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Abstract 

Background:  Bioassay data analysis continues to be an essential, routine, yet challenging task in modern drug 
discovery and chemical biology research. The challenge is to infer reliable knowledge from big and noisy data. Some 
aspects of this problem are general with solutions informed by existing and emerging data science best practices. 
Some aspects are domain specific, and rely on expertise in bioassay methodology and chemical biology. Testing 
compounds for biological activity requires complex and innovative methodology, producing results varying widely 
in accuracy, precision, and information content. Hit selection criteria involve optimizing such that the overall prob-
ability of success in a project is maximized, and resource-wasteful “false trails” are avoided. This “fail-early” approach is 
embraced both in pharmaceutical and academic drug discovery, since follow-up capacity is resource-limited. Thus, 
early identification of likely promiscuous compounds has practical value.

Results:  Here we describe an algorithm for identifying likely promiscuous compounds via associated scaffolds which 
combines general and domain-specific features to assist and accelerate drug discovery informatics, called Badapple: 
bioassay-data associative promiscuity pattern learning engine. Results are described from an analysis using data from 
MLP assays via the BioAssay Research Database (BARD) http://bard.nih.gov. Specific examples are analyzed in the con-
text of medicinal chemistry, to illustrate associations with mechanisms of promiscuity. Badapple has been developed 
at UNM, released and deployed for public use two ways: (1) BARD plugin, integrated into the public BARD REST API 
and BARD web client; and (2) public web app hosted at UNM.

Conclusions:  Badapple is a method for rapidly identifying likely promiscuous compounds via associated scaffolds. 
Badapple generates a score associated with a pragmatic, empirical definition of promiscuity, with the overall goal to 
identify “false trails” and streamline workflows. Unlike methods reliant on expert curation of chemical substructure pat-
terns, Badapple is fully evidence-driven, automated, self-improving via integration of additional data, and focused on 
scaffolds. Badapple is robust with respect to noise and errors, and skeptical of scanty evidence.

Keywords:  Drug discovery informatics, High-throughput screening (HTS), Compound promiscuity, Molecular 
scaffolds, Statistical learning
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Background
Library design, hit selection and stacking the odds
Efforts to streamline, automate, and rationalize drug 
discovery in the past two decades have embraced auto-
mated high-throughput methods, including HTS and 
combinatorial chemistry. High-throughput is based on 

the reasonable premise that testing more molecules will 
result in discovery of more leads and drugs, all things 
being equal. However, after the documented failure of 
high-throughput alone to improve productivity, the 
consensus seems to be that scaling up throughput is 
not sufficient, and that “all things being equal” requires 
expert attention such as for library design. This ongo-
ing reality check has prompted a closer examination of 
high-throughput methods, and several conceptual and 
methodological advances, including the Lipinski “Rule 
of 5” (Ro5) [1], the identification of HTS false positives 
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due to reactivity [2], frequent hitters [3] and promiscu-
ous binders [4, 5], the development of the “lead-like” and 
“drug-like” concepts [6–9] and its influence on molecular 
complexity [10], the concept of “ligand efficiency” [11] 
and the development of fragment-based drug discovery 
[12, 13].

Given appropriately designed chemical libraries [14], 
HTS campaigns are usually successful by generating 
lead compounds and knowledge—structure–activity 
relationships (SAR)—to facilitate subsequent discovery 
steps. The probability of success depends both on the 
quantity and quality of the compounds. From a growing 
awareness of the importance of compound quality, and 
apparent failures of “assembly line science”, the Ro5 and 
lead-like concepts have increasingly influenced library 
design. Notions of compound quality have progressed 
and should be informed by a deep understanding of the 
complex intersection of chemical space and biological 
target space, which may be termed bioactivity space, and 
in the context of advancing assay methodologies. Since 
the usual goal of HTS is discovery of molecules biologi-
cally active for a specific target under study, it is logical 
to regard compound quality as relative: hence, targeted 
libraries. So, a molecule’s “lead-like” or “drug-like” prop-
erties, or coordinates in global chemical space, may be 
useful conceptually and for coarse garbage-filtering, but 
the improved goal should be compound fitness for a par-
ticular assay or class of assays. In particular, failure to 
recognize and remove promiscuous and similarly prob-
lematic compounds can easily lead to expensive false 
trails, wasted resources, and flawed conclusions. For 
example, documented aggregators may not exhibit aggre-
gator behavior under different assay conditions; fluores-
cent compounds may be unfit for fluorescence-based 
assays, yet fit for others. Therefore, promiscuity, as well as 
“lead-like” and “drug-like” properties are assay and target 
dependent, and should be evaluated within a particular 
context. All false trails can greatly decrease HTS success 
rates, since typically only a limited number of hits can be 
pursued.

