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Abstract
This paper provides a methodology for predicting post-transplant kidney function,

that is, the 1-year post-transplant estimated Glomerular Filtration Rate (eGFR-1)

for each donor-candidate pair. We apply customized machine-learning algorithms

to pre-transplant donor and recipient data to determine the probability of achiev-

ing an eGFR-1 of at least 30 ml/min. This threshold was chosen because there is

insufficient survival benefit if the kidney fails to generate an eGFR-1≥ 30 ml/min.

For some donor-candidate pairs, the developed algorithm provides highly accurate

predictions. For others, limitations of previous transplants’ data results in nois-

ier predictions. However, because the same kidney is offered to many candidates,

we identify those pairs for whom the predictions are highly accurate. Out of 6977

discarded older-donor kidneys that were a match with at least one transplanted kid-

ney, 5282 had one or more identified candidate, who were offered that kidney,

did not accept any other offer, and would have had ≥80% chance of achieving

eGFR-1≥ 30 ml/min, had the kidney been transplanted. We also show that trans-

plants with ≥80% chance of achieving eGFR-1≥ 30 ml/min and that survive 1 year

have higher 10-year death-censored graft survival probabilities than all older-donor

transplants that survive 1 year (73.61% vs. 70.48%, respectively).
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1 INTRODUCTION

In the US, the demand for transplantable kidneys outstrips

the supply. As of January 30, 2022, 97 796 people were reg-

istered on the national kidney transplant waitlist, but only

18 699 received a deceased-donor kidney transplant in 2021

(OPTN, 2022). Additionally, some of the 500 000+ people

currently on dialysis could benefit from access to trans-

plants (USRDS, 2021). The Organ Procurement and Trans-

plantation Network’s (OPTN’s
1
) metric of transplant suc-

cess is that the recipient should be alive and off dialysis at

1
A list of abbreviations used throughout this paper is available in Online

Appendix A.

the 1-year transplant anniversary (SRTR, 2020). This con-

founds two outcomes: recipient survival and freedom from

dialysis. While the latter cannot exist without the former,

factors that affect recipient’s death, such as strokes, heart

attacks, tumors, and infections, are often not related to those

that affect freedom from dialysis, that is, the renal func-

tion, measured by the estimated Glomerular Filtration Rate

(eGFR) (ml/min/1.73 m
2
). Because younger-donor kidneys

have higher chances of achieving the OPTN success metric,

Transplant Programs (TxPs) prefer younger donors and recip-

ients with fewer comorbidities. Conversely, TxPs are more

risk-averse when deciding whether to transplant older-donor
(55+ years of age) kidneys because they provide lesser renal

function.
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TxPs receive prodigious amounts of data on each donor

and, per OPTN policy, they have 1 h in which to make an

accept or decline decision on behalf of their candidates. To

help TxPs, OPTN has provided several composite measures

of donor quality over time, such as Standard versus Expanded

Criteria Donor—see Rao et al. (2009) for an explanation

and shortcoming of this dichotomy. The current measure of

donor quality utilized by the transplant community is the Kid-

ney Donor Risk Index (KDRI) (Rao et al., 2009), and its

normalized version, the Kidney Donor Profile Index (KDPI)

(UNOS, 2020), which captures the relative risk of graft fail-

ure. The survival benefit, that is, the 1–5 year post-transplant

patient and graft survival probabilities, are correlated with

KDPI. Older-donor kidneys have higher KDPI and therefore

lower aggregate survival benefit. However, kidneys that sur-

vive 1 year and have similar values of KDPI often result in

different kidney function. Consequently, a natural progression

in helping TxPs quantify the risk and benefit of perform-

ing a transplant is based on the amount of renal function

that is provided by the transplant (Gill et al., 2003; Kasiske

et al., 2011).

This paper develops a methodology for predicting the

1-year post-transplant renal function (assessed by eGFR-1)

for surviving transplanted kidneys. Reasons for focusing on

older donors are: (i) they present the greatest opportunity to

increase kidney supply (Klassen et al., 2016), (ii) they have

higher discard rates (40.8% vs. 12% among younger donors),

and (iii) long-term outcomes are worse for older-donor trans-

plants (5 and 10-year graft survival probabilities among older

vs. younger-donor transplants are 80.4%, 65.5% vs. 86.8%,

75.7%, respectively). Similarly, reasons for focusing on 1-year

renal function are: (i) Kasiske et al. (2011) have demon-

strated that long-term kidney survival correlates well with

eGFR-1, and (ii) Gill et al. (2003) have observed that many

patients who survived 6 months after transplant had either

no consequent change or improvement in eGFR. Neither

study provides a methodology to predict eGFR-1, nor do

they focus on older donors. Our approach consists of predict-

ing the probability that a donor-recipient pair will achieve a

specified minimum eGFR-1 using their pre-transplant data.

