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A B S T R A C T   

Autism spectrum disorder is (ASD) characterized by a persisting triad of impairments of social interaction, 
language as well as inflexible, stereotyped and ritualistic behaviors. Increasingly, scientific evidence suggests a 
neurobiological basis of these emotional, social and cognitive deficits in individuals with ASD. 

The aim of this randomized controlled brain self-regulation intervention study was to investigate whether the 
core symptomatology of ASD could be reduced via an electroencephalography (EEG) based brain self-regulation 
training of Slow Cortical Potentials (SCP). 41 male adolescents with ASD were recruited and allocated to a) an 
experimental group undergoing 24 sessions of EEG-based brain training (n1 = 21), or to b) an active control 
group undergoing conventional treatment (n2 = 20), that is, clinical counseling during a 3-months intervention 
period. We employed real-time neurofeedback training recorded from a fronto-central electrode intended to 
enable participants to volitionally regulate their brain activity. 

Core autistic symptomatology was measured at six time points during the intervention and analyzed with 
Bayesian multilevel approach to characterize changes in core symptomatology. Additional Bayesian models were 
formulated to describe the neural dynamics of the training process as indexed by SCP (time-domain) and power 
density (PSD, frequency-domain) measures. 

The analysis revealed a substantial improvement in the core symptomatology of ASD in the experimental 
group (reduction of 21.38 points on the Social Responsiveness Scale, SD = 5.29), which was slightly superior to 
that observed in the control group (evidence Ratio = 5.79). Changes in SCP manifested themselves as different 
trajectories depending on the different feedback conditions and tasks. Further, the model of PSD revealed a 
continuous decrease in delta power, parallel to an increase in alpha power. Most notably, a non-linear 
(quadratic) model turned out to be better at predicting the data than a linear model across all analyses. Taken 
together, our analyses suggest that behavioral and neural processes of change related to neurofeedback training 
are complex and non-linear. Moreover, they have implications for the design of future trials and training 
protocols.   

1. Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, 
comprising difficulties in developing and maintaining social relation-
ships, failure of well-functioning verbal communication through 

reduced sharing of interests, motivation and activities, and decreased 
socio-emotional reciprocity, alongside with limited, inflexible and re-
petitive pattern of behavior (Organization WH, 2004). 

Recent research suggests a neurobiological basis of the socio- 
emotional, cognitive and behavioral shortcomings of ASD. The 
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anatomical signature seems to be marked by age-related structural 
changes, as recent findings in high-risk siblings suggest the presence of 
disrupted brain development in children with ASD before first behav-
ioral symptoms emerge (Hazlett et al., 2017). Functional magnetic 
resonance imaging (fMRI) studies indicate abnormal brain activation in 
several cortical and limbic areas. Besides findings of ASD-specific dys-
functions in the anterior cingulate cortex (ACC, crucial for the integra-
tion of executive functions, motivational and emotional behaviors), 
aberrant activation has been reported in the medial and orbital regions 
of the frontal lobe, insula, uncus, fusiform gyrus, para- and hippocampal 
gyrus, cerebellum, as well as in the amygdala (for an overview of MRI 
findings see Ecker et al. (Ecker et al., 2015). Electrophysiological studies 
in ASD complement the structural and functional neuroimaging find-
ings. Attenuated cortical excitability (e.g., indicated by a reduced 
Contingent Negative Variation (Hoofs et al., 2018); CNV), together with 
excessive slow-wave activity often in frontal brain areas (and inter-
preted as cortical hypoactivation) and reduced power in the alpha fre-
quency band has been reported in several studies in ASD (e.g. Coben 
et al., 2008; Wang et al., 2013). 

Taken together, the aberrant brain development, the abnormal 
activation found in fMRI studies, and the electrophysiological abnor-
malities seem to reflect altered cerebral excitability, functional integrity 
and neuroelectric synchronization between brain regions involved in 
socio-emotional and executive functioning. 

Although ASD is a predominantly neurobiologically-based condition, 
behavioral and educational interventions are currently the primary 
treatments for addressing the core deficits in affected individuals. 
Moreover, these interventions often require long periods of time and 
intensive commitment (for a review, see Landa, 2018). Furthermore, 
core symptoms of ASD cannot be sufficiently treated with medication 
and pharmacology is mostly used to reduce comorbid psychiatric 
symptoms (Poustka and Kamp-Becker, 2016). Thus, there is hardly any 
doubt that a complex disorder such as ASD requires a multifaceted 
treatment approach. Considering adolescence as a transition period 
marked by social, cognitive and emotional adaptations (Ernst et al., 
2006), parallel to research reporting dysfunctions in emotion regulation 
significant for the development and maintenance of mental disorders 
including autism (Ahmed et al., 2015), the need for interventions tar-
geting especially the age period between 13 and 18 years in ASD is 
obvious. Therefore, neurobiologically-based approaches should, along-
side behavior-based methods, be considered in the treatment of ado-
lescents with ASD. 