The proposed method is intended to complement other 
methods for detection of bioassay “bad actors”. Baell et al. 
have introduced “Pan-Assay INterference CompoundS” 
(PAINS) which combines expert curation of chemi-
cal substructure patterns (a.k.a. “structural alerts”) with 
empirical validation. This extensive work builds upon 
many efforts [2, 3, 15, 16] to design useful sets of patterns 
for filtering of unwanted compounds, combined with 
manual analysis. In the PAINS approach, the combina-
tion of expert knowledge of chemical patterns with sys-
tematic empirical validation is distinctive and promising. 
Yet, its reliance on manually-curated chemical patterns 
is a practical shortcoming, especially for novel chemical 

patterns and problem-classes. Given our long experience 
with developing chemical patterns, we regard this activity 
as necessary and valuable, but a considerable and bound-
less challenge often involving expert debate and difficulty. 
In contrast, the method presented herein is fully auto-
matic, fully empirical, and focused on scaffolds, a central 
concept in medicinal chemistry. That is, the promiscu-
ous scaffolds are perceived by the algorithm, and some-
what counter-intuitively, by virtue of being scaffolds, are 
generally as meaningful to chemists, or more so, than 
substructure patterns. This method requires no code 
revision to accommodate new data, new assay methods, 
or new compound classes. The generality of its inferences 
is limited solely by the breadth and accuracy of the data 
from which those inferences are derived.

Although library design and hit selection are separate 
tasks, informatically their effects are merged to deter-
mine which compounds are carried forward. Bioassays 
may be part of a coordinated discovery project, but the 
data may also be utilized for other quite different discov-
ery projects and scientific goals. Bioassays may yield few 
hits, or many more than follow up capacity. Hence, fil-
tering and ranking for compound promiscuity and other 
aspects of suitability in powerful and flexible ways is rel-
evant in a variety of scenarios. The literature does reflect 
increasing interest in informatics-based approaches to 
analysis of promiscuity, polypharmacology and non-
selectivity assessment [17–19]. Yet, this problem is dif-
ficult for reasons closely tied to the difficulties in drug 
discovery itself, especially the diversity in biological tar-
get–ligand interaction mechanisms. We expect that to 
address this challenge, the community will best be served 
by a variety of computational methods, well informed 
by cheminformatics, bioinformatics, screening method-
ology, discovery workflows and scientific contexts, and 
enabled by well-structured and annotated data resources.

MLP, UNMCMD and motivation for Badapple
Necessity, mother of invention
In 2005, the National Institutes of Health (NIH) launched 
the Molecular Libraries Initiative (MLP) [20] to seek 
small molecules that modulate biological pathways in 
novel ways, as a means to explore chemical biology. This 
resulted in an unprecedented effort to measure and pub-
lish bioactivity data, and the development of a unique 
compound collection, known as the Molecular Librar-
ies Small Molecule Repository (MLSMR). The NIH MLP 
involved ten screening centers at academic research sites 
throughout the USA, which have conducted approxi-
mately 2500 assays on over 400,000 unique compounds 
[21, 22]. Focused on the early stages of lead discovery, 
with emphasis on target identification, assay develop-
ment, biomolecular screening, hit-to-probe analysis, this 
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initiative resulted in the discovery of 248 [23] “chemical 
probes” [24, 25]. Compounds tested by the MLP were 
largely from the MLSMR [26], developed (by BioFocus 
DPI, under NIH contract) to support this effort by pro-
viding suitable libraries for primary screening. The total 
number of compounds in MLSMR is currently over 
390,000. This library of compounds is designed for HTS 
fitness based on criteria including calculated physico-
chemical properties such as solubility, and exclusion of 
reactive groups [27]. Library design is also based on prac-
tical considerations: availability in sufficient quantity and 
purity, and budget constraints. Additional compounds 
tested in MLP were obtained in various ways, including 
purchase and synthesis.