It is independent of the selected eGFR-1 threshold. How-

ever, because only 15% of the transplants come from older

donors and the average eGFR-1 among this cohort is less

than 50 ml/min, prediction reliability suffers upon choosing a

minimum eGFR-1 threshold >30 ml/min. We therefore focus

on 30 ml/min. This specific threshold is clinically significant

because it is one of the six eGFR stages (KDIGO, 2012) of

Chronic Kidney Disease (CKD), it is familiar to practitioners,

and Pruett et al. (2021) showed that there was no transplant

benefit relative to remaining on dialysis if the kidney achieved

an eGFR-1< 30 ml/min.

Our probabilistic prediction is referred to as the Transplant
Risk and Benefit (TRB) score. While the benefit component is

denoted by b, the risk is 1 minus the TRB score. In this paper,

we only consider the TRB score associated with a minimum

eGFR-1 level of b = 30. We label a transplant as viable only

if the risk of not achieving the benefit level is sufficiently low

(≤ 0.2). If a donor-candidate pair does not meet the viability

threshold, then our methodology for classifying transplants

may not provide useful additional information to clinicians.

This is a limitation of the data, which contains relatively few

older-donor transplants. Although we are not able to reliably

quantify the risk of every potential transplant, we can identify

several candidates for each older-donor kidney for whom the

TRB score would have been sufficiently high had the trans-

plant been performed. We apply this approach to discarded

older-donor kidneys and their matched candidates to identify

the number of viable transplants.

We found that 5282 older-donor discarded kidneys had

TRB≥ 0.8 for at least one candidate. Had these kidneys

been transplanted, they would have achieved average 1

and 10-year
2

death-censored graft survival probabilities of

94.69% and 73.61%, respectively, which are higher than the

realized survival probabilities of 92.57% and 70.48%, respec-

tively, among older-donor transplants in the data. Moreover,

based on the findings in Gill et al. (2003), it is expected

that most of these candidates would have maintained a sim-

ilar level of renal function 5 years post-transplant. Given

an estimated annual cost of $90 602 per dialysis candidate

(USRDS, 2019), a better utilization of discarded kidneys

could result in significant savings for US taxpayers.

1.1 Contribution

Although some older-donor kidneys (mostly high-KDPI

kidneys) can provide significant survival benefit (Massie

et al., 2015; Merion et al., 2005), they are often discarded

because TxPs find it difficult to identify which recipi-

ents could have ex-ante benefited from which kidneys. Our

approach uses innovative data processing, feature selection,

predictive algorithms, and simulated match-runs to asso-

ciate pre-transplant data with probabilistic prediction of

post-transplant renal function, which helps identify trans-

plants with a high probability of achieving eGFR-1 of at least

30 ml/min.

1.2 Potential implementation and impact

If our approach were to be implemented, OPTN would pro-

vide the TRB score to TxPs for each older-donor and can-

didate pair, adding one field to the DonorNet.
3

To prevent

accumulation of Cold Ischemia Time (CIT), the OPTN may

ask TxPs to pre-specify the maximum level of risk (1-TRB)

2
The 10-year graft survival probabilities are conditional on the patient and

the graft surviving 1 year.
3
DonorNet is a web-based tool that allows Organ Procurement Organizations

(OPOs) to launch match runs and make organ offers to TxPs, https://unos.

org/technology/unet/.

https://unos.org/technology/unet/
https://unos.org/technology/unet/
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they are willing to accept from older-donor kidneys, simi-

lar to how they currently specify whether they will consider

high-KDPI (>85%) kidneys. The magnitude of the benefit

of our approach would depend on two factors: the accept-

able level of risk associated with eGFR-1, and the degree to

which TxPs adopt algorithmic risk-assessment based utiliza-

tion of kidneys. For some levels of risk tolerance (e.g.,≥ 0.3),

our approach could potentially have both life-saving (more

transplants) and life-improving (higher eGFR-1) impacts. For

stricter requirements (e.g.,≤ 0.2), it is likely that our approach

will be even more life-improving, but may lead to fewer trans-

plants. A detailed evaluation of the trade-off between the risk

and benefit of transplantation and the availability of kidneys

is outside the scope of this paper.

2 LITERATURE REVIEW

A consensus report by the National Academies of Sciences,

Engineering and Medicine, (Kizer et al., 2022, Chapter 2),

provides a detailed overview of the US Organ Transplan-

tation System. Many papers in the Operations Research/

Management literature deal with the distribution and allo-

cation of organs, modeling of recipients’ accept-decline

decisions, and mitigating geographical disparities—see for

example, Arkan et al. (2018), Ata et al. (2017), Barah and

Mehrotra (2021), and Bertsimas et al. (2013). Recent sur-

veys are available in Ersoy et al. (2021) and Ata et al. (2018).

There is also significant biomedical literature on all aspects

of kidney transplantation. We do not discuss these streams of

literature because they are not directly related to our work.

Instead, we focus on studies that predict survival and renal

function using machine-learning methods and that aim to

reduce organ waste.

