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Spittlebugs produce foam as a 
thermoregulatory adaptation
Mateus Tonelli1, Guilherme Gomes   2, Weliton D. Silva   1, Nathália T. C. Magri3,  
Durval M. Vieira4, Claudio L. Aguiar3 & José Maurício S. Bento   1

Insects have evolved multiple mechanisms to adapt to variations in environmental temperatures, 
including postural control of solar input, variations in diurnal activity, external morphological structures 
and selecting/generating microhabitats. Foam produced by Mahanarva fimbriolata nymphs (also known 
as root spittlebugs) was found to aid in creating a constant thermal microhabitat despite environmental 
temperature fluctuations. The temperature within the foam was found to be similar to that of soil 
during the day and remained constant despite fluctuating external temperatures. In chemically 
analysing the composition of the foam, palmitic and stearic acids, carbohydrates and proteins were 
detected. These substances have previously been shown to act as a surfactant to stabilize and modulate 
foams. Since the immature ancestor of the spittlebug developed below ground, it is speculated that the 
foam may function as an ‘extension’ of the soil and, thus, may have enabled the spittlebug to emerge 
from the soil and adopt an epigean lifestyle.

As insects are ectothermic (i.e., the internal temperature of the body varies according to the air temperature), 
they have evolved different mechanisms to regulate body temperature1. One common adaptation for thermoreg-
ulation is the creation of microhabitats. For example, eusocial hymenopterans and termites build elaborate nests 
to reduce the stress caused by environmental temperature fluctuations2,3. Cicada nymphs build below ground 
tunnels that allow them to live for years under favourable thermal conditions4. In contrast, nymphs of spittlebugs, 
a group that is phylogenetically closely related to cicadas, can be found below the soil surface5,6, at ground level7 or 
even far above the soil surface8. How they maintain a constant/suitable body temperature without the protection 
of ground insulation has not been previously reported.

Phylogenetic studies have shown that the first spittlebugs evolved approximately 200 million years ago from 
an ancestor in which nymphs developed below ground7,9,10. However, unlike the closely related cicadas, the front 
legs of spittlebug nymphs are not strong enough to burrow into the soil9. One potential mechanism that has 
been proposed for thermoregulation in spittlebugs is the foam that they produce and cover themselves with 
(commonly referred to as ‘cuckoo spit’)11,12. The nymphs produce foam by sucking air into the ventral cavity of 
their abdomen, that is then trapped in the fluid of the Malpighian tubules, resulting in the creation of bubbles in 
the terminal part of the abdomen12,13. The foam comprises liquid, air, and surface-active molecules that reduce 
surface and interfacial tension to form emulsions11,14. The liquid in the foam is derived from the plant sap upon 
which the nymphs feed15.

Interestingly, some amphibians, such as frogs, produce foam that protects their eggs and embryos against 
predation and desiccation while maintaining temperature and oxygen at appropriate levels16–18. Even though a 
similar function has been proposed for spittlebug foam19,20, experimental evidence of thermoregulation by their 
foam has not been shown.

The chemical composition allowing for a rigid bubble architecture in spittlebug foam is poorly understood14. 
Identifying the biochemical components may provide insight into the capacity of foam to contribute to ther-
moregulation. Proteins, carbohydrates and lipids can stabilize foam21–24, however little is known about the pres-
ence and quantity of these substances in spittlebug foam.

