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ABSTRACT

Changing a highly conserved amino acid in motif A of
any of the four yeast family B DNA polymerases, DNA
polymerase a, d, e or f, results in yeast strains with
elevated mutation rates. In order to better under-
stand this phenotype, we have performed structure–
function studies of homologous mutants of RB69
DNA polymerase (RB69 pol), a structural model for
family B members. When Leu415 in RB69 pol is
replaced with phenylalanine or glycine, the mutant
polymerases retain high-catalytic efficiency for cor-
rect nucleotide incorporation, yet have increased
error rates due to increased misinsertion, increased
mismatch extension and inefficient proofreading.
The Leu415Phe mutant also has increased dNTP
insertion efficiency opposite a template 8-oxoG
and opposite an abasic site. The 2.5 Å crystal
structure of a ternary complex of RB69 L415F pol
with a correctly base-paired incoming dTTP reveals
that the phenylalanine ring is accommodated
within a cavity seen in the wild-type enzyme, without
steric clash or major change in active site
geometry, consistent with retention of high-catalytic
efficiency for correct incorporation. In addition,
slight structural differences were observed that
could be relevant to the reduced fidelity of L415F
RB69 pol.

INTRODUCTION

The study of DNA polymerases with amino acid replace-
ments introduced on the basis of structural information
has been useful for understanding polymerase catalytic
mechanism, their abilities to discriminate against mis-
matches, rNTPs and nonnatural dNTPs, and their abilities
to use (or not) various primer templates, including those
containing lesions. Among numerous studies of mutant

enzymes in polymerase families A, B, X, Y and RT,
replacements for conserved amino acids often result in
reduced catalytic activity. In other, less common instances,
amino acid replacements for conserved residues do not
strongly reduce polymerization activity but do alter
substrate specificity, sometimes in a highly informative
manner. Examples under study in several laboratories
involve B family polymerases, whose members include the
polymerases for bacteriophage T4 and its close relative
RB69, and four eukaryotic enzymes, pol a, pol d, pol e and
pol z. The active sites of these enzymes, as well as those of
members of other polymerase families, are comprised of
highly conserved amino acid sequence motifs designated A,
B and C. Motif A contains the conserved hydrophobic
residue of interest in this study (see alignments in
(3,7,9,10–11). This is a methionine in yeast pol e and a
leucine in the other five polymerases mentioned above. In
the crystal structure of RB69 pol (1), this leucine (Leu415)
is immediately adjacent to invariant Tyr416, which
interacts with the sugar of the incoming dNTP in the
polymerase active site and has an important role in
preventing incorporation of NTPs (2).

The consequences of replacing the conserved leucine/
methionine with other amino acids have now been exami-
nedwith five different B family members. In a seminal study
of T4 pol, substituting Leu412 with methionine yielded
bacteriophage that replicated efficiently but had an elevated
mutation rate (3). Subsequent biochemical studies
indicated that this mutator effect results from inefficient
proofreading due to defective movement of mismatches
generated by the polymerase into the exonuclease active site
(4,5). In yeast pol a, the homologous Leu868 was replaced
with several different amino acids (6,7). Particularly
informative were the L868F and L868M mutants, which
have normal polymerase activity, increased mismatch
extension efficiency (L868M) and reduced DNA synthesis
fidelity in vitro. Yeast strains harboring L868F and L868M
pol a alleles had elevated spontaneous mutation rates that
were enhanced by a defect in mismatch repair, indicating
reduced replication fidelity in vivo. In addition, the mutator
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effect of the pol a L868M mutant allele was strongly
elevated by inactivating the 30 exonuclease activity of pol d
(6), implying that the 30 exonuclease activity of pol d may
proofread errors made by pol a, a type of extrinsic
proofreading (8).

Three different studies (9–11) have shown that replacing
Leu612 in yeast pol d with other amino acids also yields
yeast strains with mutator phenotypes that were further
increased when mismatch repair is inactivated, again
suggesting reduced replication fidelity in vivo. Indeed,
yeast L612M pol d has reduced fidelity in vitro, despite
retaining 30 exonuclease activity (10). This suggests that,
like L412M T4 pol (5), L612M pol d sometimes fails to
partition mismatched termini to the 30 exonuclease active
site. By analogy to the promiscuous mismatch extension
ability of L868M pol a (6), the partitioning defect of
L612M pol d could also be due to promiscuous mismatch
extension. Supporting and extending this interpretation is
the fact that M644F (12) and M644G (13) mutants of
yeast pol e share similar biochemical properties with those
seen for the T4 pol, pol a and pol d mutants, i.e. robust
catalytic efficiency, reduced fidelity, promiscuous mis-
match extension and reduced proofreading efficiency.

Two sets of observations indicate that replacing the
conserved leucine or methionine in motif A of B family
polymerases with other amino acids may also affect
synthesis when copying damaged templates. Firstly, the
corresponding motif A residue in Y family pol Z is a
phenylalanine (Phe34). Because pol Z can efficiently bypass
a cis-syn cyclobutane pyrimidine dimer (CPD), the
translesion synthesis (TLS) ability of a L868F pol a
mutant was examined with a CPD, a 6-4 UV photoproduct
and an abasic site. L868F pol a bypassed all three lesions
more efficiently than did wild-type pol a, and conversely,
the Phe34 to Leu replacement in polZ decreased bypass (7).
Second, replacing Leu979 in motif A of yeast pol z, the B
family polymerase that performs mutagenic DNA synth-
esis in vivo, with any of six different amino acids resulted in
yeast strains with UV-induced mutant frequencies that
were higher than that of strain with wild-type pol z (14).
This suggests the L979F pol z has reduced fidelity during
bypass of UV photoproducts. Interestingly, while four
of the replacements resulted in reduced survival following
UV irradiation, the rev3-L979F and rev3-L979M strains
had normal survival, suggesting that they retained robust
pol z catalytic activity.