Mark et al. (2019) use an ensemble of statistical methods

to predict kidney transplant survival and identify important

predictive variables. Yoo et al. (2017) expand the set of

variables used to predict graft survival to include immuno-

logical factors. They apply ensemble-learning algorithms to

predict graft survival, compare their predictions with those of

straw-man algorithms like decision trees and Cox regression

(Cox, 1972), and establish the superiority of using ensemble

methods. Barah and Mehrotra (2021) use machine-learning

techniques to predict whether a kidney will be discarded.

They find that Random Forest performs the best, with an

Area Under the ROC Curve (AUC) of 0.888. However, they

find that the AUC decreases to 0.814 when the Random

Forest algorithm is applied to kidneys with KDPI> 85%,

the majority of which come from older donors. In another

study, Topuz et al. (2018) address the problem of select-

ing important features to predict graft survival at the 1,

3, 5, 7, and 9 year cutoff points. They use a combina-

tion of machine-learning methods and achieve an average

accuracy of 0.684. Similar to ours, these papers utilize

machine-learning tools to predict the outcome of kidney

transplants. However, our approach is different because we

predict eGFR-1 (not graft survival or kidney discards), we

focus specifically on older-donor kidneys, for which predic-

tion is more challenging due to limited data availability, and

we apply our prediction model to a carefully selected set of

discarded kidneys to estimate the potential impact of using the

TRB score.

Lasserre et al. (2012) is the only paper that applies

machine-learning techniques to pre-transplant data from 707

Eurotransplant donor and recipient characteristics to predict

eGFR-1. They do not focus specifically on older-donor trans-

plants, although they noted that age of the donor is the

strongest factor for allograft function. Additionally, our algo-

rithms maximize the positive predictive value (PPV) of renal

function of older-donor transplants because our goal is to

maximize the reliability of prediction when the algorithms are

applied to discarded kidneys.

Some recent papers, summarized in Table 1, share our

motivation of reducing organ waste. These papers use myr-

iads of analytical/empirical techniques. Our perspective is

different because we focus on predicting the transplant out-

come using pre-transplant data and demonstrate how this

could help increase the utilization of some discarded kid-

neys. In addition to these papers, Dai et al. (2020) analyze

the welfare consequences of introducing a donor-priority

rule, which grants registered donors priority in receiving

organs if they need transplants in the future. Although not

focused on reducing organ waste, its aim is to increase

organ supply via increased registrations, for which family

authorization is not necessary. The authors also propose a

priority-freeze rule that guarantees an improvement in social

welfare.

3 DATA: DESCRIPTIVE STATISTICS

Two sets of de-identified data from January 1, 2000 through

December 31, 2018 were obtained from OPTN: (i) the

national Standard Transplant Analysis and Research (STAR)

file, containing information on deceased older donors, wait-

listed candidates, transplants, and outcomes, and (ii) the

match-run data, comprised of transplanted and discarded kid-

ney offers. Because 1-year post-transplant data were needed

to calculate outcomes, only transplants performed up to

December 31, 2017 were considered. After performing data

processing steps (see Section 4.1 for details), we obtained our

study cohort of 11 527 older-donor transplants. The descrip-

tive statistics of donors in the study cohort and their recipients

are shown in Table 2. This table also includes characteris-

tics of donors of 6977 discarded kidneys (for which there

are no recipients) that were similar to kidneys in the study

cohort.

We calculated eGFR-1 from recipients’ 1-year serum

creatinine (Scr) using the CKD_EPI equation (Levey &

Stevens, 2010), which is
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TABLE 1 Summary of articles focusing on reducing kidney waste

Article Objective Key results

Arora and Subramanian (2019) Identify possible misalignments in the objectives of the

social planner, the Organ Procurement Organization

(OPO), and the donor hospital to improve

quality-adjusted life-years (QALYs) from recovered

organs (reduce waste) and possible mechanisms to

alleviate such misalignments.

There exists thresholds of donor hospitals operating room

utilization that determine when donors of different

quality (in terms of QALYs) should be prioritized for

authorization and recovery.

Ata et al. (2021) Identify candidate ranking policies, based on donor and

candidate characteristics, that achieve optimal

efficiency-equity tradeoff among all such policies.

The set of affine policies in patient waiting times contains

an optimal policy. Total QALYs can be increased

substantially by allowing patient rankings to depend on

the kidney quality.
a

Wang et al. (2022) To estimate the amount by which the existence or

introduction of an airline route between two airports

affect the number of kidney transplants between donors

and recipients connected by those airports.

The introduction of a new airline route increases the

number of shared kidneys by 7.3%, with a concomitant

net increase in the total number of kidney transplants and

a decrease in the organ discard rate. Furthermore, the

post-transplant survival rate remains largely unchanged.

Tunç et al. (2022) Self-interested individuals utilize fewer kidneys than what

would be socially optimal, in part because of the cost of

returning to the retransplantation queue. The authors

study the effect of a mechanism for compensating

individuals when they return to the transplant queue on

organ utilization and social welfare.

