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This review gives a comparative evaluation of the radioprotective properties and the therapeutic index (TI) of
radioprotectors from various pharmacological group in experiments on both small and large animals. It pre-
sents a hypothesis explaining the decrease in the TI of cystamine and 5-methoxytryptamine (mexamine), and
the retention of that of α1-adrenomimetic indralin, and also compares the effects on large and small animals.
The considerable differences in the therapeutic indices of catecholamines, serotonin and cystamine are a conse-
quence of specific features of their mechanisms of radioprotective action. Radioprotectors acting via receptor
mediation tend to provide a more expanded window of protection. The reduction in the TI of cystamine in
larger animals, such as dogs, may be caused by the greater increase in toxicity of aminothiols in relation to the
decrease in their optimal doses for radioprotective effect in going from mice to dogs, which is a consequence
of the slower metabolic processes in larger animals. The somatogenic phase of intoxication by cystamine is
significantly longer than the duration of its radioprotective effect, and increases with irradiation. The decrease
in the radioprotective effect and the TI of mexamine in experiments with dogs may be caused by their lower
sensitivity to the acute hypoxia induced by the mexamine. This is because of lower gradient in oxygen tension
between tissue cells and blood capillaries under acute hypoxia that is determined by lower initial oxygen con-
sumption in a large animal as compared with a small animal. Indralin likely provides optimal radioprotective
effects and a higher TI for large animals via the increased specificity of its adrenergic effect on tissue
respiration, which supports the development of acute hypoxia in the radiosensitive tissues of large animals.
The stimulatory effect of indralin on early post-irradiation haematopoietic recovery cannot provide a high level
of radioprotective action for large animals, but it may promote recovery.

Keywords: indralin; epinephrine; norepinephrine; serotonin; 5-methoxytryptamine; cystamine; therapeutic index

INTRODUCTION

The key aspects of radioprotective agents are their practicality
for use in specific scenarios of radiation exposure and the corre-
sponding tactical and technical requirements for medical pre-
parations. At the present time, amifostine, a radioprotector from
the aminothiol family, is used in clinical practice as a radiopro-
tectant and a chemoprotectant during the radio–chemotherapy
of patients with head and neck tumors, lung cancer and breast
cancer, reducing the radiotoxicity and cytoxicity of therapies
[1–3]. According to clinical data reported by Trog et al. [1] (on
reduction of the symptoms of postradiation mucositis during

radiotherapy treatment of head and neck cancer patients), dose
reduction factor (DRF) for amifostine is equal to 1.37 [4]. The
first clinical investigations of the radioprotective effect of radio-
protector mexamine were reported by Votkevich and Palyga
[5]. Mexamine is used as a mitigator to reduce the chemotoxi-
city of chemotherapy [6–8]. Indralin (B-190) is used as a radio-
protective agent for the medical protection of personnel during
emergency situations at nuclear power plants [9, 10].
In 1951, Zenon Bacq [11] discovered the phenomenon of

‘chemical protection’ against the damaging effects of ionizing
radiation via the administration of cystamine prior to lethal
doses of radiation. Cystamine gave complete protection under
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such conditions. Most of the known medications at the time of
this discovery were screened for radioprotective properties
[12, 13]. Biogenic amines including epinephrine, norepineph-
rine, dopamine, serotonin, tryptamine, 5-methoxytryptamine
(mexamine), melatonin and histamine, i.e. essential compo-
nents of the neurohumoral regulation of vital body functions,
were also subjected to such testing.
Of the above-mentioned compounds, serotonin had the