Mahanarva fimbriolata are spittlebugs that feed on sugarcane roots25. These cercopids develop on the exposed 
roots on soil surface or below ground5 and form a distinctive foam when in the nymph stage. Here we examine 
the role that foam may play in thermoregulation for spittlebug nymphs.
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Results
Foam as a thermal microhabitat.  To determine whether the internal temperature of spittlebug foam 
changes with fluctuations in external temperature, several local temperatures were monitored including: out-
side the foam, ground temperature near the foam and inside the foam. These temperature recordings were 
performed during summer in a sugarcane field where nymphs reside. While external temperatures range from 
24.43 ± 0.44 °C to 29.20 ± 1.66 °C, the internal foam temperature was found to vary to a much smaller degree 
(Fig. 1). In the middle of the day (11h00–13h00) when the external temperature was 29.20 ± 1.66 °C, the foam 
temperature was observed to be significantly lower at a temperature of 25.18 ± 0.63 °C (Fig. 1, one-way ANOVA 
followed by a Bonferroni post hoc test, n = 25, F(1,100) = 88.763, P < 0.0001) (Detailed values of means ± SD cor-
responding to Fig. 1 are shown in Supplementary Table S1). Indeed, despite fluctuating external temperatures, 
a uniform foam temperature was observed throughout the day (i.e. 25 ± 0.78 °C (mean ± SD)). Specifically a 
previous investigation found that 25 °C resulted in the greatest nymph viability26. In monitoring over 10 hours 
during the day, the surface temperature difference between the foam and the soil was ≤ 0.2 °C while the maximum 
difference between foam and the external temperature was ≥ 4.0 °C. This indicates that the temperature of the soil 
and the foam are similar (Fig. 1, one-way ANOVA followed by a Bonferroni post hoc test, n = 25, F(1,100) = 0.008, 
P = 0.928). Using thermograms obtained from an infrared camera, the difference in temperature near the foam 
can be visualized (Fig. 2).

To more rigorously examine the thermocapacity of the foam, nymphs were evaluated in a fitotron in which 
the temperature was controlled and elevated above normal field conditions. When the fitotron temperature was 
raised to 32.29 ± 0.58 °C (mean ± SD) for 30 minutes, foam temperature remained at 30.41 ± 1.01 °C (mean ± SD) 
which is approximately 2 °C below the air temperature (Fig. 3, one-way ANOVA followed by a Bonferroni post 

Figure 1.  Thermal variation in the foam produced by Mahanarva fimbriolata nymphs. Temperature variation 
in the foam produced by M. fimbriolata nymphs and in their environmental surroundings during a hot 
summer’s day in a sugarcane field in Piracicaba, São Paulo, Brazil. Different colours indicate significant 
differences between recorded temperature sites within the same sampling time, according to one-way 
ANOVA followed by a Bonferroni post hoc test (P < 0.05) (n = 25). AT1 = air temperature at 2.5 m above 
ground; AT2 = air temperature at 1.5 m above ground; AT3 = air temperature at 0.1 m from foam and ground; 
FT = temperature inside foam; GT = temperature 0.1 m below ground.

Figure 2.  The foam promotes insect thermal protection. Conventional and corresponding infrared 
photographs of the foam produced by Mahanarva fimbriolata nymphs and of their surroundings in a sugarcane 
field in Piracicaba, São Paulo, Brazil, at 13h00 on a hot summer’s day. The photographs show the importance of 
the foam to maintaining the microhabitat temperature lower than the surrounding temperature.
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hoc test, n = 25, F(1,25) = 57.220, P < 0.0001). These results indicate that the foam acts as a thermoregulator at 
32 °C, which has previously been shown to be lethal for nymphs26. The combined field and laboratory data indi-
cate that nymph foam production (Supplementary Movie 1) results in a relatively constant internal temperature at 
a wide range of external air temperatures that creates a suitable thermal microhabitat for nymph survival.

Foam chemical composition.  Using gas chromatography-flame ionization detection (GC-FID) and gas 
chromatography-mass spectrometry (GC-MS) two major peaks were identified as palmitic acid and stearic acid; 
co-injection with commercial standards confirmed their identity. Amounts of palmitic and stearic acid in the 
foam were 2.54 ± 0.88 and 2.78 ± 0.97 µg ml−1 foam (means ± SE), respectively. Total carbohydrates were quan-
tified by means of the phenol-sulfuric acid method27, with 0.579 ± 0.05 µg ml–1 foam (mean ± SE). Based on the 
Bradford method28 total protein was 320 ± 50 µg ml–1 foam. These components are recognized as important sub-
stances in the formation and stabilization of foam bubbles29–32, and as such are likely necessary for maintaining a 
stable bubble layer around nymphs.