The above studies indicate that the conserved Leu/Met
in motif A is critical for substrate discrimination and
possibly the TLS capacity of B family polymerases. More-
over, these mutator polymerases are proving to be very
useful for probing biological functions of polymerases
in vivo, including the roles of pol e (13) and pol d (15) in
leading and lagging strand DNA replication and the
contribution of pol d-dependent replication errors to
cancer susceptibility in mice (16). Thus, it is of interest to
obtain a better understanding of the nucleotide selectivity,
mismatch extension, proofreading efficiency and TLS
efficiency and fidelity of these B family enzymes. This is
currently hampered somewhat by the lack of structural
information on pol a, pol d, pol e or pol z. Fortunately,
however, a number of studies demonstrated that RB69 pol

serves as an excellent structural surrogate for its eukar-
yotic homologs (1,17,18). On that basis, here we construct
and characterize the biochemical properties of RB69 pol
mutants containing Phe and Gly replacements for Leu415,
and then present the crystal structure of L415F RB69 pol
with a dideoxy-terminated primer template and correctly
base-paired incoming dTTP.

MATERIALS AND METHODS

Constructing and purifying RB69 pol mutants

RB69 polymerase mutants were constructed by the
QuickChangeTM site-directed mutagenesis method
(Stratagene, La Jolla, CA, USA) using the plasmid
pCW19R (pRB.43Pol+ Exo+) for expressing wild-type
RB69 pol and pCW50 (pRB.43Pol+Exo�) for expressing
exonuclease-deficient (D222A/D327A) RB69 pol (kindly
provided by John W. Drake, NIEHS) (19). Plasmids
containing the desired changes and no other changes
(confirmed by sequence analysis) were introduced into
BL21(DE3) RIL cells (Stratagene) and expressed overnight
at 158C. Frozen cells from 1.5 l cultures were suspended in
50mM Tris–HCl (pH 7.8), 5% glycerol, 500mM NaCl,
1mM DTT, 1mM EDTA and 1mM PMSF. The suspen-
sions were sonicated for 2min, centrifuged and clear lysates
were passed through a 5ml Q column (GE Healthcare
Biosciences, Piscataway, NJ, USA) to remove DNA. The
flow through was diluted 6-fold with 50mM Tris–HCl
(pH 7.8), 5% glycerol and 1mM DTT to reduce the salt
concentration, and loaded onto a second 5ml Q column
equilibrated with 50mM Tris–HCl (pH 7.8), 5% glycerol
and 1mM DTT, and eluted with the same buffer plus
200mM NaCl. Peak fractions were concentrated and the
buffer was exchanged with 50mM sodium phosphate (pH
6.8), 10% glycerol and 3mMDTT. The sample was loaded
onto a 5ml heparin column (GE Healthcare Biosciences)
and eluted with a gradient of 100mM to 1M NaCl. Peak
fractions were dialyzed with 1 l of buffer [25mM K2HPO4,
25mM KH2PO4 (pH 6.85), 10% glycerol, 3mM DTT,
1mMNa2S2O5 and 0.01%NaN3] and further purified on a
hydroxyapatite column (Biorad, Hercules, CA, USA). A
final purification step with a Q column (GE Healthcare
Biosciences) was used to obtain samples without phosphate
and with high purity. Samples for crystallization were
concentrated to �17mg/ml in 10mM Tris–HCl (pH 7.5),
2.5% glycerol, 10mM KCl and 3mM DTT, and then
frozen in small aliquots using liquid nitrogen.

Measuring polymerase-specific activity

Polymerase-specific activity was measured by incor-
poration a-P32-dATP into activated calf-thymus DNA
(GE Healthcare Biosciences). A 25 ml reaction mixture
contained 66mM Tris–HCl (pH 8.8), 17mM (NH4)SO4,
5mM DTT, 6.5mM MgCl2, 10% glycerol, 100mg BSA,
6.25mg activated calf-thymus DNA, 13 nM a-P32 dATP
and 100 mM each of dNTP. Reactions were started by
adding 5 nM RB69 pol, the mixtures were incubated at
378C for 30min, and then reactions were quenched with
12mM EDTA. The products were passed through two
consecutive G-25 spin columns (GE Healthcare
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Biosciences) to remove a-P32 dATP. The relative specific
activities were calculated based on the relative radioactivity
counted with a scintillation counter. To ensure linearity,
<20%of the substrate was incorporated into product by all
enzymes.

Gap-filling reactions and product analysis to
determine fidelity

Reaction mixtures (25 ml) contained 25mM Tris–acetate
(pH 7.5 at 378C), 10mM MgCl2, 150mM KOAc, 1mM of
each dNTP, 2mM dithiothreitol, 0.2 nM gapped M13mp2
DNA and 10 nM RB69 pol. Reactions were incubated at
378C for 15min. Under these conditions, when DNA
products were analyzed by agarose gel electrophoresis as
described in ref. (20), all reactions filled the gap without
obvious strand displacement [data not shown, but for
typical result, see Figure 3 in (20)]. DNA products of
reactions were introduced into Escherichia coli cells and
plated as described in ref. (20) to score blue M13 plaques
(correct synthesis) and light blue and colorless plaques
(containing errors). The types of errors were determined
by sequencing the lacZ a-complementation gene in single-
stranded DNA isolated from independent mutant M13
plaques, allowing calculation of error rates as previously
described (21). Error rates for wild type are recalculated
from raw data published in ref. (22) without background
correction for direct comparison. All materials for the
fidelity assay were from previously described sources
(20,23). The statistical significance of differences in pairs
of error rates was calculated using Fisher’s exact test.

Kinetics analysis

Substrates for insertion and extension assays are listed
subsequently. The template sequence for both primer
extension and insertion assays was 50-ACGTCGTGA
CTGAGAAAACCCTGGCGTTACCA. The primer
sequence for T-T mismatch primer extension was 50-GT
AACGCCAGGGTTTTCTCT. The primer sequence for
A-T primer extension was 50-GTAACGCCAGGGTTTT
CTCA. The correct nucleotide inserted with these sub-
strates was dGTP. The primer for correct insertion of
dATP and mininsertion of dTTP opposite template T was
50-GTAACGCCAGGGTTTTCTC. Primers were 50 end-
labeled with [g-32P] ATP and T4 polynucleotide kinase,
and then annealed with the template (50% excess).
Reaction mixtures contained 25mM Tris–acetate
(pH 7.5 at 378C), 10mM MgCl2, 150mM KOAc, 2mM
dithiothreitol, 100 nM P32-labeled primer/template, vary-
ing concentrations of dNTP and a fixed concentration of
RB69 pol that when used with each enzyme resulted in
<20% product formation. Reactions were initiated by
mixing 5 ml premixed enzyme–DNA complex with 5 ml
Mg-dNTP, and incubated at 378C for 10min before
quenching with 10 ml of formamide loading buffer (95%
deionized formamide, 25mM EDTA, 0.1% bromophenol
blue and 0.1% xylene cyanol). DNA products were
separated by 12% denaturing polyacrylamide gel electro-
phoresis and product bands were quantified by phospho-
imagery. Data were fit to the Michaelis–Menten equation

by curve fitting with the KaleidaGraph program to obtain
kcat and Km.