highest radioprotective effect, comparable with that of cysta-
mine [14–16]. Later, similar protective properties were found
in 5-methyl derivatives of serotonin—e.g. mexamine [17]. In
the first experiments with catecholamines and histamine, the
radioprotective effects were slight and did not exceed 10–40%
[18–22]. In later studies, however, with high-dose-rate radi-
ation exposure and reduction of the exposure time to a few
minutes, these biogenic amines exhibited a pronounced radio-
protective effect [23, 24]. According to Kulinskii et al. [25],
the radioprotective effectiveness of epinephrine and norepin-
ephrine is realized through their binding to α1-adrenergic
receptors. Later, highly protective properties were observed in
the α1-adrenergic agonists methoxamine, phenylephrine,
naphazoline and indralin [26–33].
The radioprotective activity of biogenic amines is associated

with a partial neutralization of the radiobiological ‘oxygen
effect’ phenomenon: i.e. the fact that an increase in cellular
oxygen tension permits more radiation damage to occur.
Evidence for the hypoxic mechanism of the radioprotective
effect of biogenic amines was first obtained by van der Meer
and van Bekkum [23, 34], and confirmed by Konstantinova and
Graevskii [22]. A close relationship between the radioprotective
efficacy of biogenic amines and the local tissue hypoxia induced
by their vasoactive actions has been established [35–41].
A similar correlation for sympathomimetics was not

always quite so explicit [42]. Application of pharmacological
antagonists eliminated the radioprotective effect of serotonin,
histamine, epinephrine, norepinephrine, phenylephrine and
indralin [25, 32, 35, 43, 44]. The same effect was observed
with animal radiation exposure in an atmosphere of increased
oxygen pressure [32, 45–47].

REVIEW

The window of radioprotection for biogenic amines
and aminothiols: a comparative investigation
The therapeutic window for drugs, including radioprotectors,
is their most important characteristic [13], and is closely
associated with the selectivity and affinity of the drug in rela-
tion to the expressed cellular receptors responsible for its
pharmacological action. The therapeutic window for radio-
protectors can be estimated from the therapeutic index (TI),
which is defined as the ratio of the drug LD50 (lethal dose,
50%) to the drug ED50 (effective dose, 50%). The LD50 and
the ED50 is based on a probit analysis, typically using at
least three drug doses that do not result in all-or-none

mortality or drug effect [48]. The ED50/30 of a radioprotec-
tor is its average effective dose for 30-day survival when the
animals are exposed to radiation LD90–100/30. The LD50/3
is the average lethal toxic dose of the radioprotector for
3-day survival.
Figure 1 and Table 1 present comparative data for the dose–

response of the radioprotectors and the TI of the following
biogenic amines: epinephrine, norepinephrine, tryptamine,
serotonin and mexamine; and the aminothiol cystamine, fol-
lowing intraperitoneal (IP) administration in mice. In small la-
boratory animals exposed to 9-Gy γ-radiation at a high dose
rate (>1 Gy/min), epinephrine, norepinephrine, serotonin,
mexamine and cystamine have been observed to have remark-
able radioprotective properties [40, 49].

Table 1. The therapeutic index for the radioprotective effect
of epinephrine, norepinephrine, serotonin, mexamine,
tryptamine and cystamine injected IP to mice 5 min before 9
Gy (LD90–100) and >1 Gy/min γ-irradiation [41, 49]

Compound
ED50/30
(mg/kg)

LD50/3
(mg/kg)

Therapeutic
index

Epinephrine 0.23 6.28 27.3 (14.6–52.0)

Norepinephrine 0.90 29.2 32.4 (17.0–61.9)

Serotonin 3.16 435.3 137.7 (91.8–206.6)

Mexamine 3.46 186.4 53.9 (43.5–60.8)

Tryptamine 90.4 288.8 3.08 (1.98–4.79)

Cystamine 87.5 285.1 3.26 (2.82–3.7)