Discussion
Insects have evolved complex mechanisms to regulate their body temperature within a remarkably narrow range 
for successful survival and reproduction33–35. Here, we showed that M. fimbriolata nymphs produce and cover 
themselves with foam as a thermoregulatory adaptation that enable spittlebugs to maintain their body temper-
ature within the optimal range for development26. The temperature measured inside the foam was similar to the 
soil even though the air temperature in both the field and fitotron varied to a much greater extent (Figs 1 and 3).  
Since spittlebug and some below ground insects are thought to share a common ancestor7,9, insect-produced 
foam may serves as an ‘extension’ of the soil and enable immature spittlebugs to exploit food sources for above 
ground feeding. Without such a domestic protection, delicate cuticles would leave spittlebug nymphs vulnerable 
to adverse abiotic epigean environmental factors, such as high temperature and low humidity19.

Lipids, carbohydrates, and proteins were detected in M. fimbriolata foam similar to the foam composition of 
other spittlebug species11,14,15,36,37. Proteins were detected in most foams analysed11,14,15,36 whereas lipids are much 
less common being observed only in the foam of Japanese spittlebugs37. While the chemical analysis has not been 
shown to directly provide thermal protection, lipids, carbohydrates and proteins that are present in spittlebug 
foam has previously been shown to function as a surfactant to stabilize the foam thereby reducing surface tension 
and modulating the size and distribution of bubble29–31. Lipids, including palmitic and stearic acids, are critical 
for the formation and stability of foams because of their elastic forces32. For example, palmitic, linolenic and 
pentadecanoic acid have been positively correlated with the height of cider-type beverage foams24. Proteins are 
involved, especially in the formation of film that reduce interfacial tension and increase the viscosity and elasticity 
of a foam38–40, which allows the foam to breathe and secure around the insect. Although carbohydrates have no 
direct effect on the air−water interface, they promote interactions among proteins, which create a stable film that 
stiffens and stabilizes the foam41.

While the mechanism behind the observed thermal protection is proposed to be due to thermal insulation the 
extent in which evaporative cooling may play a role in controlled temperature conditions still needs to be investi-
gated. Evaporative cooling has been demonstrated for hemipterans that feed on xylem and do not produce foam, 
such as the cicada Okanagodes gracilis, that regulate their body temperature by water loss through pores in the 

Figure 3.  The temperature of spittlebug foam under controlled conditions. Comparison of the temperature 
of the foam produced by Mahanarva fimbriolata, plant substrate (soil) and surrounding air temperature in a 
growth chamber. Bars represent the temperature mean ± SD. Bars with different letters are significantly different 
according to one-way ANOVA followed by a Bonferroni post hoc test (P < 0.05) (n = 25).
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dorsal thorax and abdomen33. Interestingly, for foam-producing Aphrophora saratoga nymphs, water evaporation 
from foam was demonstrated be lower than from free-water surface, making the foam an uncertain protection 
against desiccation for this species42. In future studies, by measuring temperature of dried cercopid foam differ-
entiating these two mechanisms experimentally should be possible.

In summary, nymph-produced foam forms a microhabitat for the thermoregulation of M. fimbriolata nymphs. 
Future investigations on physical properties of the foam, especially optical reflection and heat dissipation will 
provide further insights into the phenomenon reported here.

Methods
Thermal microhabitat.  To determine whether the foam covering M. fimbriolata nymphs has a thermoregu-
latory role, we conducted a field bioassay during the summer of 2015 in a sugarcane field in Piracicaba, São Paulo, 
Brazil (22°42′06″S, 047°33′50″W). The sugarcane plants were approximately 2 m tall, with 1 m between rows. 
We selected 25 sites inhabited by foam-covered fourth- and fifth-instar nymphs of M. fimbriolata, maintaining 
a minimum distance of 10 m between each site. Using a type K thermocouple (RDXL4SD, Omega Engineering, 
Stamford, CT, USA), we measured the temperature inside the foam, 0.1 m from foam and ground, 2.5 m and 1.5 m 
above ground, and 0.1 m below ground level at five time intervals that represented the natural variation in tem-
perature during the day: 07h00–09h00, 09h00–11h00, 11h00–13h00, 13h00–15h00 and 15h00–17h00 (Fig. 1). 
We constructed a thermogram using an infrared camera (SC640 FLIR Systems, Boston, MA, USA) and analysed 
the temperature of the thermographic images using the ThermaCAM Researcher 2.9 software (FLIR Systems, 
Boston, MA, USA).