The University of New Mexico Center for Molecu-
lar Discovery (UNMCMD) has been an MLP academic 
screening center since 2005 [28], specializing in high-
throughput and multiplexed flow cytometry assays, 
involving both elucidated molecular targets and phe-
notypic endpoints. A wide variety of biology has been 
studied, from cancer cell lines, to bead-based assays, to 
microbiological pathogens. The UNMCMD Screening 
Informatics Core has been responsible for bioassay data 
management and analysis in support of project discovery 
goals. As such, a key task has been to efficiently analyze 
bioassay results, identify “true hits”, develop SAR models, 
and assist in selecting hits for follow up, including con-
firmation and optimization. The need for efficiency can 
be painfully clear to those involved in such efforts, given 
ambitious timelines and the high costs in time, money 
and labor in following up false trails. From numerous 
experiences with initially encouraging compounds which 
turned out to be promiscuous, and which could have 
been known as frequent hitters by appropriate analysis of 
existing assay data, Badapple was conceived [29].

Results
Badapple algorithm
Bayes, baseball, and Badapple
The Badapple approach and algorithm detects patterns 
of promiscuity associated with molecular scaffolds. For 
purposes of simplicity, comprehensibility, and practical 
utility, “promiscuity” is defined in this context simply as 
multiplicity of positive non-duplicate bioassay results. It 
is well understood that positive results (hits) may be false 
positives, where the false indication is due to experimen-
tal artifact (e.g. aggregation, reactivity, fluorescence). Yet, 
such a compound will generally be undesirable regard-
less of whether its frequent-hitting is due to true or false 
positives. In this study and in general, different bioas-
says generally means different targets, where “target” 
can refer to protein target, or a targeted interaction in a 
phenotypic screen. This generalization can be rigorously 

enforced by utilization of assay ontologies such as BAO 
[30, 31] or BARD [32, 36]. With typical current bioassay 
data sources, the Badapple definition of statistical prom-
iscuity effectively allows us to identify compounds that 
are more likely to be non-selective over many assays and 
many targets. HTS “frequent hitters” may be true or false 
positives, as confirmed by secondary assays. Regardless, 
they are likely to be costly “false trails”.

Why scaffolds?
Scaffolds are used to aggregate data and detect patterns 
for several reasons: (1) Scaffolds relate analog chemical 
series, relevant to medicinal chemistry and lead opti-
mization. (2) Data may not exist about a specific com-
pound, but may exist about a closely related compound 
with common scaffold. (3) “Privileged structures” theory 
suggests scaffolds often confer bioactivity. We note that 
the scaffold can contribute to bioactivity directly, via 
shape or binding interactions, or indirectly, via function-
alization potential. In addition, by employing the “HierS” 
hierarchical scaffold analysis method of Wilkens et  al. 
[33], associations are not limited to the largest scaffold 
(Bemis–Murko framework [40]).

Badapple formula for scaffold promiscuity
The Badapple formula is shown below. The promiscu-
ity score (pScore) is a product of three terms, related to 
substances, assays and samples, each of which needs to 
be high to produce a high score. Medians are computed 
across the entire dataset. The use of medians normalizes 
in such a way that scores are unlikely to be high if the 
weight of evidence is relatively low. 

where sT =  tested substances with scaffold, sA =  active 
substances with scaffold, aT =  assays with tested com-
pounds with scaffold, aA  =  assays with active com-
pounds with scaffold, wT = tested samples with scaffold, 
wA = active samples with scaffold, med = median.

Experienced practitioners of HTS know that errors 
occur despite diligent use of best practices. The Badap-
ple formula mitigates the problems of noisy and error-
prone data by aggregating across samples and substances. 
More substances provide more evidence, even when the 
substances are supposedly identical compounds. More 
samples tested provide more evidence, even when the 
samples supposedly contain the same substance, and 
are subject to the same assay. The score combines and 
reflects both the “batting average” (BA) and the weight of 
evidence, so high scores are more likely to indicate a valid 

(1)

score =
sA

sT +med(sT )
×

aA

aT +med(aT )

×
wA

wT +med(wT )
× 1e5
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pattern. The “BA” concept provides an illustrative term 
and points to a valid analogy. In baseball analytics (saber-
metrics), it is well known that the early BA stats, say from 
the first month of the season are not predictive of full-
season BA [34]. Noisy data requires sufficient sampling 
to produce evidence. Accordingly, the Badapple score is 
skeptical of scanty evidence. Table 1 shows the ranges of 
Badapple scores, as derived from HTS data: low, moder-
ate and high, with corresponding advisories.