Neurofeedback therapy 

In the past decades, there have been several applications of neuro-
feedback in ASD in a clinical context, mostly confined to case reports or 
case studies using different frequency bands as a feedback signal 
(Cowan, 1994; Sichel et al., 1995). Still, only few systematic controlled 
studies investigating clinical outcomes of neurofeedback in ASD exist. 
These studies have focused on particular frequency bands, such as beta 
band (~16–31 Hz) and/or parallel theta band (4–8 Hz) (targeting beta 
increase/theta decrease) e.g. (Kouijzer et al., 2009) or based their 
feedback signal on individual quantitative EEG findings (e.g. Carrick 
et al., 2018). In the last years, yet another frequency-based neurofeed-
back approach was proposed, aimed at increasing EEG activity in the 
range of ~ 8–13 Hz, targeting the mirror neuron system (Datko et al., 
2018; Pineda et al., 2014) (for frequency-band neurofeedback review 
and overview see Holtmann et al., 2011). 

Another strand of neurofeedback research has explored the utility of 
neurofeedback training based on Slow Cortical Potentials (SCP) in dis-
orders with neural dysregulation. SCP reflect changes in the depolari-
zation level of the upper cortical layers and mirror local thresholds of 
excitability in cortical cell assemblies (He and Raichle, 2009; Birbaumer 
et al., 1990). SCP are very slow shifts in the EEG near to 0 Hz and can be 
subdivided into electrically negative shifts, which indicate excitatory 

mobilization, and electrically positive shifts, which indicate a reduction 
or inhibition of neuronal excitation (Birbaumer et al., 1990). Symptom- 
specific improvements after SCP self-regulation training have been 
demonstrated for disorders associated with hyperactivation, such as 
drug-resistant epilepsy (Strehl and Birkle, 2014), or frontal hypo-
activation such as Attention-Deficit/Hyperactivity-Disorder (ADHD) 
(Strehl et al., 2017; Heinrich et al., 2007). Further, significant im-
provements after SCP neurofeedback were reported for oppositional 
behavior and physical aggression in children with ADHD (Heinrich 
et al., 2007), criminal psychopathy (Konicar et al., 2015) as well as for 
migraine (Siniatchkin et al., 2000). SCP neurofeedback has been 
considered as the best validated standard neurofeedback protocol 
approach for ADHD (Arns et al., 2014; Mayer et al., 2013), with stable 
symptom improvements reported for diverse disorders (Strehl and Bir-
kle, 2014; Gani et al., 2008). 

Considering the described reductions in frontal brain activity and 
cortical excitability linked to an attenuated CNV found in individuals 
with ASD (Wangler et al., 2011), SCP neurofeedback seems to target a 
critical neurofunctional aspect of ASD. Regarding brain imaging studies 
reporting abnormal ACC activation in ASD, together with studies 
reporting increased ACC activation after SCP training (Gevensleben 
et al., 2014), SCP neurofeedback appears to be a highly promising non- 
invasive, non-pharmacological and side-effect-free clinical avenue for 
the treatment of adolescents with ASD. 

Therefore, the main aim of this first clinical SCP trial in ASD is to 
analyze SCP training effects on the core symptomatology of ASD. A 
further aim of the current study is to shed light on the full brain training 
dynamics (regarding task-related changes in SCP but also regarding 
possible changes in the frequency domain) and overcome traditional 
(neurofeedback) data analysis pitfalls such as high inter-individual 
variability, aggregate analyses (Klöbl et al., 2020), multiplicity, and 
the critically discussed use of p-values and arbitrary cut-offs (Cohen, 
1994; Wagenmakers et al., 2018). To this aim, we apply Bayesian multi- 
level statistical techniques and perform hypothesis testing via evidence 
ratios (ERs). 

2. Materials and methods 

2.1. Experimental design 

To investigate whether adolescents with ASD can learn to regulate 
their cortical activity from SCP neurofeedback and whether symptoms of 
ASD decrease after SCP neurofeedback, a randomized controlled inter-
vention study was conducted (Clinical Trial Registration: 
DRKS00012339). 

2.2. Participants 

A total of 41 adolescents with a diagnosis of ASD based on state-of- 
the-art diagnostic instruments (ADI-R (Bölte et al., 2006); ADOS-2 
(Poustka et al., 2015)) between the age of 12–17 years (mean age of 
final sample: 14.05 years; SD = 1.76; all right handed; male) were 
recruited. Participants with an IQ below 70 (HAWIK-IV (Petermann and 
Petermann, 2013)), or neurological and medical conditions which 
render the implementation of EEG/MRI measurements or neurofeed-
back training impossible (i.e., head injuries, major axis I diagnosis of 
psychosis, obsessive–compulsive disorder, severe motor or vocal tics, 
Tourette syndrome, or severe depression with suicidality) were 
excluded. In addition, participants with simultaneous participation in a 
pharmacological study or former neurofeedback training experience 
were also excluded from the study. Accompanying psychopharmaco-
logical or psychosocial interventions were permitted throughout the 
study, but had to be kept constant during the four weeks before and until 
the end of the study. Written informed consent was obtained from all 
participants and their parents or legal guardian before being enrolled. 
The study was approved by the Ethics Committee of the Medical 
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University of Vienna and conducted according to the Declaration of 
Helsinki. 

