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Abstract

Background: Quantitative molecular data from urine are rare in epidemiology and genet-

ics. NMR spectroscopy could provide these data in high throughput, and it has already

been applied in epidemiological settings to analyse urine samples. However, quantitative

protocols for large-scale applications are not available.

VC The Author(s) 2019. Published by Oxford University Press on behalf of the International Epidemiological Association. 978
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Epidemiology, 2019, 978–993

doi: 10.1093/ije/dyy287

Advance Access Publication Date: 25 January 2019

Original article

http://orcid.org/0000-0002-1407-8314
https://academic.oup.com/


Methods: We describe in detail how to prepare urine samples and perform NMR experi-

ments to obtain quantitative metabolic information. Semi-automated quantitative line

shape fitting analyses were set up for 43 metabolites and applied to data from

various analytical test samples and from 1004 individuals from a population-based epi-

demiological cohort. Novel analyses on how urine metabolites associate with quantita-

tive serum NMR metabolomics data (61 metabolic measures; n¼995) were performed.

In addition, confirmatory genome-wide analyses of urine metabolites were conducted

(n¼578). The fully automated quantitative regression-based spectral analysis is demon-

strated for creatinine and glucose (n¼ 4548).

Results: Intra-assay metabolite variations were mostly <5%, indicating high robustness

and accuracy of urine NMR spectroscopy methodology per se. Intra-individual metabo-

lite variations were large, ranging from 6% to 194%. However, population-based inter-in-

dividual metabolite variations were even larger (from 14% to 1655%), providing a sound

base for epidemiological applications. Metabolic associations between urine and serum

were found to be clearly weaker than those within serum and within urine, indicating

that urinary metabolomics data provide independent metabolic information. Two previ-

ous genome-wide hits for formate and 2-hydroxyisobutyrate were replicated at genome-

wide significance.

Conclusion: Quantitative urine metabolomics data suggest broad novelty for systems ep-

idemiology. A roadmap for an open access methodology is provided.
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Key Messages

• A quantitative high-throughput urine NMR metabolomics platform is presented with all the experimental details on

sample preparation and NMR spectroscopy. The feasibility of fully automated quantitative spectral analysis is demon-

strated for creatinine and glucose (n¼ 4548) and a roadmap given for an open access software solution to allow for

cost-effective large-scale studies in systems epidemiology.

• Quantification of 43 metabolites in the urine NMR spectra for 1004 people from a population cohort is presented us-

ing a semi-automated methodology. A list of over 100 assigned metabolites is provided.

• Most of the intra-assay metabolite coefficients of variation percent (CV%s) are less than 5%, indicating high robust-

ness and accuracy of the urine NMR spectroscopy and the entire quantification process per se. Nevertheless urine is

a waste product and, expectedly, the intra-individual variation in urine metabolites is high (CV%s over 20% for the

majority of metabolites over 30 days). However, the even higher population-based inter-individual variation (CV%s

over 40% for the majority of metabolites in 1004 individuals) provides a sound base for epidemiological and genetic

applications.

• Various results based on this new platform illustrate abundant epidemiological novelty from quantitative urine metab-

olomics. Quantitative serum and urine metabolomics is combined for the first time on an epidemiological scale,

resulting in a plethora of new metabolic findings. Multiple previously reported associations between adiposity and

urine metabolites were replicated, together with two previously identified genetic loci for formate and 2-hydroxyiso-

butyrate at genome-wide significance.

• Urine reflects the function of kidneys, including multiple metabolites from several key biochemical pathways in rela-

tion to (patho)physiology and cardiometabolic conditions, gut microbial metabolic activities and short-term food con-

sumption. Urine samples therefore contain abundant and underused information for epidemiology and for potential

translational applications.
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Introduction