In Fig. 1, the color bands indicate the ranges of Badap-
ple scores: low, moderate and high. It is clear that 
the score is not dependent only on the BA, i.e. ratio of 
actives to tested, since then the range boundaries would 
be straight lines through the origin. Rather, when the 
aTested is below a certain threshold (i.e. the weight of 
evidence is insufficient), moderate or high scores are 
disallowed. Below another threshold, high scores are 
disallowed. In this figure, the substance and well terms 
are held constant. Given the three-way symmetry of the 

Badapple formula, the corresponding figure for substance 
and well statistics would reflect the same properties.

Statistical, Bayesian learning
The Badapple formula is computationally simple, but 
combines some powerful features. Understanding its 
relationship to other statistical methods is important for 
comprehensibility, interpretation and to make best use 
of the methodology more generally. As one notable com-
parison, the Badapple formula shares some properties 
with the Internet Movie Database (IMDb) score used to 
rank movies in its “Top 250” [35]

where R = average rating for the movie, v = votes for the 
movie, m = minimum votes to be in Top 250 (currently 
25,000), C = the mean vote across the whole report (cur-
rently 7.0).

In particular, the use of the minimum-votes expression 
has a similar effect in devaluing high BAs if the weight 
of evidence is relatively low. IMDb describes their score 
as a “Bayesian Estimate” (BE). Although neither Badap-
ple nor IMDb makes use of Bayes’ theorem, it may be 
both justified and explanatory to represent these meth-
ods as Bayesian-like. Badapple shares some key features 
of Bayesian approaches: (1) absence of any assumed 
probability distribution, and (2) by iterative learning 
cycles, new data can be used to continually improve the 

(2)score =
vR

v +m
×

mC

v +m

Table 1  Badapple pScore ranges

pScore range Advisory

~ Unknown; no data

0–99 Low pScore; no indication

100–299 Moderate pScore; weak indication of promiscuity

300+ High pScore; strong indication of promiscuity

Fig. 1  Badapple score dependence on assay-active and assay-tested statistics



Page 5 of 14Yang et al. J Cheminform  (2016) 8:29 

prediction model. Badapple also reflects systematic skep-
tical bias, meaning restricting the number of high scores 
using weight of evidence as a marker of confidence, 
because in the domain of bioassay data analysis, a semi-
automated endeavor requiring human judgment, there is 
a limit to the number of red flags which can be readily 
processed.

Knowledge management and “thoroughly conscious 
ignorance”
While Badapple is robust to noise, it also is completely 
reliant on both the quality and coverage of the empiri-
cal data. If the data does not contain evidence for a given 
structure, for example, the Badapple score will be zero, 
representing “no indication”. If the data contains dupli-
cate results, the scores are degraded, since accurate 
BAs depend on accurate counting. Obviously, multiple 
positive results in identical assays, or assays for identi-
cal targets, are not indicative of promiscuity. The logi-
cal implication of being data driven is that without data 
there is no knowledge. However, to quote James Clerk 
Maxwell: “Thoroughly conscious ignorance is the prelude 
to every real advance in science.” By avoiding a prejudiced 
guess, an algorithm or scientist can be prepared for the 
arrival of new information.

BARD and the Badapple plugin
Enterprise bioassay analysis
The BioAssay Research Database (BARD) [32, 36] is 
designed as a resource for bioassay data and particu-
larly its use by researchers in exploratory data analysis 
and knowledge discovery. Accordingly, BARD includes a 
powerful and extensible computational platform whereby 
plugins can be deployed and integrated seamlessly with 
the BARD public REST API [36]. Badapple was chosen 
as the first “exemplar” BARD plugin (Additional file  1), 
based on the scientific value of promiscuity modeling and 
the direct relevance to bioassay data analysis. The BARD 
project began in March 2012 and the first version of the 
Badapple plugin was released in Sept 2012, using training 
data from PubChem. Subsequent versions of the plugin 
have used data directly from BARD, and PubChem assay 
IDs (AID) were replaced by BARD experiment IDs (EID). 
This migration was a positive step in elevating the seman-
tic rigor of Badapple, toward systematic de-duplication of 
assays.