Following the use of the proposed incentive, the discard

rate may change, ranging from a low of 6.2% (strong

population response) to 15.1% (weak response), which

may lead to between 1630, and 338 more transplants per

year, respectively. The 1-year post-transplant survival and

the quality of transplants deteriorate by a small amount.

a

From a managerial perspective, our results are consistent with this study, that is, matching older-donor kidneys with specific candidates can reduce kidney waste while

maintaining similar outcomes.

TABLE 2 Descriptive statistics of key variables (IQR = interquartile range)

Transplanted kidneys similar to discarded Discarded kidneys similar to transplanted

Sample size (n) 11 527 6977

Donor characteristics

Median (IQR), mean age (years) 60 (57–64), 60.79 62 (58–67), 62.76

Median (IQR), mean weight (kg) 77.6 (67.5–89), 78.95 77.11 (67–89.81), 79

Median (IQR), mean creatinine (mg/dl) 0.9 (0.7–1.17), 0.99 1 (0.8–1.3), 1.09

Median (IQR), mean KDPI 0.84 (0.75–0.91), 0.82 0.9 (0.82–0.95), 0.88

% Female 51.09 52.26

% Caucasian 79.74 78.96

% African-American or Black 4.75 6.49

% Hispanic 11.83 9.60

% Asian 3.13 3.1

% Other races 0.55 1.85

% Death due to stroke 70.51 74.34

% Biopsy performed 86.81 90.6

Recipient characteristics

Median (IQR), mean age (years) 61 (53–67), 59.44 NA

Median (IQR), mean weight (kg) 80.1 (68.6–93), 81.51 NA

Median (IQR), mean creatinine (mg/dl) 7.4 (5.57–9.66), 7.85 NA

% Female 38.46 NA

% Caucasian 44.98 NA

% African-American or Black 30.42 NA

% Hispanic 14.63 NA

% Asian 7.69 NA

% Other races 2.28 NA

Note: Row-wise comparison shows that the categorical variables of the matched transplanted and discarded kidneys are similar to each other, while for the continuous

variables, matched discarded donors tend to be slightly older, have higher creatinine and higher KDPI than the similar transplanted donors.
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eGFR − 1 =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

141 ×min

{
Scr

0.7
, 1

}−0.329

×max

{
Scr

0.7
, 1

}−1.209

× 0.993
Age × 1.018 × 1.159 [if Black]

if female,

141 ×min

{
Scr

0.9
, 1

}−0.411

×max

{
Scr

0.9
, 1

}−1.209

× 0.993
Age × 1.159 [if Black]

if male,

(1)

Although alternate methods for calculating eGFR exist, for

example, the Cockroft-Gault formula, CKD_EPI equation is

a widely accepted method and it is more accurate over a

broad range of eGFR values (NIDDK, 2020). There have been

recent attempts to eliminate race as a variable in calculating

eGFR-1, because race is not a biological construct (NKF and

ASN, 2021). If the equation for calculating eGFR-1 were to

change, then our analysis would have to be repeated. How-

ever, this would not affect the methodology proposed in this

paper.

Next, we present two key observations that motivate

this study. We focus on eGFR categories of CKD stages

(KDIGO, 2012) instead of continuous eGFR because they are

familiar to candidates.

Observation 1 CKD stages of eGFR-1 better

stratify death-censored 1–10 year graft survival

than KDPI strata.

To compare eGFR-1 and KDPI, we found how many

kidneys achieved each CKD stage and the corresponding

KDPI threshold that resulted in the same number of trans-

plants. There were 1635 (14.2%) transplants with eGFR-1 of

0–29 (corresponding KDPI of 0.95–1.0), 3752 (32.5%) with

30–44 (KDPI of 0.85–0.95), 3563 (30.9%) with 45–59 (KDPI

of 0.73–0.85) and 2577 (22.4%) with 60+ (KDPI≤ 0.73).

Figure 1 shows the Kaplan–Meier (KM) 1–10 year sur-

vival curves and 95% confidence intervals (CIs) by eGFR-1

ranges and KDPI groups. The survival probabilities are cen-

sored either by death, or by the end of observation period.

A death-censored survival analysis is performed because it

estimates kidney quality/outcomes after removing the effect

of recipient comorbidities correlated with death. Table 3

reports the average and 95% CI 10-year graft survival prob-

abilities of transplants achieving various eGFR-1 and KDPI

levels.

Figure 1 and Table 3 show that transplants with

eGFR-1< 30 are undesirable. Moreover, the range of 10-year

graft survival from best (orange dashed line) to worst (blue

solid line) is 44.2% for eGFR-1 and 17.8% for KDPI, further

supporting our argument that KDPI does a poor job of strat-

ifying transplant durability, whereas the amount of eGFR

at 1 year is much more discriminatory. The survival differ-

ence highlights the importance of predicting the amount

of function at the 1-year transplant anniversary, rather than

just whether the recipient is alive and off dialysis. Our next

observation shows that KDPI strata do not predict CKD

levels, justifying the need to augment KDPI with the TRB

score.

Observation 2 KDPI strata do not correlate

well with CKD levels for older-donor trans-

plants.