Metabolomics provides a snapshot of an individual’s

physiological state, influenced by genetic and lifestyle fac-

tors. Urine is produced from blood by the kidneys and

contains both endogenous and exogenous compounds.1

Among the biofluids commonly used in epidemiology,

urine has several advantages: it is abundant, sterile and

easy to collect.2 Urine reflects the function of kidneys, in-

cluding multiple metabolites from several key biochemi-

cal pathways in relation to (patho)physiology and

cardiometabolic conditions, gut microbial metabolic ac-

tivities and short-term food consumption.1,3–5 Urine

samples therefore contain abundant and underused infor-

mation for epidemiology and for potential translational

applications.6

Nuclear magnetic resonance (NMR) spectroscopy pro-

vides a comprehensive quantitative approach for urine

analysis1,2,5 and has the potential to offer fully automated

high-throughput experimentation in a cost-effective man-

ner, which would be essential for large-scale systems epide-

miology.7–9 NMR spectroscopy is highly reproducible and

requires only minimal sample preparation. Bouatra et al.1

have concluded that NMR may currently be the most com-

prehensive and certainly the most quantitative approach

for urine characterization. However, the signal assign-

ments and quantifications from urine spectra are compli-

cated by signal overlap, as well as considerable variations

in signal positions between spectra due to differences in the

chemical properties of the samples, such as pH, ionic

strength and concentration of multivalent cations.2 Some

software applications exist which have been used in the

analyses of urine NMR data, but currently none of them

provides comprehensive automated quantification of the

metabolic information.10–13

We introduce here a detailed experimental set-up, in-

cluding all the key attributes of sample preparation and

NMR experimentation, for quantitative high-throughput

urinary analyses. We also initially demonstrate how fully

automated quantitative analyses perform in the case of

urine NMR spectra, and propose an open access quantita-

tive pipeline of urine NMR metabolomics to facilitate

large-scale studies. We present extensive analytical data on

intra-assay, intra-individual and inter-individual variation

in urinary metabolites. In addition, we detail the character-

istics of quantitative urine metabolite data in epidemiol-

ogy, and present novel analyses regarding how the urine

metabolites associate with circulating metabolites and lip-

ids. Confirmative genome-wide analyses are also pre-

sented. All data domains substantiate the potential

usefulness of quantitative molecular data on urine samples

in systems epidemiology.

Materials and Methods

Urine sample preparation

Urine is waste material and thus, in contrast to blood that

is strictly buffered, does not entail similar biological regu-

lation. Therefore, there is considerable variation in pH,

ionic strength, concentrations of multivalent cations and

metabolite composition between samples and individuals.

The variations in pH and ionic strength are minimized by

the addition of phosphate buffer to the samples. TSP (2, 2,

3, 3-tetradeutero-3-(trimethylsilyl)-propionic acid) is used

as a chemical shift as well as an internal concentration ref-

erence. The required sample volume is 800 ml. The sample

preparation protocol is performed with an automated liq-

uid handler (PerkinElmer JANUS 8-tip Automated

Workstation) enabling preparation of approximately 100

urine samples per hour. Detailed instructions for sample

preparation are given in Supplementary Table 1, available

as Supplementary data at IJE online. The experimental

protocol is currently designed only for 5-mm NMR sample

tubes, i.e. 630 ml of urine þ 70 ml of buffer, but it would

be possible to scale down the volumes and modify the

methodology for 3-mm NMR sample tubes if the sample

volume would appear to be a limiting issue in future appli-

cations. From the analytical chemistry perspective, any

urine sample is appropriate for analysis, i.e. spot urine,

overnight or a 24-h collection. The urine samples in this

study were stored at �80�C before use.

NMR measurements

A flowchart is given to explain the study and data analyses

protocols as Supplementary Scheme 1, available as

Supplementary data at IJE online. All data were measured

according to the experimental guidelines given in

Supplementary Tables 1 and 2, available as Supplementary

data at IJE online. Urine samples for a 30-day follow-up col-

lection were taken from three volunteers as morning spot

urines. In the Northern Finland Birth Cohort 1966

(NFBC66; the cohort description is available as

Supplementary Data, available as Supplementary data at

IJE online) 4549 morning spot urine samples were collected.

NMR data were measured using a 600 MHz Bruker

NMR spectrometer, equipped with a cryoprobe (Bruker

Prodigy TCI 600 S3 H&F-C/N-D-05 Z) and an automatic

cooled SampleJet sample changer. Use of a 600 MHz spec-

trometer reduces (but does not eliminate) the signal over-

lap of urine metabolites. Standard water-suppressed

measurements are applied. With this hardware set-up,

NMR data for over 200 urine samples can be automati-

cally collected in 24 h. The detailed NMR measurement
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protocol and parameters are given in Supplementary Table

2, available as Supplementary data at IJE online.

Due to day-to-day and person-to-person variations in

the volume of urine, which affect the absolute urine metab-

olite concentrations, it is important to apply a biologically

relevant normalization method. The standard protocol in

the field is to normalize to creatinine. We used this ap-

proach here, but it would be relevant to test this assump-

tion with forthcoming data in extensive epidemiological

cohorts by evaluating and comparing multiple methods,

e.g. normalization to the sum of all or selected metabolites

in the sample, and potential new methods.14,15

Serum samples (n¼ 5788) from NFBC66 were analysed

using a high-throughput quantitative NMR metabolomics

platform originating from our team.7 This platform provides

simultaneous quantification of routine lipids and lipid con-

centrations of 14 lipoprotein subclasses and major subfrac-

tions, and further quantifies abundant fatty acids, amino

acids, ketone bodies and gluconeogenesis-related metabolites

in absolute concentration units. This serum NMR metabolo-

mics platform has been available since 2009,7 and it has been

used to analyse around 500 000 samples in extensive epide-

miological and genetic studies.8,9 Details of the experimenta-

tion have been described elsewhere,7,8,16 and the large-scale

epidemiological applications have recently been reviewed9;

61 metabolic measures giving a representative overview of

the key metabolic pathways were used here.8,17–19

Quantitative urine and serum metabolomics data were avail-

able for 995 and quantitative urine metabolomics and

genome-wide data for 578 individuals.

