling.

Figure 1 corresponds to Ω = 2, Ω = 5 and Ω = 100[rpm]. The same agreement
between calculation results and experiment data is observed for Ω = 10, 20 and 50[rpm],
but we omit pictures to save the space. Figure 2a combines all velocity profiles for
Ω = 2, 5, 10, 20, 50 and 100[rpm]; it fits the laboratory experiments exposed in Figure 2b.
Why does the velocity profile become less steep as Ω increases? Equations (60) and (61)
answer the question. In fact, there is a motionless plug zone of the Herschel–Bulkley fluid
near the exterior cylinder. Our approximate solutions based on the regularization approach
do not catch the plug zone well. The bigger the plug zone, the steeper the velocity curve.
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However, the dimensionless yield stress τ∗1(0) stipulates the size of the plug zone and, at
the same time, it varies inversely with the angular velocity Ω.

Now, we consider suspensions assuming that they can be modeled by a Herschel–
Bulkley behavior of the same index as their interstitial fluid, with their consistency and
their yield stress depending on the particle volume fraction. To determine the function
τ∗1(φ) in Equations (55)–(59), we apply correlations proposed in [9] for n = 1/2:

ηHB(φ)

ηHB(0)
=

(
τy(φ)

τy(0)

)3/2

· (1− φ)−1/2, (62)

τy(φ)

τy(0)
=
√
(1− φ)(1− φ/φ∗)−2.5φ∗ (63)

In our notations (see (33)), equality (63) becomes

τy(φ)

τy(0)
=
√
(1− φ)(ε(φ)− 1).

It follows from the definitions (60) and (61) that

τ∗1(φ)

τ∗1(0)
=

(
1− φ

1 + ε(φ)

)1/4
. (64)

With the function τ∗1(φ) given by (64), we solve Equations (55)–(59) and find an
agreement with experiment data [9]. Calculations and laboratory data depicted in Figure 3
are related to φ = 0.3 for Ω = 2, 5, 10, 20, 50 and 100[rpm].

Let us return to the general system (43)–(50) which describes micropolar fluid. We fix
τ∗1 by Equations (64), (60) and (61). To choose the dimensionless parameters γ1 and α0, we
apply the method of least squares based on minimizing the function

F(γ1, α0) = ∑
i,j,k
|v′γ1,α0

(ri, φj, Ωk)− v′data(ri, φj, Ωk)|2.

Here, v′data is the measured velocity at different locations ri for different volume con-
centrations φj and different angular velocities Ωk, v′γ1,α0

(r, φ, Ω) is the calculated velocity,
with γ1 and α0 being prescribed. Calculations reveal that the optimal γ1 and α0 take values
γ∗1 = 10.93 and α∗0 = 0.79 provided τy(0) = 22[Pa] and ηHB(0) = 5.3[Pa · s1/2]. Below, we
provide results of calculations with the chosen data τ∗1, γ∗1 and α∗0 .

Figures 4 and 5a concern calculations for Ω = 100[rpm] when φ takes values 0, 0.1
and 0.3. Measured data in Figure 5b borrowed from [9] confirm agreement with calcu-
lations. The same is true for Ω = 5[rpm] when φ takes values 0, 0.1 and 0.3 as shown in
Figures 6 and 7. In Figures 8 and 9, φ is fixed equal to 0.3 with Ω taking on the values
2, 5, 10, 20, 50, and 100[rpm]. Calculations agree with the measured data from [9].

The micro-polar fluid rheology equations (5) predict particle rotation. Figure 10
depicts profiles of the dimension angular velocity w(r) when φ is fixed equal to 0.3 with Ω
taking on the values 2, 5, 10, 20, 50, and 100[rpm].

Although the dimensionless angular viscosity γ1 = 25/4γR−2
1 η−1

HB(φ)Ω is determined,
we can not identify the dimensional angular viscosity γ. Indeed, the tuning step (61)
implies that we substituted τy(0)/ηHB(0) by 0.2 · τy(0)/ηHB(0). However, in doing so, it is
impossible to know individual reduced values both of τy(0) and ηHB(0). Hence, we don’t
know the reduced value of ηHB(φ).