To assert Observation 2, we tested whether kidneys belong-

ing to different KDPI strata belong to different CKD levels.

We created 5 subsets k = 1, … , 5 of KDPI, each contain-

ing 20% of the data. For each k, let pke denote the proportion

of transplants that achieved CKD level e ∈ {1,2,3,4}, where

e = 1 means CKD 4/5, 2 means 3b, 3 means 3a, and 4 means

2/1, with
∑

e pke = 1, ∀k. Let

sk =
(|pk1 − pk2| + |pk1 − pk3| + |pk1 − pk4| + |pk2 − pk3| + |pk2 − pk4| + |pk3 − pk4|)

3
,

(2)

be a stratification measure that captures how well KDPI level

k indicates which CKD level to expect. The numerator of sk

FIGURE 1 Death-censored 1–10 year graft survival curves by eGFR-1 and KDPI. The survival curves based on KDPI stratification tend to be less splayed

(overlapping CIs in the middle range) than the ones based on eGFR-1. Clearly, KDPI does not stratify long-term survival as well as eGFR-1 does
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TABLE 3 Average and 95% CI 10-year graft survival probabilities by eGFR-1 and KDPI ranges

eGFR-1 range (ml/min) Average (95% CI) 10-year graft survival KDPI range Average (95% CI) 10-year graft survival

0–29 (CKD 4/5) 0.402 (0.367 − 0.435) 0.95–1 0.601 (0.564 − 0.635)

30–44 (CKD 3b) 0.657 (0.635 − 0.679) 0.85–0.95 0.691 (0.669 − 0.712)

45–59 (CKD 3a) 0.799 (0.779 − 0.817) 0.73–0.85 0.711 (0.689 − 0.731)

60+ (CKD 2/1) 0.844 (0.813 − 0.864) 0–0.73 0.779 (0.756 − 0.801)

Note: Stratification by eGFR-1 results in distinct 95% CIs, except for CKD 3a and 2/1, while the 95% CIs are not as far apart when stratified by KDPI.

FIGURE 2 Stratification measure sk versus KDPI. The value of the

stratification measure sk is low and constant across different ranges of KDPI

captures the magnitude of the differences in the proportions,

and the denominator is used for scaling purposes. By con-

struct, if KDPI were perfectly correlated with a particular

CKD level, then sk = 1, implying that for a range of KDPI,

only one CKD level would be possible. If KDPI were the

worst indicator, then each CKD level would occur with equal

probability and therefore sk = 0. The closer sk is to 1, the

better the ability to stratify CKD levels. Figure 2 shows the

stratification measure sk and the average over the five subsets

of KDPI.

We find that sk hovers slightly above 0.2 across different

ranges of KDPI, thus implying that different levels of KDPI

are not correlated with distinct CKD levels for older-donor

transplanted kidneys that are similar to discards. This is the

case even for very high KDPI values for which one would

expect very high proportion of CKD 4/5.

4 METHODS

We developed a methodology to: (1) calculate the TRB score

using pre-transplant data, and (2) identify older-donor dis-

carded kidneys that could achieve high TRB scores. The

methodology can be adapted to various thresholds of eGFR-1,

different sets of matched transplanted and discarded kidneys,

and different age cutoffs for identifying older donors. Figure 3

depicts our approach.

4.1 Data processing

4.1.1 Donor study cohort

We identified a study cohort of 11 527 (≈56% of transplants)

older-donor adult, single-kidney, first-time transplants that

survived 1-year and did not have data entry errors or miss-

ing values of key variables. In addition, we identified 6977

discarded kidneys (≈35% of discards) whose discard reason

was not a specified reason for non-use (e.g., “organ trauma,”

or “anatomical abnormalities”). Details of data cleaning steps

are presented in Figure 4 and in Online Appendix B. Because

TxPs carefully select older-donor kidneys to transplant, not

all transplanted kidneys are similar to discarded ones. This

selection bias was mitigated by matching the study cohorts

of transplanted and discarded kidneys on 13 variables avail-

able prior to acceptance. Ten of these variables (age, cause

of death, creatinine, diabetes status, whether the donation

was after cardiac death, ethnicity, height, Hepatitis C status,

history of hypertension and weight) were selected because

they are used to calculate the KDRI. Three additional vari-

ables (gender, whether a biopsy was performed and ranges

of glomerulosclerosis) were added because they are relevant

for kidney acceptance decisions (Stewart et al., 2017). We

considered a discarded kidney to be similar to a transplanted

one if the values of its categorical variables were identical,

and the values of continuous variables were within 10% of

the difference between the 1st and the 99th percentile of

that continuous variable to ensure that the 10% range would

be reasonably small. Note that these matching criteria are

stricter than aggregate-score based criteria, such as propen-

sity score matching (Dehejia & Wahba, 2002), because each

individual attribute must match. It is possible that more older

kidneys in the transplanted and discarded groups were simi-

lar. However, matching by KDRI variables, biopsy outcomes,

and known candidate characteristics was necessary to ensure

reliable prediction of renal function on the discards.