Metabolite quantification in urine samples and

analytical issues

We have identified over 100 metabolites (Supplementary

Table 3, available as Supplementary data at IJE online)

and set up semi-automated line shape fitting analyses to

quantify 43 of these (Table 1). In addition to data from

multiple analytical test samples, data from 1004 urine sam-

ples from the NFBC66 were quantified. Table 1 summa-

rizes all these data and gives details on the calculations for

intra-assay coefficients of metabolite variations in percent

(CV%s), as well as for intra-individual and inter-

individual metabolite variation. These semi-automated

quantifications rely on the sophisticated constrained total

line shape (CTLS) fitting analysis tools developed for high-

precision quantitative NMR spectroscopy.20,21 In CTLS

fitting, the molecular characteristics of individual metabo-

lites are taken into account (so-called biochemical prior

knowledge, see e.g. references 20 and 21 for further

details) in the form of characteristic peak groupings and

appropriate mathematical constraints. These types of prior

knowledge in line shape fitting analyses for the signal

structures and shapes is essential to enable reliable quanti-

fications of overlapping signals that are typical for com-

plex biological fluids.20 Figure 1 illustrates the

characteristics of urine NMR data and the principles of the

CTLS fitting analysis. These analyses are, at best, semi-

automated and are typically performed separately for mul-

tiple spectral regions, i.e. analysing only one or a few

metabolites at a time.

Thus, semi-automated line shape fitting analyses are the

most robust available but take a considerable amount of

time per sample and require manual control of the analysis

parameters as well as assessment of fitting results. Thus,

when aiming for large-scale epidemiology, regression analy-

sis types of approaches need to be used.22,23 However, robust

line shape fitting analyses form the essential base for eventu-

ally automating the quantitative metabolite analyses,22 i.e.

the extensive and detailed data from the line shape fitting

analyses for the 1004 NFBC66 urine samples will serve as a

training set for the automated regression models to be devel-

oped.23 The automated quantification protocols to be estab-

lished for the urine analyses will be similar to those we have

successfully used in the case of serum NMR metab-

olomics.8,23 We intend to provide an open-access software

for the urinary metabolite quantification via a free website.

Supplementary Figure 1, available as Supplementary data at

IJE online illustrates the building of automated regression

models to quantify urinary creatinine and glucose from the

NMR spectra. These models are based on the semi-

automated line shape fitting analyses of 999 urine samples;

five spectra of the 1004 available were excluded from the au-

tomated modelling at this initial stage due to non-optimal

shimming and/or baseline features (see Supplementary

Scheme 1, available as Supplementary data at IJE online).

Figure 2 shows the final automated regression models for

creatinine and glucose and the distribution for urinary glu-

cose concentration in 4548 people in NFBC66. One spec-

trum was rejected at this stage by the automated analysis

software due to non-optimal shimming.

Statistical analyses

Partial correlations adjusted for sex were used to analyse

the intra-fluid (urine-urine and serum-serum) and inter-

fluid (urine-serum) associations between the quantitative

metabolic measures for the NFBC66 samples (n¼ 995).

Urine and serum metabolic measures were log-

transformed. The results are shown in colour-coded heat

maps in Figure 3 for the intra-serum associations, in

Figure 4 for the intra-urine associations and in Figure 5 for

the inter-fluid urine-serum metabolic associations. The

number of principal components (PCs) needed to explain
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>99% of variation in the metabolic information was 40

PCs for 43 urine metabolites, 27 PCs for 61 serum meas-

ures and 66 PCs for the combined metabolic data of 104

metabolic measures. Therefore we used multiple compari-

son corrected P-value thresholds of 0.001 (i.e. 0.05/40 via

the Bonferroni method; P<0.001 marked with * in the

maps), 0.002 (0.05/27, *P<0.002) and 0.0008 (0.05/66,

*P<0.0008), respectively, to denote evidence in favour of

an association.

Adiposity is a causal risk factor for many cardiometabolic

conditions26 and it has been previously studied in relation to

urinary metabolites.4 Therefore, we wanted a preliminary un-

derstanding and comparison of our quantitative urine metab-

olite data and analysed the associations of body mass index

Figure 1. Characteristic 1H NMR spectra of human urine from six subjects, and illustration of the sophisticated line shape fitting analyses. Alignment

of spectra from six subjects is shown. Heavily overlapping signal structures in multiple areas are typical for these spectra. The insets marked from A

to F illustrate how line shape fitting analyses, incorporating prior knowledge on the individual molecular attributes, can robustly solve the overlap

and lead to reliable quantification of the metabolites.20,21 Black lines represent the observed spectra and the coloured lines represent the fitted sig-

nals. Grey lines indicate currently unidentified signals. The green line at the bottom illustrates the difference between the observed spectrum and the

fitted signals. The coupling trees above the spectra demonstrate the multiplet structures directly linked to the molecular attributes and used as con-

straints in the line shape fitting analyses.20,21
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Table 1. Intra-assay variation as well as intra-individual and inter-individual variation of quantified urine metabolites

Metabolite Intra-assay CV (%)a,b Intra-individual CV (%)a,c Inter-individual CV (%)a,d