To investigate if the thermoregulation occurs at higher environmental temperatures than those achieved in 
the field experiments, we also evaluated the thermophysiology of the foam under controlled conditions using 
a fitotron growth chamber (ELETROLAB, São Paulo, SP, Brazil). Fourth and fifth-instar nymphs of M. fimbri-
olata were collected from the same field and carefully transferred to the roots of sugarcane plants aged 25–30 
days growing in pots (200 ml) containing organic substrate (Golden-Mix, Ananindeua, PA, Brazil), with one 
nymph per plant, for a total of 25 replicates. The plants and insects were initially equilibrated at room conditions 
(25 ± 2 °C, 70 ± 10% UR) for 30 min before nymphs began to produce foam. Next, they were arranged within the 
growth chamber at a temperature of approximately 32 ± 0.11 °C. After 30 min of acclimation and temperature 
stabilization, we recorded the temperatures in the chamber, 1 cm below the surface of the soil in the pots, and 
inside the foam using the type K thermocouple.

Fatty acid analysis.  To analyse the fatty acids present in the foam, five foam samples were collected in the same 
sugarcane field cited above, placed in glass vials (10 ml) using a glass pipette and stored at −30 °C until analysis. 
Following an extraction sequence, 1 ml of each sample was derivatised through the application of ethyl chloro-
formate43. At the end of the derivatisation process, each sample was adjusted to 0.5 ml with cyclohexane as the 
solvent. Each sample received 5 μL of octacosane (internal standard solution at 1000 ng µL−1) (Sigma-Aldrich, St 
Louis, MO, USA). The derivatised samples were initially analysed by gas chromatography-flame ionization detection 
(GC-FID, Shimadzu GC-2010, Kyoto, Japan) using an HP-1 capillary column (Agilent Scientific, Santa Clara, CA, 
USA; 30 m × 0.25 mm × 0.25 µm). A 1 µL aliquot of each sample was injected in the splitless mode with an injector 
temperature of 240 °C using helium as the carrier gas. The column temperature was held at 60 °C for 1 min and then 
increased to 320 °C (15 °C min−1) and held for 10 min. The extract with the best resolution was reanalysed with a gas 
chromatograph coupled to a mass spectrometer (GC-MS, Varian 4000, Palo Alto, CA, USA) using an HP5-MS col-
umn (JeW Scientific, Folsom, CA, USA; 30 m × 0.25 mm × 0.25 µm) and helium as the carrier gas. Injection (1 µL ali-
quot) was conducted in the splitless mode, and the column temperature programme was the same as that described 
for the GC-FID procedure above. The two major peaks were identified by comparing their mass spectra with those 
of the NIST 98 library and confirmed by co-injecting the authentic standards (Sigma-Aldrich, St Louis, MO, USA) 
with the sample. Amounts were estimated based on the peak area relative to the amount of internal standard (octa-
cosane) and corrected according to the volume of foam used for the derivatisation.

Carbohydrate analysis.  Total carbohydrate was estimated using the phenol-sulfuric acid method27. Briefly, 
five samples of foam produced by M. fimbriolata nymphs were collected, and an aliquot of 1 ml of each sample 
was vortexed with 25 µL of phenol (80% m/v) and 2.5 ml of sulfuric acid. The resulting mixture was allowed to 
stand for 20 min and then vortexed again. For the control, we used 1 ml of distilled water and followed the same 
steps as above. The absorbance of the mixed samples was measured spectrophotometrically using a UV mini 1240 
Shimadzu (Shimadzu, Tokyo, Japan) at a wavelength of 490 nm. The total concentration was calculated based on 
a standard curve using glucose (0.01 mg L−1) in the range of 100–1000 µg.