Data shown are therapeutic index with confidence limits for
the interval 95%

Fig. 1. The dose–response radioprotective effect of epinephrine,
norepinephrine, serotonin, mexamine, tryptamine and cystamine
injected intraperitoneally to mice 5 min before 9 Gy (LD90–100/30)
and >1 Gy/min γ-irradiation [41, 49].
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The window of radioprotection defined by the LD50/
ED50 for epinephrine (27.3) and norepinephrine (32.4) in
mice was very similar (Table 1). The TI of serotonin was
137.7, more than 2–3-fold higher than that of mexamine and
the sympathomimetics (Table 1). The significantly lower
radioprotective effectiveness of tryptamine resulted in its low
TI. The tryptamine molecule differs from the serotonin mol-
ecule by the lack of a hydroxyl group in the fifth position of
the indole ring, which predetermines a high binding affinity
for the serotonin receptor. Therefore, there is a marked
decrease in selectivity of the pharmacological and radiopro-
tective action of tryptamine. As seen in Fig. 1, an ED50/30
of tryptamine is an 80-fold higher that of serotonin.
The TI of aminothiols, such as cystamine, was 10-fold

lower than that of the biogenic amines (Table 1); this was
also noted in early research [50–52]. The largest TI for
sulphur-containing radioprotectors is 9–12 (for phosphor-
othioates) [13, 53–55], 10-fold lower than for serotonin. This
distinction is caused by the different mechanism of action in
the sulphur-containing radioprotectors compared with the
biogenic amines. Biogenic amines exert their effect via spe-
cific cell receptors that initiate an amplification cascade and
produce a vasoconstrictive reaction, inducing acute hypoxia
in radiosensitive tissues and thus increasing body radioresis-
tance. The dose–response effect of biogenic amines can be
described by the Clark–Ariëns relation. Sulphur-containing
radioprotectors produce their effect via immediate participa-
tion in the primary radiochemical and biochemical processes
that develop in the cell during irradiation.
As is known, the damage to body tissues by radiation is

induced by the development of free radical processes in cells,
resulting in DNA radical among other radical molecules.
Aminothiols can take part in competitive radical oxidation/
reduction reactions via OH scavenging and by ‘chemical
repair’ (H donation from SH groups). Radical scavenging by
aminothiols is a first-order reaction. The mechanism of their
radioprotective action is first of all to prevent interactions
between DNA radicals and oxygen (which lead to DNA
strand breakage and chromosome aberrations). The induction
of increased cellular reducing equivalents [56, 57] and the
change in tertiary DNA structure [58] by aminothiols contri-
butes significantly to this process.
Finally, a common feature of the radioprotective action of

biogenic amines and aminothiols is the neutralization of the
‘oxygen effect’, although the mechanisms differ for these
compounds. Biogenic amines exert their effect through the
neurohormonal receptor system, but sulphur-containing
radioprotectors act directly on tissues. Biogenic amine mole-
cules have some anti-radical activity, but compared with ami-
nothiols, their contribution to cell redox potential is limited
due to the extremely low drug doses used for radioprotection
(Fig. 1).
As a result of these different mechanisms, there is a dis-

tinction in the dose–response function in terms of DRF: a

linear relationship for sulphur-containing radioprotectors
[49, 59–61] and a logarithmic relationship for biogenic
amines [62]. This translates to the larger protective effect of
low doses of biogenic amines, compared with sulphur-
containing radioprotectors, increasing the therapeutic
window of the former. In Fig. 1, the higher specificity of the
radioprotective action of biogenic amines compared with
cystamine is seen by the 100-fold lower requirement in con-
centration. This scheme explaining the radioprotective effect
of biogenic amines and aminothiols rather oversimplifies the
true situation [13, 63], but as noted above, the character of
their dose–response curves confirms the basic mechanisms
of their modes of action.