Amino acids

Alanine 1.16 28.69 49.88

Glycine 2.21 34.71 73.98

Histidine 1.10 30.25 48.81

Threonine 4.57 38.58 75.44

Branched-chain amino acids

Isoleucine 6.68 23.27 54.06

Valine 4.72 20.28 39.50

Aromatic amino acids

Tryptophan 3.34 33.76 51.05

Tyrosine 3.35 32.09 45.76

Glycolysis-related metabolites

Glucose 2.91 13.76 1654.62

Lactate 4.28 44.26 476.52

Citrate cycle-related metabolites

Cis-aconitate 0.85 22.28 39.68

Citrate 1.51 27.92 53.35

Urea cycle

Urea 1.46 32.98 39.44

Phenylalanine metabolism

4-Hydroxyphenylacetate 2.24 28.73 52.12

Hippurate 1.15 58.45 69.26

Histidine metabolism

3-Methylhistidine 1.56 95.44 117.16

Glycine, serine and threonine metabolism

Creatine 4.12 126.19 239.55

Microbial metabolism

4-Hydroxyhippurate 3.43 34.85 72.12

Acetate 14.17 62.87 394.31

Dimethylamine 0.74 9.79 30.48

Formate 8.71 41.32 584.66

Methylamine 3.17 32.07 51.20

p-Cresol sulphate 1.53 35.65 71.22

Trimethylamine N-oxide (TMAO) 1.63 80.89 127.14

Nicotinate and nicotinamide metabolism

N1-Methyl-2-pyridone-5-carboxamide (2PY) 2.14 35.29 60.72

N1-Methylnicotinamide 1.32 28.24 52.21

Trigonelline 0.79 68.71 74.64

Purine metabolism

Hypoxanthine 3.53 38.80 338.41

Pyrimidine metabolism

Pseudouridine 2.15 6.32 14.28

Uracil 4.29 37.71 148.13

Pentose and glucuronate interconversion

Arabinose 3.58 35.50 59.51

Glucuronate 4.07 18.31 50.07

Xylose 3.38 99.60 111.96

Galactose metabolism

Sucrose 4.45 194.15 459.31

Miscellaneous

2-Furoylglycine 5.46 225.45e 212.50

2-Hydroxyisobutyrate 1.15 16.25 35.39

3-(3-Hydroxyphenyl)-3-hydroxypropanoate (HPHPA) 4.30 67.68 73.64

(Continued)
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Table 1. Continued

Metabolite Intra-assay CV (%)a,b Intra-individual CV (%)a,c Inter-individual CV (%)a,d

3-Hydroxyhippurate 2.56 51.81 99.98

3-Hydroxyisobutyrate 2.67 34.18 61.60

3-Hydroxyisovalerate 4.84 66.55e 46.16

Indoxyl sulphate 1.59 32.24 46.56

Sumiki’s acid 2.36 35.23 133.73

Trans-aconitate 4.42 50.71 59.60

aConcentrations are scaled to the concentration of creatinine; CV% ¼ (standard deviation / average) * 100%.
bOne urine sample prepared and analysed as 10 replicates; reflects the entire quantitative process, i.e. including all the sample preparation steps, NMR experi-

mentation and mathematical quantification protocols.
cA 30-day consecutive urine collection; CV%s first calculated for each individual and then averaged over three different people.
dA total of 1004 different individuals from the Northern Finland Birth Cohort 1966.
eThe intra-individual CV% is slightly higher than the inter-individual CV%. Very few samples for the three people contributing to the intra-individual variation

contained 2-furoylglycine (two people had it in seven and one person in four out of 30 samples). For two people contributing to the intra-individual variation, the

average concentration of 3-hydroxyisovalerate was lower than the average concentration in the NFBC samples.

Figure 2. The automated quantification of urinary creatinine and glucose from the NMR spectra. On the left: building and assessment of the final auto-

mated regression models for the absolute signal areas for creatinine and glucose in the NMR spectra (n¼ 999). Training and independent testing

results are shown in Supplementary Figure 1, available as Supplementary data at IJE online. In the Bland-Altman plots, the solid line in the middle

represents the mean bias (between the automated regression and the line shape fitting analyses results for the absolute signal area) and the two

others the mean 6 1.96 SD. The dashed red line represents the regression line for the bias. The equations for the regression lines are y ¼ 0:9977x þ
4:772� 105 for creatinine and y ¼ 1:000x þ 31:88 for glucose. Bias as a function of creatinine: y ¼ 1:135 � 10�3x � 2:390 � 105 with R2 ¼ 0.0006 and

bias as a function of glucose: y ¼ 2:180� 10�6x � 15:94 with R2 ¼ 0.000001. Both automated regression models show excellent quantitative perfor-

mance and robustness with negligible bias. On the right: the distribution of absolute urinary concentration (in mm/mM creatinine) in 4548 urine sam-

ples in NFBC66. The absolute signal areas for the urinary creatinine and glucose used to calculate the distribution are based on fully automated NMR

spectral analyses using the final models illustrated on the left. The urinary glucose distribution is positively skewed (88 glucose concentration values

>80 mm/mM creatinine are not drawn for clarity). This is expected, due to individuals with prediabetes and diabetes in NFBC66.
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(BMI) with the 43 quantified urine metabolites. A linear re-

gression model was fitted for each outcome measure (concen-

trations of metabolites in urine and those corresponding in

serum) using BMI as the explanatory variable. All metabolic

measures were log-transformed and scaled to standard devia-

tion (SD) units (by subtracting the mean and dividing by the

standard deviation). Association magnitudes are reported in

SD units to ease the comparison across multiple measures

(Figure 6).

