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ABSTRACT

Amyloidosis caused by systemic deposition of
transthyretin (TTR) is called ATTR amyloidosis
and mainly includes hereditary ATTR (ATTRv)
amyloidosis and wild-type ATTR (ATTRwt)
amyloidosis. Until recently, ATTRv amyloidosis
had been considered a disease in the field of
neurology because neuropathic symptoms pre-
dominated in patients described in early
reports, whereas advances in diagnostic tech-
niques and increased recognition of this disease
revealed the presence of patients with car-
diomyopathy as a predominant feature. In
contrast, ATTRwt amyloidosis has been consid-
ered a disease in the field of cardiology. How-
ever, recent studies have suggested that some of
the patients with ATTRwt amyloidosis present
tenosynovial tissue complications, particularly
carpal tunnel syndrome, as an initial manifes-
tation of amyloidosis, necessitating an aware-
ness of this disease among neurologists and
orthopedists. Although histopathological con-
firmation of amyloid deposits has traditionally
been considered mandatory for the diagnosis of

ATTR amyloidosis, the development of nonin-
vasive imaging techniques in the field of cardi-
ology, such as echocardiography, magnetic
resonance imaging, and nuclear imaging,
enabled nonbiopsy diagnosis of this disease.
The mechanisms underlying characteristic car-
diac imaging findings have been deciphered by
histopathological studies. Novel disease-modi-
fying therapies for ATTR amyloidosis, such as
TTR stabilizers, short interfering RNA, and
antisense oligonucleotides, were initially
approved for ATTRv amyloidosis patients with
polyneuropathy. However, the indications for
the use of these disease-modifying therapies
gradually widened to include ATTRv and
ATTRwt amyloidosis patients with cardiomy-
opathy. Since the coronavirus disease 2019
(COVID-19) pandemic, which is caused by sev-
ere acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection, occurred, the mini-
mization of hospital visits and telemedicine
have become increasingly important. As older
age and cardiovascular disease are major factors
associated with increased disease severity and
mortality of COVID-19, many ATTR amyloido-
sis patients are at increased risk of disease
aggravation when they are infected with SARS-
CoV-2. From this viewpoint, close interspecialty
communication to determine the optimal
interval of evaluation is needed for the man-
agement of patients with ATTR amyloidosis.
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Key Summary Points

ATTR amyloidoses mainly includes ATTRv
amyloidosis and ATTRwt amyloidosis based
on the presence and absence of TTR
mutations, respectively.

Until recently, ATTRv amyloidosis has been
considered a disease in the field of
neurology, whereas ATTRwt amyloidosis has
classically been regarded as a disease in the
field of cardiology.

Although a histopathological confirmation
of amyloid deposits has traditionally been
required for the diagnosis of ATTR
amyloidosis, the development of
noninvasive imaging techniques enabled
nonbiopsy diagnosis of this disease.

Although novel disease-modifying therapies
for ATTR amyloidosis, such as TTR stabilizers
and gene silencing agents, were initially
approved for ATTRv amyloidosis patients
with polyneuropathy, the indications for the
use of these novel disease-modifying
therapies gradually widened to include
ATTRv and ATTRwt amyloidosis patients
with cardiomyopathy.

As older age and cardiovascular disease are
major factors associated with increased
disease severity and mortality of COVID-19,
many ATTR amyloidosis patients are at
increased risk of disease aggravation when
they are infected with SARS-CoV-2.

Close interspecialty communication to
determine the optimal interval of evaluation
is needed for the management of patients
with ATTR amyloidosis.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.14579922.