4.1.2 Candidate study cohort

Following the rationale behind matching donors of trans-

planted and discarded kidneys, recipients of the 11 527 trans-

planted kidneys were matched based on 6 key variables (age,

diagnosis, ethnicity, gender, weight, and whether the can-

didate was on dialysis) with candidates who were offered

the 6977 discarded kidneys. These variables were chosen

because they are recorded in the STAR file for nearly

every candidate at the time of registration on the national
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FIGURE 3 A schematic of our approach

FIGURE 4 Data processing steps
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waitlist. A candidate was considered similar to a recipient

if the values of the categorical variables were identical and

the values of the continuous variables were within 10% of

the difference between the 1st and the 99th percentile of that

variable. Additionally, because the STAR file does not con-

tain full information on candidates’ characteristics at the time

of offer, missing data elements were imputed by matching

each candidate to at least 5 other recipients for whom data

were available. For each candidate and for each variable that

needed to be imputed, one out of the set of 5 similar recip-

ients was randomly selected and the value of that similar

recipient’s variable of interest at time of transplantation was

assigned to the candidate at the time of offer. Because each

candidate was matched with at least 5 recipients, this avoided

creating candidates that would be clones of each other in the

simulated match-runs. This procedure resulted in a final can-

didate cohort of 70 004. The simulated match-runs contained

2 053 007 actual offers.

From the transplanted-kidney data, all variables relevant

to renal function and known at the pre-transplant stage were

considered. We created binary dummy features to represent

categorical variables, and some new variables—for example,

the proportion of older-donor transplants performed by each

TxP, which accounted for TxP-specific effects. The final data

set had 916 features.

4.2 Prediction of eGFR-1

Because the only unknown variable in the CKD_EPI equation

for eGFR-1 is creatinine at 1 year, the TRB score was cal-

culated by first predicting the creatinine value at the 1-year

follow-up visit. We created multiple 70%/30% random splits

of data (70% for training and cross validation, and 30% for

testing) from the cohort of 11 527 older-donor transplants for

feature selection and prediction algorithms.

4.2.1 Feature selection

We used Elasticnet, which by default finds the optimal

weights placed on LASSO and Ridge regressions, and the

optimal penalty placed on larger coefficients through 10-fold

cross-validation (Hastie et al., 2009), to determine which of

the 916 features to include in the prediction model. To avoid

overfitting, Elasticnet was applied to 30 random splits of

training data and at each split, the intersection set of impor-

tant features (those with non-zero weight) was selected. As

a robustness check, we also implemented Adaptive LASSO

on the 30 random splits of data and compared the selected

features with those of Elasticnet.

4.2.2 Prediction models and the TRB score

We customized and applied three prediction algorithms,

namely Ordinary Least Squares (OLS), Random Forest (RF),

and AdaBoost (BOOST) (Hastie et al., 2001), to the first

10 splits of training and test data to predict 1-year creati-

nine. We then calculated the TRB score (i.e., the probability

that eGFR-1≥ b) for each donor-candidate pair using the

CKD_EPI equation. Proposition 1 shows how to calculate the

TRB score (proof in Online Appendix C).

Proposition 1 The TRB score can be calcu-
lated for every donor-candidate pair as

TRB = Φ

⎛
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, (3)

where, Φ is the Standard Normal Cumulative
Distribution Function, (⋅)+ = max{0, ⋅}, 𝜇c
and 𝜎c denote the predicted mean and stan-
dard deviation of the forecast of 1-year creati-
nine, A

.

= 141 × 0.993
Age × 1.018[if female] ×

1.159[if Black], 𝛾 = 0.7 and 𝛼 = −0.329 if
female and 𝛾 = 0.9 and 𝛼 = −0.411 if male.

To improve the prediction accuracy, we used

cross-validation to create cubic splines (with 5 knots) for

donors’ age, recipients’ age, creatinine, and weight, and

proportion of older-donor transplants by TxP. The quantiles

corresponding to each knot were chosen according to the rec-

ommended values in Harrell (2015, p. 27). Table 2 in Online

Appendix D shows the 5 knots for each of these continuous

variables.

The goodness of the prediction algorithms was compared

based on the confidence that our recommendation would be

accurate, rather than on balancing false positive and false neg-

ative classifications. This was done to mitigate the selection

bias introduced by TxPs that tend to transplant older-donor

kidneys into older recipients because the latter are less likely

to outlive the transplant. Using r to denote the risk that b will

NOT be achieved, we calculate the positive predictive value

(PPV) for every (b, r) combination as:

PPV =
Number of transplants with TRB ≥ 1 − r and actual eGFR − 1 ≥ b

Number of transplants with TRB ≥ 1 − r
.

(4)

The most reliable algorithm is the one that provides the high-

est PPV. To further increase this reliability, an Ensemble

(ENS) method was utilized in which a transplant was labeled

as viable only if this was predicted by the two algorithms

(among OLS, BOOST, RF) with the highest PPV.