As another positive control for the urine platform, we

conducted a genome-wide analysis study (GWAS) of urine

metabolites in 578 individuals and compared our results
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Figure 3. The intra-fluid metabolic associations in serum. The intra-fluid metabolic correlations in serum, i.e. in circulating metabolism, are strong

due to multiple key metabolic pathways under heavy systemic control. For example, the metabolism of apoB-containing lipoprotein particles is a con-

tinuum and reflected by strong correlations between adjacent lipoprotein subclass particle concentrations. Strong links exist also, e.g. between tri-

glyceride-rich very low-density lipoprotein (VLDL) particles and large cholesterol-rich high-density lipoprotein (HDL) particles as well as between

multiple amino acids.24 The colour coding refers to partial correlations adjusted for sex: n¼ 995 individuals from NFBC66. The heat map is organized

manually on the basis of the key metabolic groups and pathways represented by the measures.17,18 In all, 27 principal components were needed to

explain >99% of variation in the metabolic information of these 61 serum measures (leading to Bonferroni-corrected significance P-value of 0.002, i.e.

0.05/27; marked with * in the map). IDL, intermediate-density lipoprotein; XXL refers to the largest and XS to the smallest lipoprotein particles in each

lipoprotein fraction;8 P, particle (concentration); C, cholesterol; TG, triglyceride; PUFA, polyunsaturated fatty acids; MUFA, monounsaturated fatty

acids; GlycA, glycoprotein acetyls.
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with previous GWA studies. Manhattan plots for formate

and 2-hydroxyisobutyrate are shown in Figure 7 and

details of the genetic data and analyses are given in the cor-

responding caption.

Results and Discussion

Analytical issues in urine metabolomics

Table 1 lists the currently quantified 43 urine metabolites

with their intra-assay, intra-individual and inter-individual

variation. Most of the intra-assay metabolite CV%s are

less than 5%, indicating high robustness and accuracy of

the urine NMR spectroscopy and the entire quantification

process per se. The intra-individual metabolite variation

over 30 days was large, with CV%s over 20% for the ma-

jority of metabolites and at the extreme 194% for sucrose

and 225% for 2-furoylglycine. However, the population-

based inter-individual metabolite variation was even

larger, with CV%s over 40% for the majority of metabo-

lites and at the extreme 585% for formate and 1655% for

glucose (reflecting a positively skewed distribution of
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Figure 4. The intra-fluid metabolic associations in urine. The intra-fluid metabolic correlations in urine are generally rather weak and only a few stron-

ger metabolic correlation blocks are noticeable, namely positive correlations among amino acids, glycolysis- and citrate cycle-related metabolites, 3-

hydroxyisobutyrate and 3-hydroxyisovalerate result in clear association clusters. These association characteristics are likely to partly reflect the large

intra-individual variation in urinary metabolites, but they are also likely a fundamental sign of metabolic waste under only limited systemic control.

However, the concentrations of the amino acids are rather strongly correlated, as would be expected for these apparently healthy individuals with

healthy kidneys. The amino acid concentrations also correlate with 3-hydroxyisobutyrate and 3-hydroxyisovalerate, both degradation products of

branched-chain amino acids, as well as with glucose and lactate, related energy metabolites in gluconeogenesis. Several metabolites related to mi-

crobial metabolism are quantified, and an interesting correlation cluster is seen between methylamine, p-cresol sulphate and TMAO. The colour cod-

ing refers to partial correlations adjusted for sex; n¼ 995 individuals from NFBC66. The heat map is organized manually on the basis of the key

metabolic groups and pathways represented by the measures (Table 1). Forty principal components were needed to explain >99% of variation in the

metabolic information of these 43 urine metabolites (leading to Bonferroni-corrected significance P-value of 0.001, i.e. 0.05/40; marked with * in the

map). Thus, the urine metabolites are generally highly uncorrelated and provide independent metabolic information. 2PY, N1-methyl-2-pyridone-5-

carboxamide; TMAO, trimethylamine N-oxide; HPHPA, 3–(3-hydroxyphenyl)-3-hydroxypropanoate.
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Figure 5. The inter-fluid metabolic associations between urine and serum. The inter-fluid metabolic correlations between urine and serum are rather

weak. However, several clearly detectable associations are present. The amino acid concentrations in serum and in urine are strongly positively asso-

ciated, except for histidine for which the correlation appears very weak. There is an intriguing positive association between urinary TMAO and serum

polyunsaturated omega-3 fatty acids. Notably, circulating TMAO has been linked to the pathogenesis of cardiovascular disease.25 However, we do

not yet have data to associate urinary TMAO concentrations with cardiometabolic outcomes, and its concentration in serum is too low to be quanti-

fied by serum NMR metabolomics. In addition, serum polyunsaturated omega-6 fatty acids associate negatively with multiple urinary metabolites in

relation to amino acid, energy and microbial metabolism, for example, 2-hydroxyisobutyrate, cis-aconitate, and pseudouridine. Multiple urinary

metabolites, e.g. 3-hydroxyisobutyrate, lactate, pseudouridine and cis-aconitate associate with circulating amino acids, glucose and creatinine.
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urinary glucose, partly due to several individuals with pre-

diabetes and diabetes in NFBC66; Figure 2). These results

indicate a sound base for epidemiological and genetic

studies.