Measuring TLS efficiency

Oligonucleotides for TLS studies were from previously
described sources and primer templates were prepared as
described (24–26). Reaction mixtures (30 ml) contained
25mM Tris–HCl (pH 7.5 at 378C), 5mM MgCl2, 150mM
KOAc, 50 mM of each dNTP, 2mM DTT and 4 pmol of
primer template. Reaction mixtures were preheated at
378C for 1min and reactions were initiated by adding
4 fmol of RB69 pol. This creates a 1000:1 ratio of primer
template to polymerase, thereby generating DNA product
molecules that largely result from a single cycle of
processive synthesis (using criteria described in ref. (25).
Incubation was at 378C and aliquots were removed after
15min and terminated by adding an equal volume of
formamide loading buffer containing 95% deionized
formamide, 25mM EDTA, 0.1% bromophenol blue and
0.1%xylene cyanol. DNAproducts were separated by 12%
denaturing polyacrylamide gel electrophoresis and product
bands were quantified by phosphoimagery. Termination
probabilities and insertion, extension and bypass efficien-
cies were calculated as described earlier (25,27).

Measuring 8-oxo-G bypass fidelity

Reactions were performed as described earlier, but with an
unlabeled primer, 8 pmol of primer template, 0.8 pmol of
RB69 pol and 50 mCi of a-32P-dCTP, and incubation was
for 5min. Newly synthesized, internally labeled 32-mer to
36-mer (�) strand DNA products of complete bypass that
contain polymerization errors were purified, hybridized to
gapped circular M13 DNA and used to infect E. coli host
cells, score plaque colors and quantify insertion specificity,
all as described previously (25,27). Light blue plaques
resulted from incorporation of dCMP opposite 8-oxo-G
and blue plaques resulted from misincorporation opposite
8-oxo-G, with the identity of the error established by
DNA sequence analysis.

Determining the structure of L415F RB69 pol

Crystals of the ternary complex of exonuclease-deficient
L415F RB69 pol were prepared as described (1) for the
ternary complex of the RB69 pol (L�), using the same
substrate. The sequence of the primer strand was 50-GC
GGACTGCTTACC� (where C� is ddC) and the sequence
of the template strand was 30-GCGCCTGACGAATGG
ACA. The polymerase (17mg/ml) was mixed in an equi-
molar ratio with annealed primer-template duplex, and
dTTP was then added to 1.6mM. Using the hanging-drop
method, an equal volume of 220mM CaCl2, 25% (w/v)
PEG 350 monomethyl ether and 50mMTris–HCl (pH 7.0)
was mixed with the protein–DNA solution and allowed to
equilibrate by vapor diffusion against 0.5ml of well
solution. Crystals typically grew in 1–2 days at room tem-
perature, and were then transferred to the cryoprotectant
[220mM CaCl2, 30% (w/v) PEG 350 monomethyl ether
and 50mM Tri–HCl (pH 7)] and flash frozen in liquid
nitrogen. X-ray data were collected with an in-house X-ray
source using a 007HF generator, varimaxHFmirrors and a
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Saturn92 CCD detector from Rigaku, Woodlands, TX,
USA. The initial structure was solved by molecular
replacement using the ternary complex structure of RB69
pol (1) as the starting model. The structure was refined
through several iterative cycles of annealing with CNS (28),
followed by manual refinement of the structure with coot
(29) and O (30). The PDB ID code is 3CQ8. The
fo(L415F)�fo(wt) difference map between the L415F
mutant and the wild-type ternary complex structure was
calculated with the model phases and experimental
structure factors in CNS (28).

RESULTS

We purified RB69 pol derivatives containing Leu (wild-
type), Phe or Gly at amino acid position 415, each of
which either retained 30 exonuclease activity or lacked
exonuclease activity due to two changes (D222A/D327A)
in the exonuclease active site. These six polymerases,
which for brevity are referred to here as L+, L�, F+,
F�, G+ and G�, were compared for specific activity, for
single base substitution and deletion error rates, for
catalytic efficiency of insertion and mismatch extension
using single dNTPs, and for TLS efficiency with three
different lesions.

Specific activity of RB69 L415F/Gmutants

To assess the effect of the amino acid replacements on
polymerization activity, we measured polymerase-specific
activity using activated DNA as a substrate. The poly-
merase-specific activity of F+ and G+ were 93 and 63%,
respectively, of wild-type, L+ RB69 pol. The polymerase-
specific activities of F� and G� were 84 and 40%,
respectively, of L�.

Fidelity of RB69 L415F mutant polymerases

The fidelity of the six polymerases was compared for
mistakes made when copying an undamaged LacZ
template sequence in gapped M13mp2 DNA (see
Materials and methods section). The M13mp2 DNA
products of gap-filling DNA synthesis by wild-type L+
RB69 pol had a lacZ mutant frequency of 0.0008
(Table 1), a value similar to that of the uncopied DNA
(typically 0.0005–0.0007). As seen in an earlier study of
RB69 pol (19), synthesis by the L� RB69 pol generated a
higher mutant frequency (0.0029), as expected from loss of
proofreading activity. The F� and G� mutants generated
products with mutant frequencies that were 9-fold higher,
indicating that both exonuclease-deficient polymerases
had reduced nucleotide selectivity. The lacZ mutant
frequencies of the F+ and G+ mutant polymerases
were also higher than that of their L+ parent (Table 1,
compare 0.0037 and 0.0032 to 0.0008), suggesting that the
exonuclease proficient mutant enzymes proofread some
errors less efficiently than normal.

Error specificity

Sequence analysis of collections of independent lacZ
mutants (Table 1, columns on right) indicates that the
vast majority of errors resulting from in vitro DNA

synthesis are either single base deletions (open triangles in
Figure 1) or single base substitutions. These were distri-
buted nonrandomly throughout the LacZ template
(Figure 1). From the number of occurrences, the mutant
frequencies (Table 1) and knowledge of the number of
template nucleotides at which these events result in a
detectable change in plaque color, we calculated error
rates for a variety of different single base changes
generated by each of the six RB69 pols.