4.3 Evaluation of discarded kidneys and matched
candidates

In simulated match-runs, the TRB score was calculated for

each of the 2 053 007 offers in the simulation cohort. To
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ensure that all matching criteria (e.g., the number of HLA

mismatches) and allocation order remained intact, simulated

match-runs preserved the order in which offers were made

in reality. In addition, we identified the number of viable

transplants among the discarded kidneys and their matched

candidates. We also compared the characteristics of actual

recipients and of matched candidates, and analyzed the rea-

sons for declination by matched candidates.

5 RESULTS

In what follows, we present the results of the prediction

models and simulated match-runs.

5.1 Prediction of eGFR-1

The intersection set of important features stabilized after 17

splits, resulting in 33 features. Table 4 shows the impor-

tant variables, which are fewer than the number of features

because categorical variables were converted into multiple

binary features. Although clinically important, CIT was not

included as a predictor because it is typically not available

at the time of offer. Adaptive LASSO yielded a similar set

of important variables—see Table 3 in Online Appendix E.

Although either methodology could be used to select features,

we selected ElasticNet as an example in this paper in part

because those variables were vetted by a transplant surgeon.

Table 4 in Online Appendix F provides the coefficients and

significance levels of each feature obtained by OLS.

Next, we calculated the TRB score for each prediction

algorithm. Patient and graft survival is affected by vari-

ous peri- and post-transplant events, some of which are not

captured in our data. Examples include cardiac events and

strokes, antibody rejections, post-transplant lymphoprolifer-

ative disorder, and non-adherence to drug regimens. The

prediction reliability must be studied by comparing predicted

and actual levels of eGFR-1, which is only possible if there are

sufficient transplants within each stratum of risk level. Keep-

ing these limitations in mind, Figure 5 plots the distribution of

predicted TRB for the 11 527 older-donor transplants. There

are very few actual transplants with TRB> 0.9 (equivalently,

r < 0.1) and most transplants have TRB> 0.6. For this reason,

we tested r ∈ {0.3,0.2,0.1}.
Table 5 compares the weighted sum of 10 splits (based on

number of observations) of out-of-sample (30% of data set

aside for testing) PPV for OLS, RF, BOOST, and ENS for

b = 30 and r ∈ {0.3,0.2,0.1}. It also includes the standard

deviations (SD) and sample sizes n, that is, the number of

transplants with TRB ≥ (1 − r).
Table 5 shows that the PPV increases as r decreases and that

OLS and BOOST result in higher PPV than RF. For this rea-

son, they were selected for the ENS method, which resulted

in further improvement in the PPV and was therefore used for

the remainder of the analysis.

5.2 Clinical relevance

Table 6 shows the number of transplants with TRB ≥ (1 − r)
and the average eGFR-1 of transplants with TRB ≥ (1 −
r). The average realized eGFR-1 decreases as the risk level

increases and it stabilizes for risk level ≥0.3. By limiting risk

to be less than 0.1, a high average eGFR-1 of 58 ml/min is

possible, but very few transplants (438) meet that require-

ment. Table 6 demonstrates the effect of selection bias in the

FIGURE 5 Frequency distribution of older-donor transplants with

predicted TRB

TABLE 4 Important variables

Donor related Recipient related Others

Age Age Allocation (local, regional, national)

Controlled non-heart beating Creatinine at transplant TxP specific: Proportion of 55+ transplants

Death mechanism Ethnicity

Ethnicity Height

Expanded criteria donor Previous pregnancies

Height Weight

Hypertension duration

Hypertension method of control: diet

Region
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TABLE 5 Weighted PPV associated with predicted TRB scores meeting various r thresholds

Study groups

b = 30 b = 30 b = 30
r = 0.3 r = 0.2 r = 0.1

OLS

PPV, mean (SD) 0.878 (0.002) 0.911 (0.002) 0.951 (0.003)

n 22 772 13 542 1183

RF

PPV, mean (SD) 0.873 (0.002) 0.888 (0.002) 0.914 (0.002)

n 29 337 19 839 6325

BOOST

PPV, mean (SD) 0.875 (0.003) 0.904 (0.003) 0.937 (0.002)

n 29 195 15 960 2161

ENS

PPV, mean (SD) 0.880 (0.002) 0.912 (0.002) 0.951 (0.003)

n 26 762 12 192 1020

Note: The ENS method (based on OLS and Boost) consistently resulted in the highest PPV.