Metabolite quantification in urine samples

Quantification of the 43 metabolites in the urine NMR spec-

tra for the 1004 people from the NFBC66 was done via semi-

automated line shape fitting analyses. This work is in progress

and it will eventually be possible to provide quantifications

for many additional metabolites; a preliminary list of over

100 assigned metabolites that we have identified is provided

in Supplementary Table 3, available as Supplementary data

at IJE online. However, this type of quantification approach

is not feasible for routine applications at large scale. Instead,

an automated approach similar to the one we developed and

adapted for quantifying serum and plasma lipid, lipoprotein

and other metabolic information8,16,18 needs to be developed

for the urine spectra. Proof of concept is shown with the ini-

tial results for fully automated quantitative regression analy-

ses for creatinine and glucose (Supplementary Figure 1,

available as Supplementary data at IJE online and Figure 2).

As already known from serum NMR metabolomics, this type

of approach for automated metabolite quantification works

well.8,9,23

Therefore, we think that it will be possible to establish

an optimized automated quantification model for many of

the abundant urine metabolites. Regression-based spectral

quantification methods are generally known to work well

for heavily overlapping signal structures, as typical for

urine NMR spectra.16,23 With the regression modelling,

quantification of all the metabolites in the urine NMR

spectrum can be fully automated to take only a few sec-

onds. Once the spectral data have been acquired for a sam-

ple, new identified and quantifiable metabolites can be

retrospectively analysed (provided that sample prepara-

tions and experimental NMR settings are kept consistent).

The final number of urine metabolites that may eventually

be included is uncertain and will depend on multiple fac-

tors. In the current experimental set-up, we estimate it will

be possible to automate the quantification for clearly more

than 50, but likely not for all the metabolites listed in

Supplementary Table 3, available as Supplementary data

at IJE online.

Based on the current version of the Human Metabolome

Database [http://www.urinemetabolome.ca], it is estimated

that there are over 4000 metabolites in the entire urine

metabolome, of which over 1500 would now have quantita-

tive data available.1 The approach described here to identify

and quantify around 100 urine metabolites may therefore

seem somewhat restricted. However, the quantitative serum

NMR metabolomics platform is also limited to quantify

‘only’ some 200 metabolic measures of thousands of serum

compounds. and this has not prevented novel metabolic

measures being available for epidemiological and genetic

studies, with a plethora of new findings over the past few

years.9 We anticipate that the quantitative urine metabolite

data would lead to commensurate novelty in systems epide-

miology. In epidemiology in particular, it may be preferable

to have a reasonable number of traits for as many people as

possible, not vice versa.8,9,29,30

Preliminary epidemiological and genetic analyses

The line shape fitting analyses of the urine NMR metabo-

lomics data for the 1004 individuals from NFBC66

allowed us to perform the first quantitative epidemiologi-

cal analyses (Table 1). We also present some comparison

to the serum NMR metabolomics data available for the

same individuals (n¼ 995). Some fundamental issues and

corollaries are presented below.

Metabolic associations

The correlations between the metabolites in urine (Figure 4)

are generally weaker than the associations between most of

the metabolic measures in serum (Figure 3). On average, the

median of the absolute correlations between metabolites in

urine was 0.10 (interquartile range, 0.04—0.19), and in se-

rum 0.21 (0.08—0.44). These association characteristics are

likely to partly reflect the larger intra-individual variation in

the urine metabolites than those in serum, but they are also

likely a sign of fundamental metabolic differences regarding

serum and urine. The metabolic measures quantified via se-

rum NMR metabolomics represent key systemic metabolic

pathways (e.g. lipoprotein lipid metabolism) which are

Figure 5. Continued

For example for cis-aconitate, a key component in the citric acid cycle, these associations are not unexpected. Cis-aconitate also associates with se-

rum triglycerides. On the other hand, urinary uracil (a naturally occurring pyrimidine found in RNA and, for example, related to carbohydrate metabo-

lism and sugar transport) is positively associated with serum high-density lipoprotein (HDL) cholesterol. The rationale for this association is not

evident, though it could be due to uracil’s involvement in energy metabolism and the inverse association between serum triglycerides and HDL cho-

lesterol. The colour coding refers to partial correlations adjusted for sex: n¼ 995 individuals from NFBC66. The heat map is organized via two-dimen-

sional hierarchical clustering. In all, 66 principal components were needed to explain >99% of variation in the metabolic information of these 104

metabolic measures combining the quantitative information from urine and serum (leading to Bonferroni-corrected significance P-value of 0.0008 i.e.

0.05/66; marked with * in the map). Combining quantitative urine metabolite data with serum metabolomics would thus evidently increase the inde-

pendent metabolic information content of the dataset. Abbreviations are as detailed in the captions for Figures 3 and 4.
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inherently physiologically correlated; it would not be

expected to see drastic differences between individuals in

these highly conserved biochemically essential metabolic

pathways. However in urine, which is a waste product, this

type of tight inherent metabolic control is not necessary.