The window of radioprotection for indralin,
mexamine and cystamine in small and large
animals: a comparative analysis
To compare the windows of radioprotection for radioprotec-
tors in small and large animals, the following drugs were
chosen: indralin (α1-adrenomimetic), mexamine (serotonin
derivative) and cystamine (a sulphur-containing radioprotec-
tor). This choice was based on the availability of published
data from experiments with large animals (dogs and
monkeys). Figure 2 shows the dose–response relationship of
indralin in experiments with mice, rats, hamsters and dogs
[64]. As seen, optimal radioprotective doses of indralin for
dogs are appreciably lower than those for small animals.
Table 2 presents the comparative radioprotective efficacies of
indralin and mexamine in experiments with dogs. A 5–30
mg/kg dose of indralin protects 90–100% of dogs exposed to
lethal doses of γ-radiation. Mexamine at doses that are effect-
ive in small animals is ineffective at similar doses in dogs
under similar irradiation conditions.
This striking difference between indralin and mexamine

provides evidence of the fact that the same decrease in blood
flow in hematopoietic tissues (owing to the vasoconstrictor

Fig. 2. The dose–response radioprotective effect of indralin in
various species of animals exposed to LD90/30–60 and >1 Gy/min
γ-radiation [66].
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effects of mexamine and indralin) when used in experiments
with dogs [47] does not exert a highly radioprotective effect,
and that indralin has another mechanism of action for its pro-
tective properties.
Table 3 displays the windows of radioprotective action for

indralin, mexamine and cystamine in various laboratory
animals, including dogs. There is a fundamental difference
between indralin versus mexamine or cystamine in the TI
value for smaller and larger animals. Indralin, an
α1-adrenergic agent [32, 44], had a TI typical for epinephrine
and norepinephrine (Tables 1 and 3) and this TI remained the
same for both smaller and larger animals. For example, the
TI for indralin in mice, rats, hamsters, guinea pigs and dogs
following an intramuscular (IM) injection of the drug was
equal to 23.7, 16.9, 17.8, 25.6 and 31.1, respectively
(Table 3). It is very important to have an expanded window
of radiation protection for indralin when orally administered
in large animals (when sulphur-containing radioprotectors
are weak or ineffective) [54, 65]. TI for indralin given per os
in dogs corresponds to 23.7 (Table 3). The large window of
radioprotection for indralin is maintained for both dogs and
non-human monkeys [66]. In contrast, the window of protec-
tion for cystamine was decreased in going from mice to rats
and dogs, i.e. with increased size of animal. The TI of cysta-
mine following parenteral injection of the drug in mice, rats
and dogs was 3.3, 2.1 and 1.2, respectively (Table 3). A
similar picture was observed for amifostine, whose window
of protection was reduced in terms of TI from 12 to 3 in
going from mice to dogs [53–55, 67–69].
The above fact may be explained by the more pronounced

increase in aminothiol toxicity in going from mice to dogs
compared with the change in the radioprotective effect of the

doses. It is known that the somatogenic stage of cystamine
toxicity is much longer than the duration of its radiation pro-
tective effect, and this toxicity is prolonged by radiation ex-
posure [70]. One might expect aggravation of the above
situation in dogs as a result of the slower metabolism of ami-
nothiols in irradiated animals. Accumulation of the toxic
effects of aminothiols decreases their radioprotective action
[71–73]. The increase in the radioprotective effectiveness
of cystamine with increasing drug dosage is limited by the
maximum tolerated dose [49], which does not exceed the
ED50 in dogs [66, 74]. The decrease in the toxicity of ami-
nothiols by vitamins and other agents permits a possible
increase in their radioprotective effect [13, 75–82].
Similar trends in reducing the window of protection were