INTRODUCTION

Amyloidosis is caused by the deposition of
amyloid fibrils composed of misfolded protein
in various organs. Transthyretin (TTR), which is
mainly produced in the liver and functions as a
transporter of thyroxin (T4) and retinol-binding
protein, is one of the more than 30 amyloido-
genic proteins reported to date [1]. Amyloidosis
caused by systemic deposition of TTR is now
designated ATTR amyloidosis and mainly con-
sists of hereditary ATTR (ATTRv; v for variant)
amyloidosis and wild-type ATTR (ATTRwt)
amyloidosis based on the presence and absence
of TTR mutations, respectively [2, 3]. Although
rare, ATTR amyloidosis has also been reported
in recipients of livers from ATTRv amyloidosis
patients [3]. ATTRv amyloidosis was first repor-
ted in 1952 in Portugal and was subsequently
reported in endemic areas of Japan and Sweden
[4–6]. Until recently, ATTRv amyloidosis was
considered a disease in the field of neurology
and called familial amyloid polyneuropathy
because neuropathic symptoms predominated
in patients described in early reports [3]. How-
ever, advances in diagnostic techniques and
increased recognition of this disease revealed
that ATTRv amyloidosis was prevalent even in
areas other than conventional endemic foci and
focused on the presence of patients with car-
diomyopathy as a predominant feature [7–9]. In
contrast, ATTRwt amyloidosis has classically
been called senile cardiac or systemic amyloi-
dosis because it is considered a cardiomyopathy
found in elderly individuals [10]. The recent
development of noninvasive diagnostic tools,
such as ultrasonography, magnetic resonance
imaging, and nuclear imaging, enables the early
diagnosis of cardiomyopathy resulting from
ATTRwt amyloidosis [11, 12]. In addition,
recent studies have suggested that some of the
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patients with ATTRwt amyloidosis present
tenosynovial tissue complications, particularly
carpal tunnel syndrome [13–15]. Other studies
have also suggested an association between
wild-type TTR deposition in the ligaments and
spinal canal stenosis [16, 17]. These findings
indicate that even neurologists and orthope-
dists should consider the possibility of ATTRwt
amyloidosis when they encounter patients
complaining of numbness or pain in the limbs
in daily clinical practice.

Due to the progress in novel disease-modi-
fying therapies for ATTR amyloidosis, such as
TTR stabilizers, short interfering RNA (siRNA),
and antisense oligonucleotides (ASOs), early
diagnosis and better management to maintain
patients’ quality of life are required [1, 3].
Therefore, the necessity of close cooperation
among multiple departments, particularly neu-
rology and cardiology, is increasing [18, 19]. In
this review, we describe recent developments in
the diagnosis and management of ATTR amy-
loidosis, focusing on an increased necessity of
multidisciplinary approaches. This article is
based on previously conducted studies and does
not contain any studies with human partici-
pants or animals performed by any of the
authors.

CHARACTERISTICS OF ATTR
AMYLOIDOSIS

ATTRv Amyloidosis

Although TTR is stable as a homotetramer, the
dissociation of tetramers into monomers causes
the misfolding of this protein, resulting in the
aggregation of TTR into amyloid fibrils [20, 21].
Most TTR mutations result in the production of
variant TTR that is less stable than wild-type
TTR, leading to the dissociation of this protein
[22]. Patients from conventional endemic foci
in Portugal, Japan, and Sweden have the
Val30Met mutation (p.Val50Met, according to
the Human Genome Variation Society recom-
mendation) [1]. As many patients with the
Val30Met mutation have also been found in
nonendemic areas [23, 24], this mutation was
considered to be the most common among

ATTRv amyloidosis patients predominantly
manifesting polyneuropathy. ATTRVal30Met
amyloidosis patients from endemic foci in
Japan and Portugal are characterized by an early
age of disease onset, ranging from the late 20s to
early 40s [4, 23]. By contrast, many patients
with later disease onset are found in Sweden
despite having the same mutation [6]. Patients
from nonendemic areas are characterized by
late onset of the disease, usually after 50 years of
age [23]. As patients with the Val30Met muta-
tion predominantly manifest somatic and
autonomic neuropathies [8], mainly neurolo-
gists have been involved in the diagnosis and
management of this disease.

By contrast, the development of diagnostic
techniques led to the discovery of many
patients with mutations other than Val30Met
(i.e., non-Val30Met mutations), and more than
130 non-Val30Met mutations have been repor-
ted [1]. Cardiomyopathy may be the predomi-
nant feature in patients with some of the non-
Val30Met mutations [9, 25]. For example, the
Val122Ile (p.Val142Ile) mutation is considered a
common cause of heart disease in African
Americans originating from West African
countries [26, 27]. A number of Caucasian
patients with the Val122Ile mutation have also
been found in Italy [28]. Currently, this muta-
tion, rather than Val30Met mutation, is con-
sidered to be the most common among ATTRv
amyloidosis patients worldwide [26]. Hence,
cardiologists have recently paid attention to
this disease.