2.3. Experimental procedure 

After screening, participants were randomly allocated to either an 
experimental group (n1 = 21), receiving 24 sessions of EEG-based brain 
regulation training or to an active control group (n2 = 20), which 
received the conventional treatment (treatment as usual, e.g., clinical 
counseling), and were informed in detail about the further procedure of 
the following 3 months intervention period at the Department of Child 
and Adolescent Psychiatry at the Medical University of Vienna (Fig. 1). 

2.3.1. Experimental Group: Neurofeedback training of Slow Cortical 
Potentials 

All participants in the experimental group underwent 24 SCP 
training sessions, subdivided into two training phases (each comprising 
12 training sessions) including a one-week training break between the 
two training phases. During this 7-days break, participants were asked to 
exercise their individual training strategies at home without technical 
support, using a small reminder card showing their preferred training 
object that was also displayed on the screen during the training. This was 
done in order to encourage the transfer and generalization of the learned 
skills in everyday life. In addition, each participant received a structured 
home training diary in which to record the completed exercises at home 
and document mental strategies, training situations, as well as behav-
ioral changes during the break. 

SCP brain activity was recorded from fronto-central brain areas and 
presented on the participants’ monitor via a graphical object (see Fig. 2 
for a description of the SCP training procedure). Each active regulation 

phase of one SCP training session consisted of 120 trials, divided into 3 
training blocks (8 min each block) with different conditions: the first and 
the last training block were feedback conditions (contingent SCP activity 
was displayed at the participants’ monitor), whereas the middle training 
block was a transfer condition without the presentation of brain activity 
on the computer screen. In accordance with established neurofeedback 
training protocols in ADHD (Strehl et al., 2017), the first aim was a 
general learning of the volitional modification of brain states (required 
negativity 50%, required positivity 50%) and after the training break the 
training aimed for disorder specific regulation (required negativity 80%, 
required positivity 20%). Within the training blocks, the tasks (required 
negativity/ positivity) were presented in random order. 

2.3.2. Control group: Treatment as usual 
Parallel to the intervention phase in the experimental group, par-

ticipants in the control group received clinical counseling as the treat-
ment as usual (TAU) of the Department of Child and Adolescent 
Psychiatry at the Medical University of Vienna. Each participant un-
derwent four one-hour appointments during the whole study phase, 
which were scheduled in equal time intervals (see Fig. 1). During these 
visits with psychologists and/or medical doctors, the general well being 
as well as developmental steps and disorder-related deficits were 
tracked and discussed. Based on the diagnostic procedure and disorder- 
specific observations, helpful strategies for daily life (e.g., optimize daily 
duties like homework, cleaning the room, etc.) were offered. At the end 
of the study, a person- and symptom-specific intervention recommen-
dation was communicated to the parents and further reading materials 
were provided. 

Fig. 1. Study overview. Screening (including a diagnosis of ASD, IQ assessment and inclusion/exclusion criteria check), interventions in experimental and control 
condition, as well as pre-, post- and intervention-accompanying measures. In addition, on an exploratory basis, we assessed general mood, levels of motivation, 
concentration, fun, goal attainment, arousal and well-being (before every SCP training) as well as possible influences regarding treatment-related trainer and 
participant variables (4 times in the control- and 6 times in the experimental group via FERT (Klimesch et al., 2007); for details see SI (D), (E)). ADI-R: Diagnostic 
Interview for Autism-Revised ADOS-2: Diagnostic Observation Schedule for Autistic Disorders 2 FERT: Fragebogen zur Erfassung relevanter Therapiebedingungen 
(questionnaire for the assessment of therapy conditions) HAWIK IV: Hamburg-Wechsler-Intelligence Test for children and youth. 
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2.4. Materials 

2.4.1. Psychological measures - Social Responsiveness Scale 
To measure autistic traits, we used the Social Responsiveness Scale 

(SRS (Poustka and Bölte, 2008), a well-validated parent/teacher report 
to assess deficits in reciprocal social behavior. The questionnaire com-
prises five subscales: Social Awareness (SA), Social Cognition (SCOG), 
Social Communication (SCOM), Social Motivation (SMOT) and 
Restricted Interests and Repetitive Behavior (Autistic Mannerism; AM) 
and a total score representing an index of deficiency in social commu-
nication and interaction can be computed. The parents or legal guard-
ians of the experimental, as well as of the control group were asked to fill 
out the SRS at six time points (pre and post intervention as well as four 
times during the interventions), in equal time intervals (see Fig. 1). 

2.4.2. Neural measures - Slow Cortical Potential training: EEG recording 
and processing 

SCP activity was measured at EEG electrode site FCz. The left mas-
toid was used as a reference and the right mastoid as ground. Ocular 
activity was measured by placing electrodes above and below the right 
eye for blinks and vertical eye movements and at the outer canthi for 
horizontal eye movements. Electrode impedances were kept below 3 
kOhm throughout the study. The signals were recorded with a sampling 
rate of 128 Hz and with a 40 Hz low-pass online filter. EEG artifacts were 
detected automatically during the SCP training by the Theraprax System 
(NeuroConn GmbH, Germany) using a movement artifact correction 
(Schlegelmilch et al., 2004). Correspondingly, trials containing artifacts 
were interrupted and repeated. 