observed for mexamine, where TI decreased from 53.9
(43.5–60.8) for mice to 23.6 (14.1–37.9) for rats (Table 3);
the radioprotective effect of mexamine did not exceed 50%
in experiments with dogs [83]. In contrast to cystamine, a re-
duction in mexamine toxicity was observed following radi-
ation exposure, a result of receptor desensitization under
these conditions [84]. The decrease in the radioprotective ef-
fectiveness of mexamine is likely attributed to the weaker
hypoxic response caused by this agent in larger animals.
This effect is associated with the initial cellular oxygen con-
sumption rate. If there is sufficient time for the cell to adapt
to the lack of oxygen supply by reducing oxygen consump-
tion, acute low cellular oxygen tension is averted. The
reduced reactivity of dogs to acute hypoxia may be explained
by the 2–5-fold lower initial oxygen consumption per unit
body weight in large animals as compared with mice and
rats. The acute stress reaction to hypoxia caused by inhal-
ation of a hypoxic gas mixture that contains 5–7% oxygen,
reflected by an increase in the succinate dehydrogenase ac-
tivity in lymphocytes, has been shown to be lower in dogs
than in rats [64, 85]. In contrast to the effects seen in small
animals, the acute hypoxic hypoxia noted above protects less
than 50% of dogs [64, 86].
Therefore, the decrease in blood flow in the dog’s spleen

and bone marrow (by up to 25% and 50% respectively)
induced by mexamine [47] is not adequate for radioprotec-
tion. The low radioprotective effectiveness of acute hypoxia
and mexamine has previously been shown in experiments in
dogs and monkeys [81, 87–91].

A hypothesis for the difference in the protective
effectiveness between indralin and mexamine or
cystamine in large animals
The question arises about whether the radioprotective proper-
ties of indralin in experiments in dogs and monkeys [64, 92]
are high compared with those of mexamine, with the same
reduction of blood flow in hematopoietic tissues [47]. The
mechanism for the high level of effectiveness of indralin
remains elusive. We propose a hypothesis based on the sci-
entific concept that metabolic activation in hypoxic tissues is

Table 2. The radioprotective effect of indralin and mexamine
injected IM into dogs 5 min before γ-irradiation (47)

Groups
Dose
(Gy)

Dose rate
(Gy/min)

Dose
(mg/
kg)

n
60-day
Survival
(%)

MLS,
(days)

Control 3.8 2.3–2.8 – 14 14.3 17.0

Indralin 3.8 2.3–2.8 30.0 12 100.0* –

10.0 15 86.7* 18.0
5.0 11 90.9* 20.0

Mexamine 3.8 2.3–2.8 30.0 7 14.3 17.2
10.0 7 0 16.4
5.0 5 20.0 17.3

Control 4.0 0.1–0.11 – 27 14.8 17.3

Indralin 4.0 0.1–0.11 30.0 11 90.9* 16.0

Mexamine 4.0 0.1–0.11 30.0 8 12.5 17.6

Statistically significant (P < 0.05 by two-tail Fisher exact test)
difference between indralin and mexamine groups is indicated
with an asterisk. MLS =mean of life span of deceased
animals, n = number of animals.

M. V. Vasin and I. B. Ushakov4



initiated and sustained by the sympathetic nervous system,
for which an adaptation–trophic role was discovered by
Orbeli [93]; and excessive adrenergic stimulation may
sharply increase cellular oxygen consumption. This can lead
to acute ischemia in tissues in both small and large animals,
with a concomitant increase in radioresistance if tissues lack
an adequate oxygen supply. The vasoconstrictive effect of
sympathomimetic drugs is inevitably associated with in-
creased tissue oxygen consumption, in contrast to serotonin
[94–101]. An increase in adrenaline leads to an increase in
succinate-dependent ATP synthesis and Ca2+ accumulation
in mitochondria, which is due to the known activation of
succinate oxidation and oxygen consumption [102–105].
Adrenaline activates oxidative phosphorylation through
α1-adrenoceptors [106]. Indralin increases oxygen consump-
tion in bone marrow cells in vitro by up to 50% when tissue
oxygen tension is lower than 10 µmol [107]. Myeloid multi-
potent progenitors and pluripotent stem cells [108] have
α1-adrenergic receptors that realize a similar scenario.
The lack of blood flow in radiosensitive tissues caused by