ATTRwt Amyloidosis
The dissociation and subsequent aggregation of
TTR are considered to occur even under physi-
ological conditions, leading to the occurrence
of wild-type TTR deposition [21, 29]. In addi-
tion, an alternative pathway resulting from
proteolytic cleavage of TTR has been proposed
for the process of amyloid fibril formation in
patients with ATTR amyloidosis [30]. Amyloid
deposits from ATTR amyloidosis patients con-
tain a significant amount of C-terminal frag-
ments [31, 32].

As opposed to ATTRv amyloidosis, ATTRwt
amyloidosis has traditionally been regarded as a
disease in the field of cardiology rather than
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neurology because cardiomyopathy is the pre-
dominant feature of this disease [10]. Studies of
autopsy specimens suggested that a significant
proportion of the elderly population, particu-
larly elderly males, has TTR deposition in the
heart even in subjects without a history of
underlying diseases [10, 33, 34]. Currently, car-
diomyopathy resulting from ATTRwt amyloi-
dosis is an important differential diagnosis of
heart failure with preserved ejection fraction
[35, 36].

In addition to cardiomyopathy, ATTRwt
amyloidosis may also present features sugges-
tive of carpal tunnel syndrome that frequently
precede those of cardiomyopathy [13]. Analyses
of tenosynovial tissues obtained during carpal
tunnel release surgery revealed that a significant
proportion of patients diagnosed with idio-
pathic carpal tunnel syndrome had TTR amy-
loid deposits [37–40]. This finding raises the
necessity of an awareness of ATTRwt amyloi-
dosis even among orthopedists and neurolo-
gists. In particular, the possibility of having
ATTRwt amyloidosis becomes higher in elderly
male patients with bilateral carpal tunnel syn-
drome [15]. Furthermore, an association
between spinal canal stenosis and wild-type TTR
deposition in ligaments has also been suggested
[17, 40, 41]. A recent study suggested that even
brachial biceps tendon rupture is one of the red
flags of ATTR amyloidosis [14].

DIAGNOSIS

General Considerations

Polyneuropathy usually involves symmetric
sensory and motor deficits in the distal portions
of extremities resulting from endoneurial amy-
loid deposition [42]. In addition, autonomic
symptoms, such as diarrhea, constipation,
orthostatic intolerance, dysuria, and erectile
dysfunction, are frequently reported, particu-
larly in patients from conventional endemic
foci [1, 23]. Hence, sensorimotor polyneuropa-
thy accompanied by autonomic symptoms is an
important feature suggestive of, although not
specific to, amyloid neuropathy [24]. The pres-
ence of polyneuropathy is confirmed by nerve

conduction studies [43]. Although axonal neu-
ropathy indicated by reduced compound mus-
cle action potentials and sensory nerve action
potentials is the cardinal feature of polyneu-
ropathy, findings suggestive of demyelination,
such as the slowing of conduction velocities
and the prolongation of distal motor latencies,
are also concomitantly found in some cases
[43, 44]. Other methods for assessing polyneu-
ropathy include quantitative sensory testing
and measuring skin innervation using skin
biopsy specimens [45–47].

Amyloid deposition in the heart results in
diastolic dysfunction and causes symptoms of
heart failure, such as fatigue, palpitation, and
dyspnea [8, 9]. In daily clinical practice, chest
X-ray, electrocardiogram, echocardiography,
and plasma levels of brain natriuretic peptide
(BNP) or N-terminal prohormone of BNP (NT-
proBNP) are used to validate the presence of
cardiomyopathy [1, 8]. Cardiac troponins,
including troponin T and troponin I, can also
be used as markers to evaluate cardiomyopathy
in patients with ATTR amyloidosis [48]. Heart
failure with preserved ejection fraction is the
characteristic feature of cardiomyopathy
resulting from amyloidosis [35, 36]. On elec-
trocardiogram, low voltage and abnormal Q
waves called pseudoinfarct patterns may be
observed [49]. As conduction disorders fre-
quently occur as a result of cardiomyopathy
[42], Holter electrocardiography is required to
consider the indication for pacemaker implan-
tation [1]. Notably, syncope in ATTRv amyloi-
dosis patients results from not only cardiac
conduction disorders but also orthostatic
hypotension associated with autonomic dys-
functions [25, 50].