Let us comment on some discrepancy between calculations and data of measurement.
One can see in Figures 4b and 7 that, with increasing the rotational velocity at a constant
volume concentration φ = 0.1, the theoretical results are shown to better agree with experi-
ment. It is a problem of calculations. The reason is that we consider the viscoplastic fluid
and the plug zone (with zero velocity and low shear stress) near the external cylinder being
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larger at low rotations. The governing system of equations becomes degenerate in such
a zone. Mathematical theory of degenerate systems of differential equations and corre-
sponding numerical methods built into Wolfram Mathematica are not well developed yet.
There is one more difficulty related to the Hershel–Bulkley fluid viscosity (with the power
n = 1/2) becoming infinite when the velocity gradient vanishes somewhere. To get over
these difficulties, we apply the regularization technique and substitute the invariant I of
the rate of strain tensor B0 in Equations (38)–(40) by its non-vanishing approximation Iδ.

A comparison of the results in Figure 1 (upper curve), and Figure 4 at the rotational
velocity Ω = 100 rpm shows that, with increasing the volume concentration, the calculated
results better agree with experiments at intermediate concentrations φ=0.1; at lower (φ = 0)
and at higher concentrations (φ = 0.3), the deviations increase. The reason is that there are no
data of measurement for the dimensionless parameters γ1 and α0. To choose them, we apply
the method of least squares based on minimizing the functional F(γ1, α0). As it happened,
a discrepancy between the measured data and calculations for different concentrations and
angular velocities is due to the optimal choice of these unknown parameters.

The above calculations confirm that Equation (30) for the skew-symmetric viscosity
ηsk(φ) can be of use.

Observe that comparison with experiments for colloidal suspensions is contained in
Figures 1, 2 and 5 since, in the case φ = 0, the suspension becomes a pure colloidal fluid.

Figure 1. Calculated dimensionless velocity profiles (solid lines) versus the radial variable for pure
interstitial Herschel–Bulkley fluid without particles, φ = 0. The lines from the bottom upward
correspond to Ω = 2, Ω = 5 and Ω = 100, respectively. Stars, balls, and triangles stand for
measurement data [9] in the cases Ω = 2, Ω = 5 and Ω = 100, respectively.

(a) (b)

Figure 2. Dimensionless velocity profiles versus the radial variable in pure interstitial Herschel–
Bulkley fluid without particles, φ = 0, for Ω = 2, 5, 10, 20, 50, 100[rpm] from the bottom upwards.
(a) calculations, (b) measured data [9] .
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(a) (b)

Figure 3. Dimensionless velocity profiles of the Herschel–Bulkley fluid with the apparent ηHB(φ)

and τy(φ) for φ = 0.3 and Ω = 2, 5, 10, 20, 50, 100[rpm] from the bottom upwards. (a) calculations,
(b) measured data [9].

(a) (b)

Figure 4. The solid line corresponds to a dimensionless velocity profile versus the radial variable for
Ω = 100[rpm]. Dots stand for experimental data [9]. (a) φ = 0.3, (b) φ = 0.1.

(a)
s

(b)

Figure 5. Dimensionless velocity profiles for Ω = 100[rpm]. The curves from the bottom upwards
correspond to φ = 0, φ = 0.1 and φ = 0.3. (a) Calculations, (b) measured data [9].
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(a) (b)

Figure 6. Dimensionless velocity profiles for Ω = 5[rpm]. The curves from the bottom upwards
correspond to φ =0,0.1 and 0.3. (a) calculations, (b) measured data [9].

Figure 7. The solid line corresponds to dimensionless velocity profile versus the radial variable for
Ω = 5[rpm] and φ = 0.1. Dots stand for experimental data [9].

Figure 8. Calculated dimensionless velocity profiles versus the radial variable for φ = 0.3. The
lines from bottom upward correspond to Ω = 2[rpm], Ω = 5[rpm] and Ω = 50[rpm], respectively.
Triangles, balls and stars are the measured data from [9] corresponding to Ω = 2[rpm], Ω = 5[rpm]

and Ω = 50[rpm], respectively.
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(a) (b)

Figure 9. (a) Calculated dimensionless velocity profiles for φ = 0.3. The curves correspond to
Ω = 2, 5, 10, 20, 50, 100[rpm] from the bottom upwards. (b) Measured [9] dimensionless velocity
profiles of the Herschel–Bulkley fluid with φ = 0.3 and Ω taking values 2, 5, 10, 20, 50, 100[rpm] from
the bottom upwards.