Single base deletions

Error rates for single base deletions made by the F� and
G� mutant polymerases are 6- to 7-fold higher than for
the L� polymerase (Figure 2A). Among 20 single base
deletions generated by the F� pol (Figure 1A), 14 were
deleted from a homonucleotide run (error rate 5.9� 10�7)
and six were loss of a noniterated base (error rate of
2.7� 10�7). Similarly, among 20 single base deletions
generated by the G� pol (Figure 1B), nine were deleted
from a homopolymeric run (error rate 3.0� 10�7) and 11
were loss of a noniterated base (error rate of 3.9� 10�7).
Single base deletion error rates for all three exonuclease-

proficient enzymes were about 10-fold lower than for their
corresponding exonuclease-deficient derivatives (compare
Figure 2B with 2A), indicating that �90% of misaligned
intermediates are corrected by the exonuclease.
Nonetheless, error rates for single base deletions by the
F+ and G+ polymerases were 5- and 7-fold higher, res-
pectively, than for the L+ polymerase (Figure 2B),
indicating that at least some misaligned intermediates do
escape proofreading. All 12 single base deletion errors by
the F+ polymerase (Figure 1A), and 11 of 13 single base
deletion errors by the G+ polymerase (Figure 1B), were
within homonucleotide runs. The relative paucity of single
nucleotide deletions of noniterated nucleotides clearly
indicates that the misaligned intermediates for this type of
event, which involves misaligned nucleotides close to the
primer terminus, are more efficiently proofread than are
misalignments in repetitive sequences, wherein misaligned
nucleotides can be further upstream (see Discussion
section).

Single base substitutions

Single base substitution errors were more common
than single base deletions (Table 1, Figure 1). When all

Table 1. LacZ mutant frequencies generated by RB69 pols

RB69 pol Plaques lacZ
mutants

Mutant
frequency

Sequenced Substi-
tutions

– 1

Exonuclease-proficient RB69 pols
Wild-type 54 411 52 0.0008 22 18 2
L415F 35 729 133 0.0037 108 93 12
L415G 27 120 88 0.0032 88 71 13

Exonuclease-deficient RB69 pols
Wild-type 91 799 276 0.0029 159 93 40
L415F 13 252 333 0.0250 97 80 20
L415G 4 881 128 0.0260 128 113 20

A few mutants contained a single base addition or a change involving
more than one base.
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Figure 1. Spectra of single base changes by mutant derivatives of RB69 pol. (A) Single base change by the F� (above the sequence) and F+ (below
the sequence) polymerases. (B) Single base changes by the G� (above the sequence) and G+ (below the sequence) polymerases. Only errors resulting
in detectable phenotypes are shown. Position 1 is the first transcribed nucleotide of the lacZ gene.
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possible single base substitutions are considered collec-
tively, average base substitution error rates for the F� and
G� polymerases are >10-fold higher than for the
L� polymerase (Figure 2C). When considering the 12
possible single base substitutions individually (Figure 3A),
each of which is detectable at multiple sites in the
LacZ template, average error rates for the F� and
G� polymerases are higher than for the L� polymerase
by factors ranging from �85-fold for T-dCMP and
T-dTMP to �2-fold for C-dAMP (Figure 3C). The small
increases for some mismatches likely reflect some degree of
‘correct’ insertion opposite rare cryptic lesions in the
template, e.g. insertion of dAMP opposite uracil arising
from cytosine deamination (see more below). These results
reveal that both active site amino acid replacements
reduce RB69 pol’s discrimination against stable incor-
poration of incorrect dNTPs.

Error rate comparisons between the three exonuclease-
proficient enzymes (Figures 2D and 3B) and their
exonuclease-deficient counterparts (Figures 2C and 3A)
reveal that the majority of single base mismatches are
proofread. This is the case for the overall average error
rate (Figure 2) and for the rates of many of the individual
mismatches (Figure 3D). Nonetheless, the error rates of
the F+ and G+ polymerases are higher than the L+
polymerase (Figures 2D and 3B), indicating that some
misinsertions are extended by the mutant polymerases
rather than excised, despite the fact that they retain
30 exonuclease activity. To determine if escape from
proofreading could be explained by promiscuous mis-
match extension that reduces partitioning of a mismatch
to the exonuclease active site, we performed steady-state
kinetic analysis of single nucleotide incorporation by the
three exonuclease-deficient polymerases.

Steady-state kinetic analysis of correct dNTP insertion

We first measured the efficiency of correct incorporation
during extension of a correctly paired primer template.

For insertion of dATP opposite template T (Table 2, first
set of experiments), the kcat, Km and catalytic efficiency
(kcat/Km) values for F� and G� polymerases were similar
to those of the L� polymerase. For insertion of dGTP
opposite template C (Table 2, third set of experiments),
the kcat, Km and catalytic efficiency values for the
F� enzyme were similar to those of L� polymerase,
while the Km for the G� enzyme was 3-fold higher,
reducing catalytic efficiency by 3-fold. These data and the
specific activity measurements with activated DNA
described above demonstrate that the two amino acid
replacements at the polymerase active site have little effect
on correct nucleotide incorporation.

Exo−

0

20

40

A B

C D

L F G

D
el

et
io

n
E

rr
o

r 
R

at
e 

(×
10

−6
)

Exo+

0

2

4

L F G

L F G L F G

Exo−

0

40

80

120

160

B
as

e 
S

u
b

st
it

io
n

E
rr

o
r 

R
at

e 
(×

10
−6

)

Exo+

0

10

20

Figure 2. Error rates of RB69 pol derivatives. (A and B) Single base
deletions. (C and D) Single base substitutions.
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Figure 3. Error rates of RB69 pol derivatives for the 12 different single
base mismatches. (A) Error rates for exonuclease deficient RB69 pols.
(B) Error rates for exonuclease proficient RB69 pols. The less than or
equal to symbol in (A) and (B) indicates that errors involving these
mismatches were not observed and therefore error rates do not exceed the
rate calculated assuming that one event had occurred. (C) Reduction in
nucleotide selectivity of F� and G� pols compared to L� pol. (D) Con-
tribution of proofreading by comparing error rates of the F� andG� pols
to F+ and G+ pols.
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Steady-state kinetic analysis of misinsertion and
mismatch extension