Protein analysis.  Total protein present in the foam was quantified according to the Bradford technique28. 
Five samples of foam were collected in the same sugarcane field and 50 µL of each sample was dissolved in 3.95 ml 
of Milli-Q water, and 1 ml of Bradford reagent (Coomassie Brilliant Blue G with phosphoric acid and methanol) 
was added. The absorbance of the samples was measured using a spectrophotometer UV mini 1240 Shimadzu 
(Shimadzu, Tokyo, Japan) at a wavelength of 595 nm. As a control, we used 4 ml of Milli-Q water and 1 ml of 
protein reagent. The total protein concentration in the foam was calculated based on a standard curve for bovine 
serum albumin (BSA) at intervals of 0.02 to 0.3 mg.

Statistical analysis.  The normality and homogeneity of the temperatures recorded in the field obser-
vations and in the laboratory assay were analysed using Kolmogorov-Smirnov and Bartlett tests. To limit the 
experiment-wise error rates to acceptable level in multiple comparisons with a low numbers of related groups, 
means the temperatures of the foam and those of other recorded sites were compared using one-way ANOVA fol-
lowed by a Bonferroni post hoc test (P < 0.05)44. All analyses were performed using the SAS statistical software45.
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Data availability.  The data that support the findings of this study are available from the corresponding 
author (J.M.S.B.) upon reasonable request.

References
	 1.	 May, M. L. Insect Thermoregulation. Annu. Rev. Entomol. 24, 313–349 (1979).
	 2.	 Korb, J. Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90, 212–219 (2003).
	 3.	 Kadochová, S. & Frouz, J. Thermoregulation strategies in ants in comparison to other social insects, with a focus on red wood ants 

(Formica rufa group). F1000Research 2, 280 (2013).
	 4.	 Williams, K. S. The Ecology, Behavior, and Evolution of Periodical Cicadas. Annu. Rev. Entomol. 40, 269–295 (1995).
	 5.	 Leite, L. G., Machado, L. A., Goulart, R. M., Tavares, F. M. & Batista Filho, A. Screening of entomopathogenic nematodes (Nemata: 

Rhabditida) and the efficiency of Heterorhabditis sp. against the sugarcane root spittlebug Mahanarva fimbriolata (Fabr.) 
(Hemiptera: Cercopidae). Neotrop. Entomol. 34, 785–790 (2005).

	 6.	 Cryan, J. R. Molecular phylogeny of Cicadomorpha (Insecta: Hemiptera: Cicadoidea, Cercopoidea and Membracoidea): Adding 
evidence to the controversy. Syst. Entomol. 30, 563–574 (2005).

	 7.	 Cryan, J. R. & Svenson, G. J. Family-level relationships of the spittlebugs and froghoppers (Hemiptera: Cicadomorpha: Cercopoidea). 
Syst. Entomol. 35, 393–415 (2010).

	 8.	 Thompson, V. Spittlebug nymphs (Homoptera: Cercopidae) in Heliconia flowers (Zingiberales: Heliconiaceae): Preadaptation and 
evolution of the first aquatic Homoptera. Rev. Biol. Trop. 45, 905–912 (1997).

	 9.	 Rakitov, R. A. Structure and Function of the Malpighian Tubules, and Related Behaviors in Juvenile Cicadas: Evidence of Homology 
with Spittlebugs (Hemiptera: Cicadoidea & Cercopoidea). Zool. Anzeiger - A J. Comp. Zool. 241, 117–130 (2002).

	10.	 Dietrich, C. H. Evolution of Cicadomorpha (Insecta, Hemiptera). Denisia 176, 155–170 (2002).
	11.	 Marshall, A. T. Protein synthesis and secretion by the Malpighian tubules of cercopoid larvae (Homoptera). J. Insect Physiol. 19, 