BARD/MLP Badapple data analysis
The privileged and notorious few
Approach  Rigorous classification of assays and targets in 
bioassay databases has been a continuing challenge, with 
efforts ongoing by the projects BAO and BARD. How-

ever, MLP assays were selected for scientific merit and 
therefore tend to be non-redundant. Likewise, MLSMR 
is a non-redundant screening library by design. Accord-
ingly, for this study, and because Badapple was originally 
designed for HTS bioassay data analysis, the dataset cho-
sen for analysis consists of MLP HTS assays and MLSMR 
compounds. Additionally, as the community may be 
familiar with this data, this well characterized dataset can 
facilitate interpretation and replication of results.

Output scores and statistics  Complete Badapple output 
is provided in the Additional file 2 for all scaffolds in for 
the BARD-based version “bard1”. These results include 
computed Badapple scores, plus assay, substance and 
sample statistics for each scaffold. PostgreSQL databases 
used in this study are also available via links provided in 
Additional file 2. The R code used for analysis is also pro-
vided, and top scoring scaffolds are presented in Fig. 2.

The total scaffold count is 146,024, of which 383 
(0.3 %) are high scoring, 1692 (1.2 %) are moderate, and 
the remaining 143,949 (98.6 %) are low scoring. The dis-
tribution is shown in Fig. 3. While the cutoff values are 
arbitrary (and rooted in observed distributions), they are 
informed by the overall need to efficiently support scien-
tific workflows. Too many “red flags” would increase the 
chance of false alarms and would themselves be increas-
ingly costly to analyze. Users with sufficient time should 
not rely on cutoffs but investigate as many high and mod-
erate scores as time permits. 

Although there are relatively few high scoring scaf-
folds, those “privileged” few account for a disproportion-
ate share of the bioactivity in the dataset (i.e. samples 
deemed active by the assay). Figure  4 illustrates this 
skewness via receiver operating characteristic (ROC) 
curves, which plot the percentage of active samples 
retrieved, with the horizontal axis the top scaffolds (top 
5 %) in ranked by score. Overall, 50 % of all bioactivity is 
associated with 1.4 % (1979) of the scaffolds. (By “50 % of 
all bioactivity” we mean 50 % of all active samples.) For 
drug-scaffolds, 50  % of all bioactivity is associated with 
2.8 % (54) of the scaffolds. These data support the Badap-
ple approach of identifying a relative few scaffolds for 
scrutiny, partly because human investigators have limited 
time, but also because nature appears to confer special 
properties to a relative few.

Prediction, validation, and history
“Those who fail to learn from history are doomed to repeat 
it”: George Santayana
The Badapple algorithm is intended as a tool to quickly 
assess the likely promiscuity of HTS hits or arbitrary 
compounds of interest. It has been noted that predicting 
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the future is hard. Fortunately, if a future instance is very 
similar to a prior instance, studying history can suffice. 
History can also be hard since it requires good informa-
tion, often a precious commodity. Supervised machine 
learning (ML) predictive models are also trained on his-
torical data. ML models can be powerful and useful, but 
are prone to overfitting and often uninterpretable. In 
contrast, a Badapple score is a statistic, an algebraic func-
tion of empirical, historical data.

To validate Badapple we used retrospective datasets 
to indicate whether scores generated in the past would 
have been predictive, in other words, consistent with 
subsequent bioassay findings. The scores and rankings of 
scaffolds were compared using conventional Pearson cor-
relation and also Spearman rank correlation. Spearman 
rank is included since for operational purposes where 

only top-X hits can be investigated, rank may be more 
important than raw score. We compare scaffolds for 
which older data yield high scores and new data exists. 
By comparing the newer, updated scores with the older 
scores for this subset, we can evaluate the usefulness of 
Badapple. Refer to Tables 2, 3 4 and 5 for this analysis.  

As an additional validation, the global compound set 
(389,533) was subjected to randomly partitioned fivefold 
cross validation. For each fold, 1/5th of the dataset served 
as test set, with 4/5th as training set. By recalculating all 
scores for the training set scaffolds, using only activity 
data for training set compounds, we simulated the situa-
tion where test set compounds are new and unknown. For 
each compound, we associate the score from its highest 
scoring scaffold. For each fold, compounds which previ-
ously had associated Badapple scores may not, since the 

Fig. 2  Top promiscuous scaffolds, ranked by Badapple score (see Additional file 2 for full statistics)
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training set is reduced relative to the original Badapple 
training set. This can be interpreted as a loss of predictive 
scope. The Pearson correlation was calculated for each 
fold, for all test compounds, with those unscored assigned 
a score of zero, to reflect overall predictive power from 
each training set. Each correlation was approximately 0.9, 
indicating strong and consistent predictive power. These 
results are summarized in Table 6. 