Among 12 possibilities, the error rates of the F� and
G� polymerases were most strongly increased for the
A-dATP, T-dCTP and T-dTTP mismatches (Figure 3C).
The T-dTTP mismatch is a signature error made by the
homologous yeast pol e mutant containing a glycine
substitution, and the resulting T-A to A-T transversions
in yeast have been informative regarding the function of pol
e in leading strand replication (13). For these reasons, we
chose to measure the steady-state kinetic parameters for
misinsertion of dTTP opposite template T, and for correct
incorporation of dGTP opposite template C during
extension of a primer template containing a T-T mismatch.
Formisinsertion of dTTP opposite T (Table 2, second set of
experiments), all three polymerases had a similar apparent
Km. However, the F� and G� polymerases had a
significantly increased kcat (0.19 s

�1 and 0.16 s�1, respec-
tively) relative to L� polymerase (0.0031 s�1), such that
their catalytic efficiency for misinsertion was 20- and
43-fold higher, respectively, than that of L� polymerase.
These data are consistent with the increased error rates for
this mismatch seen in complete gap-filling synthesis
reactions, and clearly demonstrate that the two mutant
polymerases have reduced nucleotide selectivity. For
correct extension of a T-T mismatch (Table 2, fourth set
of experiments), all three polymerases again had a similar
apparent Km, while the F� and G� polymerases again had
significantly increased kcat values (0.27 s�1 and 0.10 s�1,
respectively) relative to wild-type (0.0038 s�1). Accord-
ingly, their catalytic efficiencies for mismatch extension
were 77- and 14-fold higher, respectively, than that of
L� polymerase. This promiscuous T-Tmismatch extension
likely suppresses partitioning of the mismatch to the
exonuclease active site for excision, thus accounting for
the higher error rates for T to A substitutions by the
F+ and G+ mutants enzymes as compared the wild-type
(Figure 3B).

TLS efficiency

Several published observations indicate that homologous
L868F pol a (7) and L979F pol z (14) mutants have

increased TLS capacity. For this reason, we compared the
TLS efficiency of the F+ and F� mutant polymerases to
their wild-type counterparts, using three lesions with
different coding capacity: 8-oxo-guanine, which can
ambiguously pair with dCTP or dATP, a synthetic abasic
site (tetrahydrofuran) lacking base coding potential and a
cis-syn cyclobutane thymine-thymine dimer (TTD) that
blocks synthesis by accurate replicative polymerases.
Reactions were performed using 1000-fold more primer
template than polymerase, such that DNA products
primarily result from one cycle of processive DNA
synthesis.

The four polymerases copied the undamaged DNA
template to similar extents (Figure 4). With both L+ and
L� polymerases, synthesis was strongly blocked by 8-oxo-
guanine in the template (Figure 4). The strongest block
occurred following incorporation opposite the template
base preceding the lesion, and to a slightly lesser extent
following incorporation opposite 8-oxo-G. Faint product
bands were observed that reflected incorporation of seven
or more nucleotides (these are more obvious upon long
exposure, data not shown), indicating that at least some
bypass by the L+ and L� enzymes does occur. However,
quantification of band intensities and subsequent calcula-
tions (25) indicate that 8-oxo-G bypass efficiency relative
to the undamaged template was only 1.1 and 1.2%,
respectively, for the L+ and L� polymerases. Synthesis
by the F+ and F� polymerases differed in two ways.
First, the efficiency of insertion opposite 8-oxo-G
increased from �10% for the L+ and L� enzymes to
33 and 44% for the F+ and F� polymerases, respectively.
Second, replacing L415 with Phe increased the relative
8-oxo-G bypass efficiency to 2.7 and 3.8% for the F+ and
F� enzymes, respectively. Interestingly, when the prob-
ability of extension following insertion opposite the lesion
was quantified, similar low values (8–10%) were obtained
for all four polymerases. Thus, the increased bypass
efficiencies of the F+ and F� polymerases are largely
explained by the observed increase in the probability of
insertion opposite the lesion.

Results were somewhat different for synthesis using
a template with a synthetic abasic site. Both L+ and
L� polymerases were more strongly blocked by this lesion

Table 2. Steady-state kinetics results for exo- RB69 polymerases

Terminus dNTP: Template Enzyme kcat (s
�1) Km (mM) kcat/Km (s�1M�1) f efficiency kcat/Km F,G/L f F,G/L

G-C dATP:T L� 0.12� 0.04 3.4 (�0.5) 3.5� 0.7� 104 1
F� 0.19� 0.13 3.8 (�0.8) 6.5� 3.0� 104 1 1.9
G� 0.20� 0.07 4.2 (�0.7) 4.6� 1.0� 104 1 1.3

G-C dTTP:T L� 0.0031� 0.001 1000 (�310) 3.1� 0.5 9.0� 10�5

F� 0.19� 0.13 1500 (�700) 1.2� 0.3� 102 1.8� 10�3 37 20
G� 0.16� 0.01 910 (�110) 1.8� 0.1� 102 3.8� 10�3 56 43

T-A dGTP:C L� 0.11� 0.01 0.65 (�0.08) 17� 4� 104 1
F� 0.24� 0.01 0.74 (�0.09) 33� 3� 104 1 1.9
G� 0.080� 0.007 1.8 (�1.0) 5.6� 3.5� 104 1 0.32

T-T dGTP:C L� 0.0038� 0.001 880 (�230) 4.4� 1 2.6� 10�5

F� 0.27� 0.10 420 (�90) 6.6� 1� 102 2.0� 10�3 150 77
G� 0.10� 0.01 860 (�210) 1.2� 0.5� 102 3.7� 10�3 27 14

The analyses were performed as described in Materials and methods section.
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than by 8-oxo-G, and as observed with 8-oxo-G, strong
blockage occurred whether the exonuclease was intact or
not (Figure 4). Essentially, complete blockage occurred
following incorporation opposite the template base pre-
ceding the lesion, and no bypass synthesis was detected.
For the F+ and F� polymerases, the efficiency of
insertion opposite the abasic site was increased, and
slightly more so with the F� as compared to the F+
polymerase. Complete lesion bypass was not observed
under these conditions, which allow a single encounter of
the polymerases with the lesion. However, in reactions
allowing multiple encounters (excess polymerase, longer
incubation times), a small amount of complete AP site
bypass by the L415F mutant pols was observed (data not
shown). Interestingly, the results with the TTD differed yet
again. Following insertion opposite the template base
preceding the 30 T of the TTD, no subsequent incorpora-
tion was detected for any of the four RB69 pols (Figure 4).