the vasoconstrictive effect of the α1-adrenergic agonist indra-
lin, with its simultaneous stimulation of tissue respiration, may
lead to more acute tissue hypoxia, which would be sufficient
to explain the observed increase in tissue radioresistance.
The increase in cell radioresistance owing to acute low

oxygen tension is a result of the considerable increase in cel-
lular oxygen consumption previously discussed [64, 109].
The radioprotective effect of uncouplers of oxidative phos-
phorylation confirms such a possibility [110–112].
However, there is hitherto no direct proof of our proposed

hypothesis. It is necessary to examine the other

pharmacological properties of adrenergic agents that could
potentially mitigate radiation damage and possibly influence
their radioprotective effects.
Catecholaminergic neurotransmitters are known to be able

to regulate the migration and repopulation of immature human
CD34+ cells [113–116]. Norepinephrine increases DNA syn-
thesis in bone marrow mesenchymal stem cells through
α1-adrenergic receptors [117],which plays a significant part in
early post-irradiation haematopoietic recovery [118]. This
stimulatory effect is very likely accomplished via MAP kinase
signaling cascades (MEK > ERK) as intracellular transducers
of noradrenergic signals [119, 120]. Besides, acute adrenergic
stimulation inhibits the proliferation of haematopoietic pro-
genitor cells via p38/MAPK signalling [121], which could
provide an opportunity for an extension of post-irradiation
repair time and mitigation of radiation damage to myelopoi-
esis. Proinflammatory cytokine IL-6 gene expression, induced
by α1-adrenergic agents through involving p38 MAPK and
NF-κB pathways [122, 123], could potentially contribute to
early processes of post-irradiation hematopoietic recovery
[124–127]. ROS play a critical role in mediating the response
to alpha1-adrenergic stimulation [128].
The importance of these effects of adrenomimetics for their

complete protective action may be observed if radioprotectors
are applied after radiation exposure. In such a situation, they
fail to exert a protective effect as antagonists of the ‘oxygen
effect’. Radioprotectors, such as serotonin, adrenaline, cysta-
mine and 2-aminoethylisothiuronium bromide hydrobromide
(AET) are known to have a small radioprotective effect if
applied within 10 min after irradiation [129–132]. Under con-
ditions of liver shielding in rats, Maisin et al. [133, 134] has

Table 3. The window for the radioprotective effect of indralin, mexamine and cystamine administrated by various routes to small and
large animals 5 min before LD90–100/30 and >1 Gy/min γ-irradiation [66]

Radioprotectors Animal species Administration n ED50/30 (mg/kg) Therapeutic index

Indralin mice IP 480 17.4 (13.5–22.4) 19.3 (14.0–25.1)
IM 240 21.9 (16.2–29.4) 23.7 (15.3–36.5)
PO 180 14.8 (12.4–17.6) 59.6 (41.4–85.9)

rats IP 210 32.1 (25.8–38.5) 8.4 (6.3–11.3)
IM 310 61.5 (39.2–96.6) 16.9 (9.6–29.8)
PO 110 70.0 18.2

hamsters IM 522 50.7 (42.9–59.8) 17.8 (14.8–24.1)
PO 90 124.4 (95.7–161.8) 8.9 (5.5–14.5)

guinea pigs IM 35 28.8 (17.0–49.0) 25.6 (13.7–47.4)
dogs IM 96 6.0 (4.3–8.3) 31.1 (20.6–47.3)

Mexamine mice PO 78 23.2 (20.7–25.9) 23.7
IP 320 4.1 (3.0–5.5) 53.9 (43.5–60.8)

rats IP 90 5.7 (4.3–7.6) 23.6 (14.1–37.9)
dogs IM 20 30.0 < ED50 No

Cystamine mice IP 400 87.5 (77.0–98.0) 3.3 (2.8–3.7)
rats IP 100 57.7 (45.1–73.9) 2.1 (1.6–2.8)
dogs IV 35 60.0 1.2