All offline EEG preprocessing steps were performed using MNE- 
Python (Gramfort, et al., 2014). A zero-phase finite impulse response 
(FIR) filter with passband frequency 0.01-2 Hz was used for filtering the 
raw data. Upon filtering, EEG data for each participant in each Session 

(session 1–24), each Condition (feedback 1, transfer, feedback 2), and 
each Task (required positivity, negativity) were segmented into epochs 
consisting of a 2 seconds baseline window and an 8 seconds trial win-
dow. Epochs were then baseline corrected by subtracting the mean of 
the 2 seconds baseline window from the trial window. Only the last 4 
seconds of each regulation trial were used for SCP amplitudes to exclude 
influences of early event-related potentials on the SCP data (in line with 
previous worke.g (Strehl et al., 2017). Trials with further artefacts were 
detected and removed using the autoreject algorithm (Jas et al., 2017). 
The algorithm determines an amplitude rejection threshold adaptively 
for each participant in each session instead of relying on a global 
threshold for the entire sample. Epochs which remained after the artifact 
rejection step were averaged within each session, feedback condition 
and task. 

For the statistical analysis of the signal in the time domain, EEG ac-
tivity in the last 4 seconds of the averaged epochs was averaged once 
again to obtain a single numerical value representing the mean SCP 
amplitude. 

For the statistical analysis of the signal in the frequency domain, 
power spectral density (PSD) values from the last 4 seconds of each 
epoch were computed using the multitaper method (Percival DB, Wal-
den AT. Spectral Analysis for Physical Applications. Cambridge Uni-
versity Press;, 1993). The multitaper method was applied to each epoch 
with a default window half-bandwidth of 4, using adaptive weights and 
only tapers with >90% spectral concentration within a given bandwidth 
(low bias). Frequency bands of interest were delta (0.5-4 Hz), theta (4-8 
Hz) and alpha (8-12 Hz). PSD values in each frequency band were 
averaged across epochs separately for each participant, session, feed-
back condition, and task. The FIR filter bandpass frequency was changed 
to 0.01-40 Hz, otherwise the same preprocessing steps as in the SCP 
analysis were employed. 

Abnormally large amplitudes or PSD measures were classified as 

Fig. 2. The SCP neurofeedback setting. At the beginning of each trial, a triangle was displayed, specifying the polarity of the requested SCP shift of the upcoming 
regulation trial: a triangle pointing upwards required negative SCP shifts (increase of cortical activation), while a triangle downwards indicated required positive SCP 
shifts (inhibition of cortical activation). After baseline recording, the current SCP activity was displayed as an object (e.g., a fish or a moon) at the participants’ screen 
in real time and moved accordingly to the participants’ brain activity upwards (indicating an increase in cortical activation) or downwards (indicating a decrease in 
cortical activation). The participants should learn how to volitionally move the object up or down by controlling their SCP in the required polarity. All successful 
changes (i.e., declinations from baseline in the required polarity with duration of 2 consecutive sec in the last 4sec of each trial) were rewarded with the symbol of a 
sun after each trial and motivational feedback from trainers. 
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extreme values via Tukey’s boxplot method and removed from subse-
quent analyses. 

2.5. Statistical analysis 

2.5.1. Bayesian multilevel modeling 
The current SCP and psychological data (SRS) represent repeated 

measurements nested within participants. We therefore applied a 
multilevel modeling approach because it offers a natural way to analyze 
such data by accounting for and quantifying inter-individual variability 
in regression coefficients (Gelman et al., 2013). This encoded our 
assumption that participants might exhibit different baselines, SCP 
learning curves or behavioral changes. 

To quantify the uncertainty in our estimates in a principled way, we 
opted for a Bayesian treatment of the multilevel framework. With a 
Bayesian approach, we can provide a full distribution over plausible 
parameter values instead of mere point estimates. We then used the 
posterior distribution, containing the entire information about a param-
eter, to extract credible intervals and test relevant hypotheses regarding 
the numerical values of the parameters. 

We also investigated how well different models encoding varying 
assumptions about the temporal structure of the data (i.e., linear vs. 
quadratic learning curves) predict the data, trading off their complexity 
(i.e., penalizing too many parameters). Therefore, we employed the 
widely applicable information criterion (WAIC) model comparison to 
decide between two models: a linear and a quadratic model of SCP and 
SRS data. For all subsequent analyses, we used the R-package brms for 
fitting and comparing Bayesian multilevel models (Bürkner, 2017). For 
each of the models considered in this work, we confirmed convergence 
of the Markov chains for each model parameter via visual inspection and 
inspection of the Gelman-Rubin convergence metric R̂. 