The fidelity TLS when bypassing template 8-oxo-G

Next, we measured how accurately the RB69 pols bypass
template 8-oxo-G. The DNA products of complete bypass
(dNTP insertion opposite the lesion, plus multiple
extensions) were recovered and hybridized to gapped
M13mp2 DNA containing a nonsense codon in the lacZ
a-complementation gene. Resulting M13 plaque colors
were then scored, with light blue plaques resulting from
incorporation of dCMP opposite 8-oxo-G (present as one
of the bases of the nonsense codon) and blue plaques
resulting from misincorporation opposite 8-oxo-G. The
identity of the error leading to blue plaque color was then
established by DNA sequence analysis of DNA from
independent plaques. The results (Table 3) indicate that all
four forms of RB69 pol primarily incorporate either
dCMP or dAMP opposite 8-oxo-G, with the proportion
depending on the form of RB69 pol used. L+ prefers to
incorporate dCMP, but dAMP incorporation is only

5-fold less likely. The proportion of dAMP incorporation
increases very little when the 30 exonuclease is inactivated
(i.e. with L� pol), indicating that 8-oxo-dG�dAMP
mismatches are not efficiently proofread. Results with
the F+ and F� RB69 pols are similar to those with the
L+ and L� pols (Table 3). This further implies inefficient
proofreading of 8-oxo-dG�dAMP mismatches, and also
demonstrates that substituting phenylalanine for Leu415
does not strongly affect misincorporation of dAMP
opposite 8-oxo-G.

Crystal structure of L415F RB69 pol

Next, we solved the 2.5 Å crystal structure of a closed
ternary complex of the F� RB69 pol with a correct
A-dTTP base pair at the active site (Table 4). This
structure (Figure 5B) is similar to that of the
L� polymerase [Figure 5A, adapted from ref. (1)] with a
RMSD of 0.38 Å on 901 C-a atoms between the new
structure and the L� polymerase structure (PDB ID code
1IG9). A comparison of the two structures reveals two
clear difference peaks (Figure 5C). One is a strong positive
peak in the (Fo�Fo) electron density map indicating the
L to F change, with the phenylalanine side chain snugly

Undamaged 8oxoG T=T

0 L+ F+L− F− 0 L+ F+L− F− 0 L+ F+L− F− 0 L+ F+L− F−
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Figure 4. TLS by RB69 polymerases. The sequence of the template primer is shown on the left. Go, 8-oxoG; AP, Abasic site analog; T=T,
cyclobutane dimer.

Table 3. 8-oxo-dG bypass fidelity by RB69 polymerases

L+ L� F+ F�

Light blue
plaques

87.5% (1108) 84.6% (1549) 91% (1065) 82.3% (1205)

Dark blue
plaques

10% (127) 13.7% (251) 8.2% (96) 17.2% (252)

dATP:Go (%) 17 23 14 29
C:A ratio 5.0 3.4 6.3 2.5

In parentheses are the numbers of plaques scored. A small percentage
of plaques were colorless due to sequence changes within the chemically
synthesized oligonucleotides and/or due to occasional polymerization
errors located at positions other than at the nonsense codon.
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accommodated in a pocket (Figure 5B). The other is a
somewhat weaker negative peak at the catalytic metal-
binding site suggesting a difference in Ca2+ occupancy.
Other, even weaker difference peaks are also observed, but
the differences are close to the noise level. Consistent with
the weak density at the catalytic metal-binding site, the
side chain of Ser624 (arrow in Figure 5C) moves away
from the catalytic metal ion in the L415F mutant
structure. There is also a small shift of the main chain
backbone between residue 411 to residue 412 (arrows in
Figure 5C), centered around C-a of D411 with the largest
shift being 0.57 Å. This shift moves the D411 side-chain
slightly closer to the nucleotide binding metal ion site. In
addition, the sugar ring of the primer terminal nucleotide
(labeled ‘Primer ddC’ in Figure 5C) is moved about 1.0 Å
and its electron density is wider, suggesting that the
sugar ring may adopt two conformations, one like that
of wild-type RB69 pol and a second, slightly shifted
conformation.

DISCUSSION

Amino acid replacements for the highly conserved Leu/
Met in motif A of eukaryotic B family DNA polymerases
result in mutator polymerases that are useful for probing
biological functions, including proofreading of pol a-
dependent replication errors by the 30 exonuclease activity
of pol d (6), the role of pol e (13) and pol d (15) in leading
and lagging strand DNA replication, the contribution of
pol d replication errors to cancer susceptibility in mice (16)
and the contribution of pol z errors to spontaneous and
UV-induced mutagenesis in yeast (14). Given the utility of
these mutator alleles, it is of interest to obtain a better
understanding of how amino acid replacements at this

position affect the properties of these family B polymerases.
Because there are as yet no structures of eukaryotic family
B polymerases, the present study was undertaken to
characterize the biochemical properties and obtain
initial structural information on homologous mutants of
RB69 pol. The results are informative regarding several
properties of family B members.

Catalytic efficiency for correct nucleotide incorporation

RB69 pols with nonconservative phenylalanine or glycine
substitutions for Leu415 retain high-specific activities with
activated DNA, and the exonuclease-deficient enzymes
have steady-state kinetic constants for correct dNTP
insertions that are similar to those of the exonuclease-
deficient wild-type polymerase (Table 2). Relatively normal
activity has also been reported for equivalent derivatives of
other eukaryotic family B members, including human
L864F and yeast Leu868F pol a (7) and exonuclease
deficient yeast M644F and M644G pol e (12,13). Genetic
studies (14) imply that yeast pol z with the equivalent
replacement (Leu979F) also retains high-polymerase activ-
ity. Retention of robust activity for correct incorporation
is consistent with the fact that, in the ternary complex of
F� RB69 pol with a correct base pair bound (Figure 5B),
the phenylalanine side chain is accommodated within the
space normally occupied by the Leu415 side chain plus
adjacent open space (Figure 5A), without large changes in
the position of surrounding residues or the geometry of the
nascent base pair binding pocket. These observations are
consistent with earlier studies that have used the structure
of RB69 pol to model the effects of replacing leucine with
other amino acid in pol a (7) and pol d (11).