PubChem assays and BARD experiments
Badapple depends on the quantity and quality of input 
data, where quality includes both accuracy and seman-
tic interpretability. In particular, it should be possible 

to rigorously resolve whether two assay results reflect 
the same or different bioactivity phenomena. This chal-
lenge has motivated several efforts to improve bioassay 
annotations, metadata and ontologies, including BAO 
and BARD. Badapple was designed to accommodate the 
uncertainties associated with the limited annotations 
of MLP assays in PubChem. However, it has been well 
understood that ontology improvements would offer 
new opportunities for Badapple and related extensions, 
for example, promiscuity assessment specific to a target 
class such as G-protein coupled receptors, and automatic 
extraction of privileged scaffolds from large scale screen-
ing data.

Fig. 3  Promiscuity score distribution
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Fig. 4  ROC curves, total bioactivity versus ranked top scaffolds for top 5 %

Table 2  Badapple datasets

BARD assay counts are experiment counts. Tested means bioassay data exist. Nonzero means tested with nonzero scores

#scafs Tested Nonzero #assy Activities Date Source

Bard1 146,024 141,642 54,136 510 30M 2013-01 BARD

Bard2 143,098 137,668 52,328 383 46M 2014-06 BARD

Pc1 143,098 141,533 60,200 822 223M 2014-06 PubChem

Pc2 143,098 125,940 50,912 527 113M 2010-12 PubChem
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Reconciling big data and small data
Drug discovery campaigns rely on the expert judgment of 
medicinal chemists for key decisions on which leads to 
pursue. That expertise derives from formal training, pro-
ject experience, and community knowledge which may 
be global or institutional. Cheminformatics and other 
areas have contributed tools to assist medicinal chem-
ists, and Badapple is such a tool. As such, acceptance and 
effective use of Badapple will be enhanced if its advice is 
comprehensible and demonstrably consistent with expert 
medchem knowledge. To this end the medicinal chem-
ist among us (CAL) evaluated and annotated top scor-
ing scaffolds for chemical issues as drug leads, which are 
shown in Table 7, accompanied by relevant literature ref-
erences [37–39].

Conclusions
Badapple is an easy-to-use, readily interpretable algo-
rithm and tool that can assist scientists in navigating 
a complex scientific and informational landscape. In 
particular, Badapple is designed for rapid detection of 
promiscuity patterns in HTS data, using public bioassay 
evidence. However, Badapple is designed to be trained 
with additional data, and to detect novel patterns, based 
on an entirely different chemical library. Compound 

promiscuity is generally undesirable but must be under-
stood in light of polypharmacology and systems chemical 
biology. Badapple scores indicate either patterns of true 
or artefactual promiscuity, either of which can help guide 
an experimental research project away from “false trails”.

Methods
The Badapple datasets are all prepared from the 
MLSMR compound library and HTS bioassays involv-
ing at least 20K compounds, to optimize applicability 
to high-throughput screening methods. The “bard1” 
dataset was downloaded from BARD in January 2013 
and is the default dataset for the analyses herein. BARD 
was in an early development phase at that time and the 
dataset is for all intents and purposes equivalent to a 
PubChem dataset. Accordingly, “bard1” is used in this 
paper to enhance reproducibility and comprehensibil-
ity. The “bard2” dataset was downloaded from BARD 
in June 2014, and includes fewer assays, reflecting the 
ongoing annotation and curation efforts at the time. 
For each dataset the compound library was filtered 
to remove any salt part and normalize charges. In 
total, the training data for Badapple was comprised of 
389,533 compounds, 438,583 substances, 143,098 scaf-
folds, 822 HTS PubChem assays, and more than 220 
million activity data. In these counts and workflows 
the terms “compound” and “substance” are defined as 
by PubChem: compounds as unique chemical struc-
tures, identified by CID, and substances as sourced and 
registered experimental materials, identified by SID. 
The HierS “hierarchical scaffold” algorithm was used 
to generate the scaffold library for all compounds. An 
illustration of the algorithm is shown in Fig.  5. The 
HierS algorithm perceives for any molecule a hierarchi-
cal set of scaffolds, the largest one being equivalent to 
the “Bemis–Murcko framework” [40], which consists of 
all ring-systems and linkers. Additional scaffolds rep-
resent all the combinations of ring-systems and linkers 
contained therein. Comprehensive output files and  R 
code used for analysis are provided in supplemental 
materials (Additional file 2).