TABLE 6 Number of transplants (txs) with TRB ≥ (1 − r) and average

eGFR-1 of txs with TRB ≥ (1 − r)

Risk level r
No. of txs with
TRB ≥ (1− r)

Average eGFR-1 of txs
with TRB ≥ (1− r)

1 11 527 48.08

0.9 11 527 48.08

0.8 11 527 48.08

0.7 11 527 48.08

0.6 11 524 48.09

0.5 11 490 48.13

0.4 11 151 48.43

0.3 9394 49.56

0.2 4732 52.80

0.1 438 58.49

Note: The average eGFR-1 and number of transplants are stable for risk levels

greater than 0.3, but vary significantly for risk levels 0.3, 0.2, and 0.1. Lower

risk levels result in higher average eGFR-1, but fewer transplants meet those risk

thresholds.

national data. Clinicians carefully select transplants such that

most have a risk level less than 0.3. While this is good for

recipients, it limits the choice of risk levels in ensuing anal-

ysis. Figure 6 shows that the 1–10 year death-censored graft

survival of kidneys in the subset with b = 30 and r = 0.2 (n =
4732) is greater than that of the study cohort (n = 11,527),

although the number of transplants with TRB≥ 0.8 is smaller

than those in the study cohort.

The higher the b (or lower the r), the smaller the num-

ber of transplants meeting those requirements, and the greater

the survival probability. Different candidates may arrive at

a different balance between kidney availability and func-

tion/durability. Some may desire increased access even if the

transplant does not provide durable freedom from dialysis

with high probability, whereas others may want high prob-

ability of long-term function irrespective of the wait. We

also find that the 1-year graft survival probability of kidneys

FIGURE 6 Death-censored 1–10 year graft survival curves for the study

cohort, and b = 30, r = 0.2 (TRB≥ 0.8). Transplants with TRB≥ 0.8 have

significantly higher 1–10 year graft survival than those in the study cohort

with TRB≥ 0.8 is higher than that among all older-donor

transplants (94.69% vs. 92.57%), demonstrating that our

choice of b and r also identifies transplants with high proba-

bility of 1-year survival.

5.3 Evaluation of discarded kidneys and matched
candidates

The distribution of the TRB score for each of the 2 053 007

discarded kidney-candidate matches is shown in Figure 1 of

Online Appendix G. Of the 6977 discarded but matched kid-

neys in the simulation study cohort, 5971, 5282, and 1500

had at least one matched candidate with risk level r ∈
{0.3,0.2,0.1}, respectively. As expected, the number of dis-

carded kidneys that provide sufficient benefit decreases as r
decreases. Still, with r = 0.2, over 75% (5282) of the 6977 dis-

carded kidneys under consideration had at least one candidate

who could have received significant long-term benefit.
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TABLE 7 Comparison of key characteristics of actual recipients and

identified candidates

Actual
recipients

Identified
candidates

Sample size (n) 11 527 5282

Characteristics

Median (IQR), mean age (years) 61 (53–67), 57.05 62 (55–67), 60.74

% Male 61.5 70.20

% Caucasian 44.98 36.9

% African-American or Black 30.42 35.82

% Hispanic 14.63 21.81

% Other races 9.97 5.47

% History of diabetes 43.8 64.4

Note: Identified candidates are slightly older, more likely to be males, Black and

Hispanic and to have diabetes than actual recipients.

There are some differences in the characteristics at time

of listing of the actual recipients of the 11 527 kidneys

and the 5282 candidates with TRB≥ 0.8 identified in the

simulations—see Table 7. Compared to actual recipients,

the identified candidates were slightly older (60.74 vs.

57.05 years), more likely to be males (70.2% vs. 61.5%), more

likely to be Black and Hispanic (35.8% and 21.8% vs. 30.4%

and 14.6%), and more likely to have diabetes (64.4% vs.

43.8%). These results are consistent and reinforce the findings

in Tullius and Rabb (2018) and Concepcion et al. (2016) that

older candidates with diabetes may be the ones that benefit

from currently discarded organs.

The most commonly-stated reason (72.81%) why TxPs

declined the 5282 discarded kidneys was donor age or qual-

ity. We conjecture that the uncertainty associated with the

assessment of older-donor kidney quality is a primary rea-

son why TxPs reject older-donor kidneys because otherwise a

more specific reason would have been provided, for example,

kidney anatomy or glomerulosclerosis. The second most com-

mon reason (12.91%) was organ preservation, which is related

to logistics/transportation/CIT. The algorithm we propose can

identify which candidates could benefit from such kidneys,

and provide a rationale for a bypass mechanism that would

avoid long CIT.

6 CONCLUDING REMARKS

We present a versatile tool that can be used by the OPTN

to more judiciously utilize older-donor kidneys. Using cus-

tomized machine-learning techniques and data available at the

time of offer, we illustrate how to estimate the risks and ben-

efits of transplantation for each donor-candidate pair. Addi-

tionally, as a proof-in-concept of the value of our approach,

we performed simulation experiments to quantify the num-

ber of older-donor discarded kidneys that could have provided

sufficient benefit to at least one matched candidate. Some of

the discarded kidneys could have been used with better out-

comes compared to transplanted kidneys if TRB and r = 0.2

were used to select which transplants to perform. The analysis

so far has been restricted to data included in the STAR file,

leaving out clinically-relevant data elements that are avail-

able to clinicians at the time of kidney offer, for example, the

size and mass of the kidney. Finally, anticipated transportation

delays are likely to play a role in organ acceptance decisions.

Such issues are not included in the current model and present

an opportunity for further improving the methodology.
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