Figure 10. Calculated angular velocity w[rpm] profiles for φ = 0.3. The curves correspond to
Ω = 2, 5, 10, 20, 50, 100[rpm] from the top down.

6. Rotational Sedimentation

Here, we consider more general mathematical model allowing for non-uniform parti-
cle distribution. We introduce the mass concentration of particles as follows:

c =
ρ̄sφ

ρ
, ρ = ρ̄sφ + ρ̄ f (1− φ), (65)

where ρ is the total density, ρ̄s is the particle density and ρ̄ f is the density of the interstitial
fluid. Given c, one can restore from (65) the volume concentration and the total density by
the formulas

φ =
ρ̄ f c

ρ̄ f c + ρ̄s(1− c)
, ρ(c) =

ρ̄ f ρ̄s

ρ̄ f c + ρ̄s(1− c)
. (66)

Due to these formulas, any given function of the volume concentration like the relative
viscosity ε(φ) can be defined in terms of the mass concentration c. It is explained in [7] that
c satisfies the conservation law

∂(ρc)
∂t

+ div(ρcv + l) = 0, (67)

where l is the concentration flux obeying the generalized Fick equation

ρl = −D∇c− Dp∇p + Dωrot ω×ωr. (68)

The scalar parameters D[cm2/s], Dp[cm3· s/g], and Dω [cm2· s], stand for the diffu-
sion, barodiffusion, and spin diffusion coefficients.
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Observe that, instead of (5), the couple stress tensor N is prescribed by the rheological
equation

N = 2γA +
Dω

2
ε : (l×ωr) (69)

to meet the entropy production law [7] where the skew-symmetric matrix ε : a is defined
by the formula

(ε : a)ij = akεikj, a = aiei,

in any orthogonal basis {ei}3
1. It is due to spin diffusion that the Ségre-Silberberg effect is

explained within the micropolar theory [7].
Due to the identity rot ω× b = 2(∇ω)a · b, ∀b ∈ R3, it follows from (68) and (69) that(

ρ +
D2

ω |ωr|2
4γ

)
l = −D∇c− Dp∇p− Dω

2γ
Na ·ωr

in agreement with the definition of rotary diffusion [37]: “Just as the translational diffusion
coefficient is calculated in terms of the drag force, so the rotary diffusion coefficient is
expressed in terms of the moment of the forces on a particle executing a rotary movement.”

It follows from (9) that for steady flows the mass conservation law becomes divv = 0.
With the above definitions, we arrive at the following conservation laws for steady flows:

div(ρv⊗ v) = −∇p + div S + ρf, (70)

Jdiv[ω⊗ (ρcv + l)] = div N − ε : S, (71)

div(ρcv + l) = 0, (72)

with tensors S, N and the flux l given by Equations (51),(69) and (68) respectively.
For the flows in a concentric-cylinder Couette geometry, we calculate that

l = ler, ρl = −D
∂c
∂r′
− Dp

∂p
∂r′

+
Dωωr

2
∂ω

∂r′
.

Under the assumption that c = c(r), we arrive at the formula ∇c = er∂c/∂r. Due to
equation divv = 0, we obtain that, for the rotation flows, the equation div(ρcv) = 0 holds.
Now, it follows from (72) that

0 = div l =
1
r

∂(rl)
∂r

and rl = const.

At the same time, the now-flow boundary conditions l · n|Ri = 0 imply that l = 0 and
l = 0. Thus, the particles mass concentration obeys the equation l = 0 or

∂c
∂r

= −
Dp

D
∂p
∂r

+
Dωωr

2D
∂ω

∂r
.

Due to (37), the latter equation can be written as

∂c
∂r

= −
Dp

D
ρv2

r
+

Dω

2D

(
ω− 1

2

(
∂v
∂r

+
v
r

))
∂ω

∂r
. (73)

In what follows, we use the representations Dp = D∗pc(1− c), Dω = D∗ωc(1− c) since
both Dp and Dω vanish at c = 0 and c = 1. Given a mean value c0 of c, we set the following
condition: ∫ R2

R1

rc(r) dr =
c0(R2

2 − R2
1)

2
. (74)

As for the particle migration, there is one more approach based on the Fick law. This is
known as the Lamm equation for a highly disperse colloidal solution enclosed in a wedge-
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shape cell rotating at an angular velocity Ω about an axis coinciding with the apex of the
wedge [5].