2317–2326 (1973).
	12.	 Guilbeau, B. H. The Origin and Formation of the Froth in Spittle-Insects. Am. Nat. 42, 783–798 (1908).
	13.	 Weaver, C. & King, D. Meadow spittlebug. Ohio Agric. Exp. Station. Res. Bull. 741, 1–99 (1954).
	14.	 Mello, M. L. S., Pimentel, E. R., Yamada, A. T. & Storopoli-Neto, A. Composition and structure of the froth of the spittlebug, Deois 

sp. Insect Biochem. 17, 493–502 (1987).
	15.	 Wilson, H. A. & Dorsey, C. K. Studies on the Composition and Microbiology of Insect Spittle. Ann. Entomol. Soc. Am. 50, 399–406 (1957).
	16.	 Fleming, R. I., Mackenzie, C. D., Cooper, A. & Kennedy, M. W. Foam nest components of the tungara frog: a cocktail of proteins 

conferring physical and biological resilience. Proc. R. Soc. B Biol. Sci. 276, 1787–1795 (2009).
	17.	 Seymour, R. S. & Loveridge, J. P. Embryonic and larval respiration in the arboreal foam nests of the African frog Chiromantis 

xerampelina. J. Exp. Biol. 197, 31–46 (1994).
	18.	 Haddad, C. F. & Hödl, W. A new reproductive mode in anurans: bubble nest in Chiasmocleis leucosticta (Microhylidae). Copeia 3, 

585–588 (1997).
	19.	 Whittaker, J. B. Cercopid Spittle as a Microhabitat. Oikos 21, 59–64 (1970).
	20.	 del Campo, M. L., King, J. T. & Gronquist, M. R. Defensive and chemical characterization of the froth produced by the cercopid 

Aphrophora cribrata. Chemoecology 21, 1–8 (2011).
	21.	 A. Bos, M. & van Vliet, T. Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv. Colloid 

Interface Sci. 91, 437–471 (2001).
	22.	 Arakawa, T. & Timasheff, S. N. Stabilization of protein structure by sugars. Biochemistry 21, 6536–6544 (1982).
	23.	 Herceg, Z., Režek, A., Lelas, V., Krešić, G. & Franetović, M. Effect of carbohydrates on the emulsifying, foaming and freezing 

properties of whey protein suspensions. J. Food Eng. 79, 279–286 (2007).
	24.	 Margolles Cabrales, I., Arias Abrodo, P. & Blanco-Gomis, D. Influence of Fatty Acids on Foaming Properties of Cider. J. Agric. Food 

Chem. 51, 6314–6316 (2003).
	25.	 Dinardo-Miranda, L. L., Vasconcelos, A. C. M., Vieira, S. R., Fracasso, J. V. & Grego, C. R. Uso da geoestatística na avaliação da 

distribuição espacial de Mahanarva fimbriolata em cana-de-açúcar. Bragantia 66, 449–455 (2007).
	26.	 Garcia, J. F. Bioecologia e manejo da cigarrinha-das-raízes, Mahanarva fimbriolata (Stal, 1854) (Hemiptera: Cercopidae), em cana-

de-açúcar. Univ. São Paulo (2006).
	27.	 Dubois, M., Gilles, K. A. & Hamilton, J. K. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 

350–356 (1956).
	28.	 Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-

dye binding. Anal. Biochem. 72, 248–254 (1976).
	29.	 Murray, B. S. & Ettelaie, R. Foam stability: proteins and nanoparticles. Curr. Opin. Colloid Interface Sci. 9, 314–320 (2004).
	30.	 Mecozzi, M. & Pietroletti, M. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-

vis, FTIR and FTNIR spectroscopy. Environ. Sci. Pollut. Res. 23, 22418–22432 (2016).
	31.	 Pueyo, E., Martín-Alvarez, P. J. & Polo, M. C. Relationship Between Foam Characteristics and Chemical Composition in Wines and 

Cavas (Sparkling Wines). Am. J. Enol. Vitic. 46, 518–524 (1995).
	32.	 Malysa, K., Miller, R. & Lunkenheimer, K. Relationship between foam stability and surface elasticity forces: Fatty acid solutions. 

Colloids and Surfaces 53, 47–62 (1991).
	33.	 Sanborn, A. F., Heath, J. E. & S. Heath, M. Thermoregulation and evaporative cooling in the cicada Okanagodes gracilis (homoptera: 

cicadidae). Comp. Biochem. Physiol.–Part A Physiol. 102, 751–757 (1992).
	34.	 Li, Z. et al. Drone and worker brood microclimates are regulated differentially in honey bees, Apis mellifera. PLoS One 11 (2016).
	35.	 Shi, N. N. et al. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science (80-). 349, 

298–301 (2015).
	36.	 Auad, A. M. et al. Spittle protein profile of Mahanarva spectabilis (Hemiptera: Cercopidae) fed various elephant grass genotypes. 