2.5.2. Psychological data - Social Responsiveness Scale: 
The total score of the Social Responsiveness Scale (SRS (Poustka and 

Bölte, 2008)) was used as an indicator of the general severity of ASD- 
related deficits and used as an outcome in univariate multilevel 
model. At a more fine-grained level, we analyzed changes in the five 
separate subscales. In order to represent residual correlations and cor-
relations between varying effects across subscales within a single joint 
model, we further fit a multivariate multilevel model with the individual 
subscales as a multivariate outcome. A multivariate model is an 
adequate choice in this context, since it can improve shrinkage effects 
and account for interdependencies between the different subscales. We 
defined the following two regression models, both containing the pre-
dictors Group (Control group vs. Experimental group) and Time of 
Measurement (t1, t2, t3, t4, t5, t6). We also allow varying intercepts and 
slopes across participants: 

MSRS
1 : linear change with random intercepts and linear terms across 

participants, or using Wilkinson notation: 

Score = Group*Time+(1+ Time|Person)

MSRS
2 : quadratic change with random intercepts, linear, and quadratic 

terms across participants, i.e., using Wilkinson notation: 

Score = Group*
(
Time+Time2)+

(
1+Time+Time2

⃒
⃒Person)

To perform model selection, we computed the WAIC metric for the 
two models and, based on the WAIC, we derived model weights to ease 
comparison (McElreath, 2020). Accordingly, a weight is assigned to 
each model encoding its relative plausibility. The larger the weight, the 
better the model performs in terms of the predictive performance/ 
complexity trade-off. 

In order to test whether the decline in the SRS scores was stronger in 
the experimental group than in the control group, we derived a mean 
improvement score (for the total score and all subscale scores) from the 
model by subtracting the model’s predictions at t6 from the prediction at 

t1. Thus, a positive mean improvement indicates a reduction in ASD- 
related deficits. To quantify evidence that the mean improvement in 
the intervention group is larger compared to the mean improvement in 
the control group, we calculated ERs for group differences in total score 
and the subscale scores of the SRS. 

To further ease relevant group comparisons, we computed a differ-
ence in mean improvement (D) by subtracting the mean improvement of 
the control group from the mean improvement of the intervention 
group. We then tested the hypotheses that the D values are positive for 
all SRS scores (indicating superiority of the experimental group). 

2.5.3. Neural data - Slow Cortical Potentials Cor P 
The linear and the quadratic model are used to describe the learning 

curves of SCP amplitudes across the factors Session (1–24), Condition 
(feedback 1, transfer, feedback 2) and Task (negativity, positivity), as 
well as all interactions between them. We also allowed varying in-
tercepts and slopes across participants and tasks, encoding the 
assumption that each participant might exhibit a different training 
process depending on whether the task is to produce negativity or posi-
tivity. We defined and fit the following two regression models: 

MSCP
1 : linear model with random intercepts and linear terms across 

participants: 

Amplitude = Condition*Task*Session+(1+ Session*Task|Person)

MSCP
2 : quadratic model with random intercepts, linear, and quadratic 

terms across participants: 

Amplitude = Condition*Task*(Session + Session2)+ (1 + (Session

+ Session2)*Task|Person)

As with the SRS data, we performed model selection based on the 
WAIC metric. 

2.5.4. Neural data – Power Spectral Density 
The same hierarchical Bayesian models formulated for the SCP time- 

domain data were also fitted to the frequency-domain data, with PSD 
instead of SCP amplitude as an outcome. Separate linear and quadratic 
models were applied to each of the three frequency bands of interest: 

MPSD
1 : linear model with random intercepts and linear terms across 

participants: 

PSD = Condition*Task*Session+(1+ Session*Task|Person)

MPSD
2 : quadratic model with random intercepts, linear, and quadratic 

terms across participants: 

PSD = Condition*Task*(Session + Session2)+ (1 + (Session

+ Session2)*Task|Person)

2.5.5. Hypothesis testing 
Following the recommendations of Cohen (Cohen, 1994), we refrain 

from using arbitrary cut-offs for determining the significance of an effect 
and instead report the actual posterior probability of the hypotheses 
given the observed data. We interpret the obtained ERs the same way 
Bayes factors would be interpreted, with qualitative strength of evidence 
labels given according to Kass and Raftery (Kass and Raftery, 1995)and 
employed only as a communicative heuristic. 

3. Results 

3.1. ASD symptomatology – Social Responsiveness Scale 

Bayesian model comparison based on the two models’ WAIC metrics 
revealed a preference for the quadratic model, with a relative model 
weight >0.999 (see SI (F) for full model summaries). The high relative 
model weight indicates that the data of the SRS favors the quadratic 
model decisively. Indeed, the first row in Fig. 3 depicts the quadratic 
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model’s predictions vs. the empirical means and we observe a strong 
quadratic decreasing trend both for the SRS total score as well as for 
each subscale score of the SRS. Moreover, the models’ mean predictions 
closely match the empirical means (see Fig. 3 and SI (H) for posterior 
predictive checks). It is also evident that SRS scores declined both in the 
intervention and in the control group throughout the course of the study. 