Let us return to Equation (73). One more consequence of the equality l = 0 is that the
rheological Equation (69) reduces to N = 2γA in the Couette geometry.

Let us summarize the mathematical model. We look for functions Srϕ, Sϕr, Nzr, v, ω, c,
obeying the Equations (35), (36), (38)–(41) and (73), with the given function ε(c).

We introduce dimensionless parameters

ρ0 =
ρ̄s

ρ̄ f
, D1 =

D∗pR2
1Ω2

0ρ̄s

D
, D2 =

D∗ωΩ2
0

2D
.

In new notations,

ε(c) =
(

1− c/φ∗
c + ρ0(1− c)

)−Eφ∗
− 1.

Let us pass to dimensionless variables. Then, Equations (73) and (74) become

1
c(1− c)

∂′c
∂r′

= − D1v′2

r′(c + ρ0(1− c))
+ D2

∂′ω′

∂r′

(
ω′ − ∂′v′/∂r′ + v′/r′

2

)
, (75)

∫ a

1
r′c(r′) dr′ =

c0(a2 − 1)
2

, a =
R2

R1
. (76)

We summarize the governing equations as follows. We look for the dimensionless func-
tions v′(r′), ω′(r′) and c(r′) which satisfy Equations (43)–(50), (75) and (76). Observe that
these equations are not decoupled since the relative viscosity ε(c) in Equations (44) and (45)
depends on the particle concentration c.

Figure 11 depicts results of calculations of concentration along the radial variable.
We apply the Wolfram Mathematica solver for ordinary differential equations. Agreement
between calculations and experiment [9] is achieved for Ω = 102 rpm with the choice
D∗ω/(2D) = 5 × 10−5 [s2]. The sedimentation effect happens when we increase Ω to
14× 103 [rpm]. We prove that such an effect is due to the rotational diffusion Dω since the
particle separation does not happen when Dω = 0.

Remark 2. It is known that, for many practical purposes, the polymers or colloidal particles can
be regarded as rigid particles. Examples are triblock Janus particles which can be modeled as cross-
linked polystyrene spheres whose poles are patched with sticky alkyl groups, and their middle band
is covered with negative charges [38]. This is why the above results on rotational sedimentation can
also be applied to polymer flows. As was proved by Svedberg, such flows are of great importance in
the studies of the polymer structure. Our contribution is that we propose an alternative approach to
the Lamm equation based on the empirical notion of the sedimentation coefficient [6]. The advantages
are that we apply the conservation laws of continuum mechanics and take into account the shape of
the particles. Moreover, we prove that the polymer sedimentation is due to its rotation. This result
suggests a new direction of laboratory studies on polymer flows.
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Figure 11. Profiles of mass concentration c. Both the solid line that is based on calculations and dots
standing for experimental data [9] correspond to Ω = 102 rpm. Agreement between calculations and
experiment is achieved by the choice D∗ω/(2D) = 5× 10−5 [s2]. The dashed line corresponding to
calculations reveals the sedimentation effect when we increase Ω to 14× 103 [rpm].

7. Discussion

We address the rotational sedimentation of particles for steady flows of yield stress
granular fluids in a concentric-cylinder Couette geometry. Apart from the Lamm equation
approach, we do not use the empirical sedimentation coefficient. Instead, we apply con-
servation laws of the micro-polar equations which allow for particle rotation. We prove
that it is due to the rotational diffusion that the particle sedimentation occurs at high
angular velocity of the Couette cell inner cylinder. To validate the mathematical model,
we perform a comparison with published data of measurements by choosing the relative
viscosity related with the particle rotation. First, we justify analytically this choice for dilute
suspensions starting from the Einstein correlation for the apparent viscosity. As for dense
suspensions, we apply the Krieger–Douhgerty empirical closure for the apparent viscosity.
Though we performed calculations for steady flows, the developed approach allows for
unsteady flows and non-spherical particles due to the micro-inertia tensor involved into
the angular momentum conservation law.
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