HierS and Badapple were implemented using the Che-
mAxon JChem Java toolkit [41] with both command line 
and web interfaces. The HierS implementation has been 
open-sourced [42]. Badapple is available as a public web 
app [43] (see Fig. 6).  See also supplementary figure of the 
Badapple plugin via BARD web client (Additional file 2). 

A Badapple database was implemented with Post-
greSQL, since rapid scoring, possibly for large numbers 

Table 3  Badapple dataset comparison: scaffolds in  com-
mon (total/non-zero)

Bard2 Pc2 Pc1

Bard1 141,896 
41,218

141,629
49,844

141,629
43,951

Bard2 142,817
43,083

142,817
40,463

Pc2 143,087
47,252

Table 4  Badapple dataset comparison: PScore correlation, 
Pearson/Spearman-rank

Bard2 Pc2 Pc1

Bard1 0.85
0.73

0.95
0.89

0.92
0.85

Bard2 0.86
0.69

0.85
0.72

Pc2 0.96
0.87
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Table 5  Retrospective comparison of high scores, pc2 versus pc1

Scaffold pscore_pc2 pscore_pc1 pscore_diff wTested_diff

436 395 41 7,234,388

374 343 31 5,511,793

443 369 74 2,644,122

432 392 40 1,701,524

578 468 110 1,652,980

618 627 −9 1,019,584

375 315 60 899,779

463 366 97 654,420

365 361 4 524,438

461 367 94 496,504

358 303 55 422,280

805 696 109 376,575

403 331 72 358,012

459 487 −28 319,746
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Table 7  Medchem analysis of selected high scoring, promiscuous scaffolds

Scaffold of well-known toxin toxoflavin present in Burkholderia glumae, it was also previously identi-
fied by workers at Abbott using the ALARM NMR assay as a thiol trap and cause of false positives 
in HTS [37]

Scaffold a 6H-anthra[1,9-cd]isoxazol-6-one is known to react with DMSO acting as a nucleophile and 
undergoes N–O cleavage of the isoxazole ring to form the ring opened anthraquinone, a species 
known to form covalent adducts [38]

Scaffold likely made by reaction of orthophenylene diamine with the corresponding furanyl alpha 
diketone. It could be a false positive if contaminated with the furanyl alpha diketone. It has only 
weak metal coordinating activity

Scaffold the synthesis of the tricyclic scaffold by a malononitrile cyclization with a 2-amino-3-formyl-
4-oxo-4H-pyrido[1,2-a] pyrimidine suggests that the scaffold in this series may be susceptible to 
Michael attack at what was originally the formyl precursor carbon

Scaffold is reported to possess strong fluorescence, UV absorbance as well as strong mutagenic 
activity [39]. The phenyl-2-(2H-benzotriazol-2-yl) scaffold is also found in the photostabilizer 
Tinuvin P

Fig. 5  HScaf scaffolds of quinine

Scaffolds ranked by number of new activity data (wells tested) after pc1 and in pc2. The small changes in score confirm initial trends, for many new targets and assays

Scaffold pscore_pc2 pscore_pc1 pscore_diff wTested_diff

841 721 120 318,307

Table 5  continued

Table 6  K-fold cross validation (K =  5): Ntotal =  389,533, 
Pearson correlation, all test scores

k Ntrain Ntest Correlation

1 311,540 77,993 0.895

2 311,463 78,070 0.891

3 311,652 77,881 0.898

4 311,565 77,968 0.901

5 311,454 78,079 0.903
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Fig. 6  Badapple public web app, available at http://datascience.unm.edu/public-biocomputing-apps

Fig. 7  Database workflow

http://datascience.unm.edu/public-biocomputing-apps
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of compounds and scaffolds, requires pre-computing 
and storing aggregate statistics efficiently. OpenChord 
[44] from gNova was used as a chemical cartridge. Scaf-
fold analysis is performed for all compounds, resulting 
in links from scaffolds to compounds and substances. 
Activity data associates substances with an outcome for 
each sample (typically a well in a multiwell plate) in all 
the assays in the dataset. Typically there are hundreds 
of millions of samples. The workflow is outlined in 
Fig. 7. R was used for statistical analyses. 
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