Data shown are the means and confidence limits for the means interval 95%. PO = oral administration, IV = intravenous injection.
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detected a protective effect from cysteamine applied after ex-
posure to lethal doses of whole-body radiation in cases where
the radioprotector alone was not sufficient. The therapeutic
effect of indralin saves up to 55% when it is applied to rats
after whole-body irradiation with partial shielding of the upper
quadrant of the abdomen [63]. Indralin used after carboplatin
injection also reduces its hematoxicity [135, 136].
It is clear that the therapeutic action of indralin and other

radioprotectors noted above is essentially lower than its pre-
ventive protective effect. Thus, neutralization of the ‘oxygen
effect’ by these drugs is a key aspect of their radioprotective
action. It is important to note that pharmacological modula-
tion of gene expression by radioprotector action can’t of
itself achieve significant ‘chemical’ protection. Therefore,
the favourable effects of indralin on early post-irradiation
hematopoietic recovery do not in themselves constitute a
high radioprotective action.
In summary, indralin is likely to provide a high therapeutic

index in large animals via the specificity of its adrenergic
effect on tissue respiration, promoting the development of
acute hypoxia in radiosensitive tissues (aggravated by its
vasoconstrictive effect), and also partly via the therapeutic
potential of its influence on early post-irradiation hematopoi-
etic recovery.

CONCLUSION

The radioprotective properties of biogenic amines and ami-
nothiols have attracted investigators’ attention for more than
six decades. This review provides a comparative study of
the window of radioprotection for biogenic amines and
aminothiols based on personal and literary databases.
Comparative analysis of the window of radioprotection for
biogenic amines and their derivates and the aminothiol cysta-
mine indicates that catecholamines, serotonin and mexamine
have a more than 10-fold greater TI relative to cystamine in
experiments with small animals. The TI of tryptamine, which
lacks a hydroxyl-group in the fifth position of the indole ring,
is deprived of serotonin selectivity and does not differ from
that of cystamine. The considerable differences in TI between
catecholamines, serotonin and cystamine are caused by the dif-
ferences in the pharmacology, toxicology of radioprotectors and
mechanisms of their radioprotective action. Receptor-mediated
radioprotective agents have greater preferences over aminothiols
and thus provide an expanded window of protection.
We propose a hypothesis explaining why the window of

radioprotection for cystamine and mexamine is reduced, and
that for the α1-adrenomimetic indralin is not essentially
changed in moving from small to large animals. The reduction
in the TI of cystamine in larger animals, such as dogs, may
be caused by the greater increase in toxicity of aminothiols
in relation to the decrease in their optimal doses for radiopro-
tective effect in going from mice to dogs, which is a conse-
quence of the slower metabolic processes in larger animals.

The somatogenic phase of intoxication by cystamine is sig-
nificantly longer than the duration of its radioprotective
effect, and increases with irradiation [70]. The protective
action of cystamine is limited by the maximum tolerated
dose. Antioxidants lower the toxicity of aminothiols and in-
crease the maximum tolerated dose and thus the correspond-
ing radioprotective effect.
The decrease in the radioprotective effect and TI of mexa-

mine in experiments with dogs may be caused by their lower
sensitivity to the acute hypoxia induced by mexamine
(because of a decrease in the oxygen tension gradient in
tissues under conditions of lower initial oxygen consumption
in a large animal as compared with a small animal).
Indralin, owing to its high radiation protective effect as

observed in experiments on dogs and monkeys, would not
provide that via only a vasoconstrictor action for reasons
similar to that noted above for mexamine. The stimulatory
effect of indralin on early post-irradiation haematopoietic re-
covery cannot provide high radioprotective action, but may
only promote recovery. Thus, indralin is likely to provide
optimal radioprotective effects and a high TI in large animals
because of the specificity of its adrenergic effect on tissue
respiration, promoting acute hypoxia in radiosensitive tissues
when the tissues lack an adequate oxygen supply because of
the development of pharmacological vasoconstriction.
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