Misinsertion and mismatch extension efficiency

Despite retaining high-catalytic efficiency for correct
incorporation, the F� and G� polymerases have elevated
rates for a variety of different base substitution errors
(Figure 2 and 3C). In fact, the identity of the amino acid at
this position is a key determinant of the base substitution
fidelity of several family B enzymes, including human
L864F and yeast Leu868F pol a (7), yeast M644F and
M644G pol e (12,13) and yeast L612M pol d (10). Beyond
the general importance of this conserved motif A residue
to fidelity of all these family B polymerases, two additional
points are worth noting. First, different amino acid
replacements at this position can have different effects,
both on fidelity (12) and on several properties of yeast
strains, such as mutation rates, cell cycling and DNA
damage responses (11). Second, even the same amino acid
replacement can differentially alter the error specificity of
different members of family B. For example, we previously
noted that phenylalanine replacement elevates yeast
Leu868F pol a and M644F pol e error rates to different
extents for the same mispair [see Figure 5B in ref. (12)].
Comparing those data to the error specificity of L415F
RB69 (Figure 3) reinforces this point, indicating that the
consequences of the same amino acid replacement at this
position are to some extent enzyme specific.

Table 4. Data collection and refinement statistics

Characteristics Values

Data collection statistics
Unit cell a=80.840, b=117.006,

c=127.823
Space Group P212121
Unique reflections 42 387
Resolution (highest shell) (Å) 50–2.5 (2.59–2.5)
Rsym (highest shell) 0.076 (0.514)
Completeness (highest shell) (%) 98.6 (99.5)
Average Redundancy 5.6 (4.5)
<I>/<s(I)> (highest shell) 17.6 (2.8)

Refinement statistics
Final R (Rfree) (%) 21.2 (28.1)
RMSD bonds (Å), angles (deg) 0.007, 1.21
Rotamer outliers (%) 1.77
Ramachandran outliers (%) 0.78
Ramachandran favored (%) 90.4

Average B factors
All atoms 46.9
Protein atoms 47.1
DNA atoms 50.4
Incoming dTTP 31.1
Water atoms 38.8
Calcium atoms 63.1
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The elevated error rates for the F� and G� RB69 Pols
clearly indicate that the first step towards stable mis-
incorporation, discrimination against misinsertion of
incorrect dNTPs, is reduced by the phenylalanine and
glycine replacements. The conclusion is further supported
by the kinetic data for the RB69 pols (Table 2). These data
confirm that phenylalanine or glycine replacements reduce
selectivity against dNTP misinsertion, and also reduce
discrimination against correct incorporation onto a
mismatched primer terminus. Promiscuity in mismatch
extension is also conferred by glycine replacement in yeast
pol e (13) and by methionine replacement in yeast pol d
(10), and it is consistent with elevated UV-induced muta-
genesis in yeast strains harboring rev3L979F and
rev3L979M alleles encoding mutant pol z (14).

The selectivity of wild-type RB69 pol at both the
insertion and mismatch extension steps results from large
differences in both Km and kcat for correct and incorrect
insertion (Table 2). Interestingly, while the F� and G�

RB69 pols also exhibit large differences in the Km for
correct and incorrect insertion, their kcat for misinsertion
is similar to the kcat for correct insertion (Table 2). This
suggests that when insertion of an incorrect dNTP is
attempted, or when a mismatch is present at the primer
terminus, assembly of the catalytic conformation may be
easier to obtain when phenylalanine replaces leucine. This
could be related to two of the slight differences seen when
comparing the structure of wild-type (Leu415) and Phe415
RB69 pols: the 0.57 Å shift of D411 and the fact that the
electron density of the primer terminus is more diffuse.
These features are consistent with greater flexibility at the
polymerase active site, which may allow the 30 OH and
the a phosphate to properly align for catalysis despite the
presence of a mismatch.

Errors involving misalignments

Phenylalanine and glycine replacements for Leu415
increase the error rate of RB69 pol for single base deletions,
which involve misaligned primer templates with an
unpaired base in the template strand. Average error rates
for the F andGmutant polymerases are similar for deleting
noniterated bases and bases within homonucleotide runs
(Figure 1 and see Results section), suggesting that these
amino acid replacements may promote these errors via
misaligned intermediates different from those predicted by
the Streisinger hypothesis (31,32). Regardless of the
mechanism or exact nature of the misaligned intermediate,
the fact that phenylalanine and glycine replacements for
Leu415 promote infidelity for single base deletions in
repetitive as well as noniterated sequences implies that
homologous changes in eukaryotic B family polymerases
should be useful tools for probing the roles of these
enzymes in determining the stability of repetitive DNA
sequences that are abundant in eukaryotic genomes and are
well-known hot spots for mutagenesis often associated with
diseases.

Proofreading efficiency

Despite their 30 exonuclease activities, the F+ and G+
polymerases generate single base substitution errors
(Figures 2D and 3B) at higher rates than does wild-type
RB69 pol. Thus, a small fraction of single base–base
mismatches generated by the F and G mutant polymerases
escape proofreading, most likely due to promiscuous
mismatch extension (Table 2) at the expense of partitioning
the mismatch to the exonuclease active site, as has been
proposed for other B family pols (5,10,12,13). Consistent
with the interpretation of reduced partitioning due to
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Figure 5. Surface contact diagram of RB69 polymerase active site around residue 415. (A) L� ternary complex. (B) F� ternary complex. (C) Overlay
of the active site of L� (green) and F� (yellow) pols, including the fo(L415F)� fo(wt) difference electron density map. The blue positive peak (4s)
indicates the additional density introduced by the L415F change. The red negative peak (4s) indicates reduced density at the catalytic metal site in
the F� structure compared to the density in the L� structure. In both structures shown, the metal is calcium rather than magnesium, the metal ion
most likely to activate polymerization in vivo.
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increased mismatch extension is the observation that
L412M T4 DNA polymerase does not dissociate from
DNA as readily as does wild-type T4 DNA polymerase (5).
Proofreading is not limited to correcting single base-base
mismatches, because the single base deletion error rates for
all three exonuclease-proficient enzymes are about 10-fold
lower than for their corresponding exonuclease-deficient
derivatives (compare Figure 2B with 2A), indicating that
�90% of misaligned intermediates are also proofread.
Nonetheless, some misaligned intermediates generated by
the F+ and G+ enzymes clearly do escape proofreading
(Figure 2B), and these appear to preferentially arise within
homonucleotide runs (Figure 1). The relative paucity of
single base deletions of noniterated nucleotides clearly
indicates that misaligned primer templates with an
unpaired template strand base near the primer terminus
are more efficiently proofread than are misalignments in
repetitive sequences, just as has been reported before for
other proofreading-proficient polymerases (33).