Further, evidence ratios for the total SRS score as well as for the 
subscales of the SRS (derived from the quadratic models) are listed in 
Table 1 indicating support for the superiority of improvement in the 
neurofeedback treatment group compared to the control group in terms 
of ASD-related symptom reduction. 

Accordingly, the most difference in improvement is evident for the 
subscale Social Cognition (SCOG) and Autistic Mannerism (AM), followed 
by improvements in the subscales Social Motivation (SM), Social 
Communication (SCOM), and Social Affect (SA). A look at the full pos-
terior variability (uncertainty) in the model estimates of mean 
improvement (plotted in the second row of Fig. 3) suggests that the 
relatively small evidence ratios are due to the uncertainty owing to the 
small sample size in both groups. 

However, mean differences in improvement are still clearly detect-
able, corroborating the numerical ranges of the evidence ratios in our 
population of adolescents with ASD. On a more practical, clinical side, 
both groups exhibited a relatively large reduction in SRS scores during 
the course of the study. The total mean improvement was marked by a 
reduction of 21.38 (SD = 5.29) SRS points in the intervention group and 
13.5 (SD = 5.44) SRS points in the control group. 

3.2. Slow Cortical Potential neurofeedback training 

Bayesian model comparison revealed that SCP neurofeedback data 
suggest a slight preference for the quadratic model compared to the 
linear model in terms of data fit/complexity trade-off, with a relative 
weight of 0.62 (see SI (F), (H) for detailed model results and posterior 
predictive checks). The mean predictions of the quadratic model as well 
as the empirical session means are displayed in the first row of Fig. 4. We 
observe noticeable multilevel shrinkage due to the small sample size and 
the large variability in the data. Moreover, the first feedback condition 
showed the most pronounced differentiation. 

Regarding the first training block (feedback 1 condition), a pro-
nounced increase in differentiation (absolute difference between brain 
activity in negativity trials and brain activity in positivity trials) of 
around 3 µV from the beginning (− 2.28 µV, 95% CI: [− 6.15 µV–1.54 
µV]) until the end (− 5.54 µV, 95%CI: [− 9.55 µV− 1.53 µV]) of the 
training was achieved by the participants, as depicted in Figs. 4 and 5. 

In contrast, during the whole course of block 2 (transfer condition), 
the differentiation between the two brain states appears all the time 
pronounced (with just a slight increase of 0.25 µV), starting with -3.77 
µV (95% CI: [-7.61 µV – 0.05 µV]) and ending with of -4.01 µV (95% CI: 
[-8.05 µV – -0.15 µV]) of absolute SCP differentiation in the transfer 
condition. 

Finally, the third training block (feedback 2 condition) reveals an 
onset pattern similar to that of the transfer condition, but yet a third 
pattern regarding the further course. Here, the SCP differentiation start 
from − 4.08 µV (95%CI: [− 7.95 µV – − 0.23 µV]) at the beginning of the 
training in condition 2, and slightly decreases (0.14 µV) to − 3.94 µV 
(95%CI: [− 7.88 µV – 0.13 µV] at the end. 

The second row in Fig. 4 illustrates the differences in differentiation 
between the positivity task and the negativity task via difference poste-
riors (i.e., differences between the posterior distributions at the end and 
at the beginning of training). While differentiation in the first feedback 
condition was noticeably stronger at the end of the training compared to 
the onset of training (first column), no substantial differentiation could 
be seen in the difference posteriors obtained from the transfer and sec-
ond feedback condition (second and third columns). 

In order to test how plausible these differences (and lack of differ-
ences) in differentiation are, we computed ERs for the hypothesis that 
differentiation is stronger at the end, compared to the beginning of 
training. The evidence ratios for each condition are listed in Table 2. We 
tested this hypothesis for each condition by considering the difference 
posteriors depicted in the third row of Fig. 4. The strongest support was 
found for the first feedback condition with an ER of about 13, whereas 
for the other conditions only negligible changes in differentiation are 

Fig. 3. Social Responsiveness Scale results from the quadratic model. The first row depicts the model’s mean predictions for each subscale along with 95% 
credible intervals (shaded regions). Solid black lines depict the empirical means on each occasion. The second row depicts the posteriors of the mean improvements in 
each group defined as the predicted mean score at t1 minus the predicted mean score at t6 of a given subscale. NFB = Experimental Neurofeedback Group. 

Table 1 
Evidence ratios of SRS scores regarding differences in improvements between 
groups.  

SRS Difference in 
Improvement D (95% 
CI) 

Hypothesis Evidence 
Ratio 

Strength of 
Evidence 

Total 7.88 (-4.58 – 20.19) D > 0  5.79 Substantial 
SCOG 1.88 (-0.26 – 4.03) D > 0  12.51 Strong 
AM 2.01 (-0.39 – 4.4) D > 0  10.68 Strong 
SM 1.51 (-0.48 – 3.45) D > 0  8.86 Substantial 
SCOM 2.1 (-1.24 – 5.53) D > 0  5.53 Substantial 
SA 0.68 (-0.57 – 1.95) D > 0  4.46 Substantial 

Note: Evidence ratios > 1 indicate support for the hypothesis that mean 
improvement is greater in the experimental SCP-training group than in the 
control group. Evidence ratios < 1 indicate support for the hypothesis that mean 
improvement in the control group is greater than or equal to that of the SCP 
training group. A 95% credible interval (95% CI) gives a numerical range in 
which the value of the mean difference in improvement falls with a probability 
of 0.95. 
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present. These ERs support the pattern revealed by the difference pos-
teriors (see second row of Fig. 4). Mean SCP- activity averaged over six 
successive sessions for each condition and regulation task is presented in 
Fig. 1, SI (B). 