Nevertheless, for example for a particular group of diet-

related metabolites in urine, it would be possible and even

likely to detect high correlations. On the contrary, the meta-

bolic measures detected by the NMR platform do not provide

direct measures to assess dietary content. Importantly, this

might allow more specific biomarker findings from the urine

data than would be possible from serum.

Associations illustrated in Figure 4 provide a proof of

concept of the relevance of these novel quantitative urinary
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Figure 6. Associations of metabolites quantified in both urine and serum with body mass index. Multiple associations are notable between urinary

metabolites and BMI. For example, BMI associates negatively with urinary p-cresol sulphate and hippurate, and positively with 2-hydroxyisobutyrate

and branched-chain amino acids isoleucine and valine and aromatic amino acids tryptophan and tyrosine. For all the amino acids that are quantified

from both urine and serum, the association direction with BMI is the same in serum and in urine; the association strengths, however, tend to be

weaker in urine. Abbreviations are as detailed in the caption for Figure 4.
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data. For metabolites in urine, positive correlations among

amino acids, glycolysis- and citrate cycle-related metabo-

lites, 3-hydroxyisobutyrate and 3-hydroxyisovalerate re-

sult in clear association clusters. The concentrations of the

eight amino acids are rather strongly correlated in urine,

with median correlation of 0.53 (interquartile 0.41–0.59).

This is expected for these mostly apparently healthy indi-

viduals since, in healthy kidneys, the glomeruli filter all

amino acids out of the blood and the renal tubules then re-

absorb them back into the blood.

Metabolic correlations between urine and serum

(Figure 5), with median absolute correlation of 0.04 (inter-

quartile range, 0.02–0.07), are clearly weaker than the

associations in serum (Figure 3) and in urine (Figure 4).

However, several clearly detectable metabolic associations

are present, as elaborated in the caption for Figure 5.

There is a clear excess of metabolic information by the

combination of quantitative urine and serum metabolo-

mics, illustrating an abundance of epidemiological novelty

from quantitative urine metabolomics.

Adiposity and urine metabolites

Associations between the 43 quantified urine metabolites

(and the corresponding ones available in serum via the se-

rum NMR metabolomics platform) and body mass index

(BMI) are illustrated in Figure 6. Despite rather large bio-

logical variation in the urine metabolite data, multiple

associations are notable between the urine metabolites and

BMI. We ought to be cautious in interpreting cross-

sectional associations, in comparison with recent work by

Elliott and co-workers4 on urinary metabolic signatures of

adiposity in two independent cohorts, the US and UK

INTERMAP studies. However, we note multiple concor-

dant associations for BMI, for example negative with

urinary p-cresol sulphate and hippurate, and positive with

2-hydroxyisobutyrate and branched-chain amino acids iso-

leucine and valine, and aromatic amino acids tryptophan

and tyrosine. The comparison of the amino acid results

(e.g. valine and isoleucine) in urine and serum is of interest

due to recent findings regarding the interplay between

branched-chain amino acids, obesity, insulin resistance and

the development of type 2 diabetes.31–34 For all the amino

acids that are quantified from both urine and serum, the

association direction with BMI is the same in serum and in

urine; the association strengths however tend to be weaker

in urine. As far as we are aware, these are the first results

available combining quantitative metabolomics data from

serum and urine on an epidemiological scale. We have pre-

viously illustrated, via Mendelian randomization analy-

ses,35 that BMI is causally modifying circulating

metabolism, including branched-chain amino acids.36

Potential causal effects of obesity on specific urine metabo-

lites (e.g. via influences on kidney function) are largely un-

known and will be one of our future aims of research with

larger numbers of individuals. Even though urine is waste,

urinary metabolites may serve as useful biomarkers
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Figure 7. Manhattan plots of the GWAS of formate and 2-hydroxyisobutyrate.The SNP associations across the whole genome are presented. For plotting pur-

poses, the associations with P-value larger than 1*10–3 are not shown. Each dot is a –log10 of P-value of the association between the genetic variant and the

metabolite using an additive model. The dots are ordered using the chromosome number and base pair position of the variant in the chromosome. The top

signals in these two plots were significant after correcting the genome-wide significance threshold for 40 independent tests (P<1.25*10–9; red line). All metab-

olite concentrations were first adjusted for sex, and 10 first principal components from genomic data and the resulting residuals were transformed to normal

distribution by inverse rank-based normal transformation. NFBC66 was genotyped using Illumina HumanHap 370k array. The genotypes were imputed using

the Haplotype Reference Consortium pipeline.27 The results were filtered using minor allele frequency cut-off of 5% or greater and imputation info 0.8 or

greater. The analysis software was SNPTEST 2.5.1 using additive model for association testing.28
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(independently or together with serum metabolic meas-

ures) reflecting (patho)physiological effects of, e.g. obesity

on systemic metabolism and organ function.