TLS parameters

Replacing L415 with phenylalanine affected the TLS
properties of RB69 pol in a lesion-specific manner. Wild-
type RB69 pol does not bypass a TTD or even insert a
base opposite the 30 T of the TTD, and inactivating its
30 exonuclease did not increase TLS capacity (Figure 4).
Similarly, neither wild-type nor exonuclease-deficient
yeast pol d is able to bypass a TTD or insert a base
opposite the 30 T (24). Moreover, replacing Leu415 in
RB69 pol with phenylalanine does not enhance TTD
bypass (Figure 4), which is interesting in light of an earlier
study demonstrating that the homologous phenylalanine
mutants of yeast and human pol a more efficiently bypass
a TTD than do their wild type parents (7). One possible
explanation for this difference among B family members is
that our results with RB69 pol and pol d are obtained
using a large excess of primer template to permit a single
encounter of the enzyme with the lesion, whereas the pol a
studies (7), like most other TLS studies in the literature,
use excess polymerase that allows a larger but unknown
number of attempts at bypass. Thus, we cannot exclude
that phenylalanine replacement might have a very small
effect on the probability of TTD bypass per encounter by
RB69 pol and pol d. Alternatively, it is possible that the
effect of phenylalanine replacement on TTD bypass
efficiency is different among various B family members,
just as is the case for error specificity when copying
undamaged DNA (discussed above).
Synthetic abasic sites strongly block DNA synthesis by

most DNA polymerases [see ref. (34) and references
therein]. Consistent with this fact and with elegant
structural studies of exonuclease-deficient RB69 pol
(17,18), none of the four RB69 pols examined here was
able to completely bypass a synthetic abasic site (Figure 4).
Moreover, while wild-type RB69 pol can insert dAMP
opposite a synthetic abasic site under crystallization
conditions (17), this insertion by L+ and L� RB69 pol is
very inefficient when examined under the single hit reaction
conditions used here (Figure 4). Compared to the L+ and

L� polymerases, the F+ and F� polymerases had clearly
increased dNTP insertion efficiency opposite the abasic site
(Figure 4). Thus, the identity of the amino acid at this
location in motif A does influence the efficiency of one key
incorporation event required to bypass a synthetic abasic
site. This may be relevant to the observation that the
homologous phenylalanine mutants of yeast and human
pol a more efficiently bypass a synthetic abasic site than
do their wild-type parents (7). As discussed earlier for
misinsertion, the phenylalanine replacement may promote
greater flexibility at the polymerase active site, which may
allow the 30 OH and the a phosphate to properly align for
dNTP insertion opposite the abasic site. However, further
incorporation using the abasic site-containing template-
primer terminus is not promoted by the phenylalanine
replacement (Figure 4). This result differs from the
increased efficiency for extending an undamaged but
mismatched template-primer terminus (Table 2), i.e. the
L415F replacement is a ‘separation-of-function’ mutant
with regard to extension of these two different aberrant
termini. The limited ability to extend the abasic site-
containing template-primer terminus is likely related to
the fact that insertion opposite the lesion is greater for
F- RB69 pol than for F+ RB69 pol (Figure 4). This
indicates a base inserted opposite the abasic site can be
excised by the 30 exonuclease of L415F RB69 pol, as has
been described in earlier studies of wild-type RB69 pol
(17,34).

Under the single-hit conditions used here, both the L+
and L� pols bypass template 8-oxo-G at about�1% of the
efficiency that they bypass the corresponding undamaged
G. This strong impediment to bypass results from
inefficient insertion opposite 8-oxo-G (Figure 4, strong
termination band preceding the lesion), plus inefficient
extension of the resulting damaged template-primer
terminus (Figure 4). Inefficient insertion opposite 8-oxo-
G is consistent with kinetic analysis showing that L�RB69
pol inserts dCMP opposite 8-oxo-G 45-fold less efficiently
than it inserts dCMP opposite undamaged G (18). The
efficiency of insertion opposite 8-oxoG is enhanced 3-fold
by the phenylalanine replacement, thereby increasing
complete bypass efficiency by a similar amount. Just as
seen with the abasic site, the efficiency of extending the
8-oxo-G-containing template-primer terminus is not
enhanced by the phenylalanine replacement, again illus-
trating a differential consequence for extending undamaged
mismatched termini and damaged termini. This separation
of function concept also extends to the fidelity of DNA
synthesis, because the phenylalanine replacement strongly
affects the fidelity with which RB69 pol copies undamaged
DNA, but has little effect on the fidelity of bypass of
8-oxo-G. Thus, RB69 pols primarily incorporate dCMP
and dAMP opposite 8-oxo-G, in proportions that are gen-
erally consistent with previous kinetic data for L� RB69
pol (18). These proportions are not strongly influenced by
proofreading, as is the case with T7 DNA polymerase (26)
and they are not strongly influenced by substituting
phenylalanine for Leu415 (Table 3).

This study was partly motivated by the desire to use
mutant polymerases to probe the biological functions of
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eukaryotic B family members. In addition to the ‘sponta-
neous’ functions already mentioned in the Introduction
section, the fact that phenylalanine replacement affects
certain TLS bypass parameters for RB69 pol (this study)
and for yeast and human pol a (7), suggests that mutants
with amino acid replacements in motif A of pol a, d, e and z
could be informative for understanding cytotoxic and
mutagenic responses to DNA damaging agents. As one
example, yeast strains encoding L979F pol z have normal
survival but increased mutagenesis in response to exposure
to UV light (14). Thus, studies to examine TLS parameters
with homologous eukaryotic B family members should be
informative, as should structural studies of mutant RB69
pols bound to lesions (17,18).
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