Explorative analysis regarding relationships between the SRS and 
SCP data are deposited and discussed in SI (G). 

3.3. Power spectral density 

Bayesian model comparison revealed a clear preference for a 
quadratic model over a linear model for each of the three frequency 
bands of interest.1 The averaged PSD values and the corresponding 
predictions of the quadratic models for each frequency band are pro-
vided in Fig. 5 (see also SI (F), (H) for detailed model results and pos-
terior predictive checks). These exploratory results reveal a rather 
complex pattern of change across sessions, feedback conditions and 
frequency bands. 

Regarding delta frequency band power, a decrease from the begin-
ning of the training towards the end of the first training phase (session 
1–12) could be observed. The second training phase displays a slight 
increase in mean PSD of the Delta band again (slight U-shape progres-
sion), which ends in session 24 below the initial PSD values, but with an 
upward trend. Since the same pattern is present in both the negativity 
and positivity tasks, it is suggestive of on overall decrease in delta fre-
quency band power. However, delta band PSD values in the positivity 
task decrease faster and remain consistently lower than those in the 
negativity task. Moreover, this pattern persists across feedback condi-
tions, but appears most pronounced in the first feedback condition. 

The model-based analysis of mean PSD in theta frequency band over 
time exhibits neither remarkable progress or change over time, nor 
remarkable differences between the different tasks. 

Finally, a slight increase in alpha power is observable in all feedback 
blocks throughout training, opposite to the decrease in delta band 
power. Regarding the two different tasks, an increasing differentiation 
in alpha power between the positivity task and the negativity tasks is 
visible in all three blocks, most pronounced in training blocks 1 und 3 
(the feedback conditions). 

Since these analyses are exploratory and the authors had no prior 
expectations regarding changes in PSD, no evidence ratios or 

correlations with behavioral variables are reported. 

4. Discussion 

The current study investigated the effects of SCP training on core 
symptomatology in adolescents with ASD. The analysis was based on 
Bayesian multilevel modeling techniques in order to obtain a more fine- 
grained analysis of neuroregulatory and behavioral changes throughout 
the entire course of the training. 

Our results revealed that ASD-symptoms improved substantially in 
both study groups. This improvement was more pronounced in the SCP 
neurofeedback training group than in the control group. Besides a 
reduction in the general severity of ASD symptomatology indicated by a 
decrease in SRS Total score (i.e., a general improvement of social 
responsivity), the subscales Social Cognition and Autistic Mannerism were 
those that differentiated the most between the experimental and the 
control group. Although random differences between the SRS scores of 
the groups, present at the beginning of the interventions, may limit 
straightforward interpretations of the treatment improvements, 
numerous previous SCP studies support our findings of disorder-specific 
improvements related to SCP neurofeedback training (Strehl et al., 
2017; Heinrich et al., 2007; Konicar et al., 2015; Siniatchkin et al., 2000; 
Mayer et al., 2013; Gani et al., 2008; Wangler et al., 2011). 

Additionally, we observed a quadratic reduction in ASD symptom-
atology in both groups. This result has implications for future treatment 
approaches, as it can shape expectations about symptom changes during 
the course of treatment. Moreover, a quadratic symptom decrease im-
plies that the benefits of neurofeedback training are expected to flatten 
out at some point during training. At this point, further training would 
elicit no additional improvements in terms of the particular psycho-
pathological outcome. This suggests a consolidation of the learned dif-
ferentiation with consequent stability and no further improvement upon 
reaching a plateau. 

The additional analyses of potential changes in PSD in the delta 
frequency band revealed a decrease over time and an enhanced differ-
entiation between the neurofeedback tasks (negativity vs positivity). 
This preliminary finding indicates a possible balancing effect of SCP 
training (i.e., a reduction of the often reported slowing of oscillations in 
the frontal cortex (Kouijzer et al., 2009; Wang et al., 2013) in adoles-
cents with ASD. Moreover, our analysis revealed an increase in alpha 
frequency power over the whole course of SCP-training. As the current 
analysis of PSD is preliminary, further research is needed to evaluate if 
an increase in alpha frequency power could be linked to improved 

Fig. 4. SCP neurofeedback results from the quadratic model. The first row depicts the quadratic model’s mean predictions vs. empirical means across all sessions 
for each Feedback condition × Task combination. The shaded regions indicate 95% posterior credible intervals. The marked dashed lines indicate the empirical means 
in each session, condition and task. The second row depicts the posteriors of differentiation (negativity – positivity) at the beginning of training, (D(t1), light green) 
and at the end of training (D(t24), dark green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