Genet. Mol. Res. 11, 3601–3606 (2012).
	37.	 Kato, K. The origin and composition of the cuckoo spit. Rept. Saitama Univ., B 3, 33–53 (1958).
	38.	 Zayas, J. F. Foaming Properties of Proteins. In Functionality of Proteins in Food 260–309 https://doi.org/10.1007/978-3-642-59116-

7_6 (Springer Berlin Heidelberg, 1997).
	39.	 Hailing, P. J. & Walstra, P. Protein-stabilized foams and emulsions. C R C Crit. Rev. Food Sci. Nutr. 15, 155–203 (1981).
	40.	 Martin, A. H., Grolle, K., Bos, M. A., Cohen Stuart, M. A. & van Vliet, T. Network forming properties of various proteins adsorbed 

at the air/water interface in relation to foam stability. J. Colloid Interface Sci. 254, 175–83 (2002).
	41.	 Adebowale, K. O. & Lawal, O. S. Foaming, gelation and electrophoretic characteristics of mucuna bean (Mucuna pruriens) protein 

concentrates. Food Chem. 83, 237–246 (2003).
	42.	 Turner, J. S. AnomalousWater-Loss Rates From Spittle Nests of Spittlebugs Aphrophora saratoga (Homoptera, Cercopidae). Comp. 

Biochem. Physiol. a-Physiology 107, 679–683 (1994).
	43.	 Qiu, Y. et al. Application of ethyl chloroformate derivatization for gas chromatography–mass spectrometry based metabonomic 

profiling. Anal. Chim. Acta 583, 277–283 (2007).
	44.	 Armstrong, R. A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 34, 502–508 (2014).
	45.	 SAS Institute. SAS/STAT 9.3 User’s Guide. SAS Institute, Inc. (2011).

http://dx.doi.org/10.1007/978-3-642-59116-7_6
http://dx.doi.org/10.1007/978-3-642-59116-7_6


www.nature.com/scientificreports/

6SCIEnTIfIC REPOrTS |  (2018) 8:4729  | DOI:10.1038/s41598-018-23031-z

Acknowledgements
The authors acknowledge financial support from the Coordination for the Improvement of Higher Education 
Personnel (CAPES) and the National Institute of Science and Technology – Semiochemicals in Agriculture 
(FAPESP and CNPq – grants #2014/50871-0 and #465511/2014-7, respectively). We are grateful to Professor 
Denis Otávio Vieira de Andrade (Laboratory of Comparative Physiology, UNESP, Rio Claro) for the loan of the 
infrared camera, and Paul Pare of Texas Tech University for assistance on English writing.

Author Contributions
M.T., G.G., W.D.S., and J.M.S.B. designed the experiments. M.T. and G.G. performed the experiments at field 
and under controlled conditions. N.T.C.M. and C.L.A. carried out the analysis of carbohydrates and proteins. 
D.M.V., G.G., M.T., and W.D.S. performed the analysis of fatty acids. G.G. and M.T. prepared all the figures. The 
manuscript was written with contributions from all authors. All authors have approved the final version of the 
manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-23031-z.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-23031-z
http://creativecommons.org/licenses/by/4.0/

	Spittlebugs produce foam as a thermoregulatory adaptation

	Results

	Foam as a thermal microhabitat. 
	Foam chemical composition. 

	Discussion

	Methods

	Thermal microhabitat. 
	Fatty acid analysis. 
	Carbohydrate analysis. 
	Protein analysis. 
	Statistical analysis. 
	Data availability. 

	Acknowledgements

	Figure 1 Thermal variation in the foam produced by Mahanarva fimbriolata nymphs.
	Figure 2 The foam promotes insect thermal protection.
	Figure 3 The temperature of spittlebug foam under controlled conditions.