Genome-wide analyses of urine metabolites

We performed a GWAS for the 43 quantified urine metab-

olites (Table 1). Despite having only 578 individuals avail-

able with both genome-wide data and quantified urine

metabolites, we were able to replicate, at GWAS signifi-

cance, two loci previously associated with the same urine

metabolites.37,38 We found confirmatory evidence for for-

mate, with chromosome 8 single nucleotide polymorphism

(SNP) rs4921913, associating at P ¼4.59*10–11. The

tagged region harbours arylamine N-acetyltransferase

(NAT2) that is the candidate gene for this association. In

addition, we confirmed an association of SNP rs1168674

in chromosome 12 with 2-hydroxyisobutyrate (P

¼1.51*10–22). This region is in near vicinity to 4-hydroxy-

phenylpyruvate dioxygenase (HPD) that is likely involved

in the metabolic pathway of 2-hydroxyisobutyrate.37

Manhattan plots for these associations are presented in

Figure 7. These independently replicated genome-wide

associations, with a very small number of individuals, are

reassuring regarding the analytical processes of the pre-

sented urine NMR metabolomics platform.

Statistical issues in epidemiology and genetics

Hundreds of metabolites have been identified in human

urine samples with a combination of multiple spectro-

scopic technologies.1,2,39,40 However, most metabolomics

applications have focused on dietary and various (biologi-

cally rather inapplicable) diagnostic issues typically with

small numbers of individuals and profiling-based analysis

approaches.41–43 Quantitative data on urine metabolites

are rare,2,29 and if available, typically originate from other

methods than NMR.4,39,44 This situation suggests that

though the potential of urine NMR metabolomics is clearly

recognized, the methodologies are still far from real-world

large-scale applications. Nevertheless, we fully agree with

Emwas and co-workers2 that molecular identification and

absolute quantification are crucial both in epidemiology

and genetics as well as if aiming to translate the biomarker

discoveries to clinical practice.8,29,30 Therefore, a key asset

for a urine NMR metabolomics pipeline will be that all

metabolites are quantified in absolute terms. This means

that in statistical analyses, any platform output can be

treated as any other clinical chemistry measure (e.g. glu-

cose or cholesterol) in association testing and prediction

models.9 The quantitative nature of the metabolite data

makes this straightforward and also allows replication and

meta-analyses across multiple studies.30,45–47 Here the

joint analyses of urine and serum metabolomics data are a

demonstration of how informative inherently simple quan-

titative molecular data can be. Notably, use of only spec-

tral data would not enable the above-mentioned molecular

association analyses to be performed.

A general concern with using urine samples is metabo-

lites that are not present in every sample or individual.

This can actually be a high proportion of potentially de-

tectable metabolites; from the automated quantitative

analysis point of view, this is a challenge calling for specific

signal detection options. However, from the epidemiology

point of view, it can be seen as a great opportunity. For ex-

ample, specific drug-related metabolites may offer valuable

epidemiological information as well as a base for potential

pharmaceutical applications. Metabolites that would asso-

ciate with certain foods or lifestyle factors, like smoking,

would allow advantageous epidemiological approaches to

be taken. Such metabolites may also indicate particular dis-

ease processes and could thereby provide specific clinically

relevant biomarkers for risk assessment and early diagno-

ses. Here, only four out of the 43 quantified urine metabo-

lites were absent for more than 10% of the samples,

namely Sumiki’s acid, 2-furoylglycine, 3–(3-hydroxy-

phenyl)-3-hydroxypropanoate and sucrose.

In addition to molecular quantification, systems epidemi-

ology applications call for large numbers of individuals; at a

minimum this is thousands, if not tens of thousands of indi-

viduals.6,9 The epidemiological data set described here for

urine (43 metabolites quantified for 1004 people) is already

one of the largest in the area of quantitative urine metabolo-

mics. These data, together with the various analytical tests,

illustrate the key methodological and statistical characteris-

tics of urine metabolomics. At the same time however, this

underscores that this field, particularly from the epidemio-

logical perspective, is in its infancy. Therefore, the results

presented here provide a good incentive to an open-access

quantitative urine NMR metabolomics pipeline.

Conclusions

Our quantitative analytical experimentation indicates high

robustness and accuracy of the urine NMR spectroscopy

methodology per se. The extensive epidemiological data il-

lustrate clear inherent differences in the intra-fluid metabolic

associations based on physiological and metabolic functions:

the urine metabolites are in general only weakly interrelated,

in contradistinction to highly correlated metabolic pathways

represented by the quantitative serum data. The metabolic

associations between serum and urine are weak, suggesting

combining serum and urine metabolomics would increase

the amount of independent metabolic information.

Although the intra-individual variation in urine metabolites

is high, the even higher population-based inter-individual
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variation does provide a sound base for epidemiological and

genetic applications. However, appropriate large-scale stud-

ies and replication data are crucial to enable statistically ro-

bust findings of biological relevance. The known genome-

wide associations detected here with a very small number of

individuals are reassuring for both the analytical process of

the presented urine NMR metabolomics set-up and the in-

triguing potential of quantitative urine metabolite data in

systems epidemiology. We anticipate this quantitative meth-

odology to eventually offer a multitude of unique opportuni-

ties to study the role of urine metabolites, for example in

cardiometabolic health and diseases and as potential

markers of kidney function. To the best of our knowledge,

this project is novel both in the open-access aspects and in

the integrated large-scale systems epidemiology perspective

which are likely to result in important epidemiological find-

ings with high translational potential.

Supplementary data

Supplementary data are available at IJE online.
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