1 Leave-One-Out Cross-Validation (LOO-CV) was used to perform Bayesian 
model comparison, as the approximation of WAIC was unreliable for the models 
of PSD change (as indicated by the p_waic self-diagnostic). 
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inhibition (Klimesch et al., 2007; Weisz et al., 2011) and improved ex-
ecutive functions, both of which have been found to be disrupted in 
individuals with ASD (Yuk et al., 2020) In the same vain, the effects of 
alpha band activity, arising from long-range communication between 
different brain regions (Von Stein and Sarnthein, 2000) and a corre-
sponding alpha power increase after neurofeedback training should 
further be investigated to shed light on the inter-regional connectivity 
and diminished long-range coherence found in individuals with ASD 
(Wang et al., 2013). 

Besides the clinical improvement of ASD psychopathology, another 
aim of the current study was to pave the road for an optimized neuro-
feedback methodology and protocol applicable to individuals with ASD. 

To this aim, we analyzed the entire process of SCP brain regulation via 
Bayesian multilevel methods. Our analyses revealed that a quadratic 
multilevel model provides a better description of the SCP training pro-
cess than a linear model. The presented findings reveal the complexity 
and non-linearity of the SCP neurofeedback training process and have 
implications for future analyses of neurofeedback data as well as 
regarding the critical discussion of training protocols. Furthermore, our 
results highlight the importance of analyzing the entire training process 
(for in-depth discussions of the different conditions and tasks, as well as 
related future recommendations see SI (B)). 

Although the complexity and large variability inherent in the data 
preclude a decisive interpretation, the results, especially in feedback 1 

Fig. 5. Task-related Power Spectral Density predictions from the quadratic models. The first row depicts the quadratic model’s mean predictions of mean PSD for the 
delta frequency band, the second row for the theta frequency band and the third row for the alpha frequency band. Predicted and empirical means are depicted across 
all sessions for each Feedback condition × Task combination. The shaded regions indicate 95% posterior credibility intervals. The marked dashed lines indicate the 
empirical means in each session, condition and task. 
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(first training block) suggest that adolescents with ASD can successfully 
learn to modulate their brain activity, as measured by the SCP differ-
entiation index. 

The observed effects of improved volitional control of prefrontal 
activity through SCP-training based on an operant conditioning para-
digm could possibly indicate neuroplastic changes (Birbaumer et al., 
1990) and be linked to a two-strategy mechanism, adjustable to the 
requirements of the specific situation: Firstly, especially the increased 
ability to produce negative SCP shifts might be used for increasing and 
allocating attention and improving executive functions, linked to 
improved attentional gating in fronto-thalamic-cingulate networks 
(perhaps reflected also in the improvements of the SRS subscale Social 
Cognition). Secondly, the remarkable facilitation of the generation of 
positive SCP shifts in the current study might be used to control exces-
sive arousal or regulate inflexible, stereotypic behavior, fostering an 
improved behavioral regulation (possibly linked to the improved SRS 
subscale Autistic Mannerism with its regulation of inflexible, stereotypic 
behavior). Considering similarities between ADHD and ASD, such as the 
often-reported frontal hypoarousal or the dysfunctional ACC (Chan 
et al., 2011; Craig et al., 2016), the self-inflated change of neural exci-
tation through SCP-regulation, seem to have many benefits compared to 
conventional treatment by enabling the participants to utilize their 
regulation skills in every necessary situation adaptively and without 
high costs or side effects. 

Notwithstanding mostly complying with the CRED-nf checklist (Ros 
et al., 2020) (see SI (A) for checklist) and considering the promising 
results, the current study has several limitations and cannot provide 
complete unbiased evidence regarding efficacy and specificity. First, the 
experimental design of clinical neurofeedback studies poses multiple 
challenges (e.g., regarding optimal control group/ -sham feedback 
conditions (Van Dongen-Boomsma et al., 2013)). While practical and 
ethical advantages of active control groups in adolescents are obvious, 
still unspecific effects such as the different frequency of interaction with 
clinical staff, the different settings, possible different expectations and 
randomly different baseline SRS scores between the groups could not 
completely be ruled out with such a design. Therefore, future research 
with more complex experimental designs, including higher samples sizes 
(feasible in multicenter studies) is needed. 

Our exploratory assessment of possible influences of diverse 
treatment-related trainer and participant variables (via FERT (Voll-
mann, 2009)), see SI (E)+(D) suggested a constant stability of those 
nonspecific-effects variables during the course of interventions as no 
remarkable increase or decrease could be observed for any treatment- 
related variable; neither in the experimental- nor in the control 
condition. 

In conclusion, this study is the first to demonstrate pronounced ASD- 
specific improvements, especially in social cognition and motivation, 
following intensive neurofeedback training of SCPs. Therefore, the 

volitional modification of SCP presents itself as a neurophysiologically 
plausible, noninvasive technique for application in clinical settings, 
and/or adjunct to psychopharmacological and behavioral interventions, 
if effective, refining treatment approaches for ASD. 
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