Representative ref flags for ATTR amyloidosis
are shown in Table 1. Based on these findings,
further assessments, such as more specific
imaging studies, biopsy to detect amyloid
deposits, and TTR gene sequencing, are con-
sidered for the confirmation of the diagnosis of
ATTR amyloidosis.
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Biopsy

The detection of amyloid deposits in biopsy
specimens has traditionally been required for
the formal diagnosis of ATTR amyloidosis [1].
Congo red staining is useful to detect amyloid
deposits in daily clinical practice. Amyloid is
stained as congophilic deposits on light micro-
scopy and appears as green (or apple-green)
birefringence when examined with polarized

light [2, 51]. Fibrillar structures, the morpho-
logical characteristics of amyloid, are confirmed
by electron microscopy [52]. These amyloid
fibrils affect neighboring tissues, resulting in
organ dysfunction [42, 52]. Previous studies
demonstrated the deposition of oligomeric non-
fibrillar TTR in biopsy or autopsy specimens of
the peripheral nerve [42, 52]. The toxicity of
such precursors of amyloid fibrils to surround-
ing tissues has also been suggested [53].

Table 1 Representative red flags for ATTR amyloidosis

For neurologists

Carpal tunnel syndrome (bilateral)

Sensorimotor polyneuropathy and at least one of the following findingsa

Positive family history

Cardiac symptoms

Autonomic symptoms

Diarrhea/constipation

Orthostatic intolerance/syncope

Dysuria

Unexplained weight loss

Ocular symptoms (vitreous opacities)

For cardiologists

Heart failure with preserved ejection fraction and at least one of the following findings

Polyneuropathya

Positive family historya

Carpal tunnel syndrome

Characteristic electrophysiology and imaging findingsb

Electrocardiogram

Low voltage in the limb leads

Abnormal Q waves (pseudoinfarct pattern)

Echocardiography

Thickened left ventricular wall and interventricular septum

Hyperrefractile myocardial echoes (granular sparkling appearance)

a Only applied to ATTRv amyloidosis
b Only conventional findings are shown here
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As amyloid deposition occurs systemically in
ATTR amyloidosis patients, organs other than
peripheral nerves and the heart can be consid-
ered the target for biopsy, taking accessibility
into consideration. These organs include the
labial minor salivary gland, gastrointestinal
tract mucosa, and skin [1]. Abdominal fat aspi-
ration biopsy is also frequently performed in
Japan because it enables repetitive examination
even for asymptomatic carriers [54].

Immunohistochemistry of amyloid deposits
is important to distinguish TTR from other
proteins that may cause amyloidosis, particu-
larly immunoglobulin light chain associated
with light chain (AL) amyloidosis [55]. Mass
spectrometry is also useful to determine the
specific amyloid-forming protein in tissue sam-
ples [56–58].

Ultrasonography

Echocardiography is a noninvasive technique
that enables repetitive assessment of cardiac
morphology and function. The thickening of
the left ventricular wall and interventricular
septum accompanied by hyperrefractile
myocardial echoes (i.e., a granular sparkling
appearance) have traditionally been recognized
as the characteristics of cardiac amyloidosis
(Fig. 1) [49]. As amyloid deposition in the
extracellular spaces of cardiomyocytes causes
left ventricular diastolic dysfunction, tissue
Doppler imaging shows reduced diastolic
velocities and an increased E/e’ ratio [59]. Mas-
sive amyloid deposition in ventricular walls
results in heart failure with preserved ejection
fraction [35, 36].

Tissue Doppler strain imaging and strain-rate
imaging are useful to detect early left ventricu-
lar longitudinal systolic dysfunction that can-
not be detected by conventional tissue Doppler
imaging in patients with AL amyloidosis
[60, 61]. Although these methods may also be
applied in patients with ATTR amyloidosis, a
study that compared the results of AL amyloi-
dosis patients with those of ATTRv amyloidosis
patients suggested that the extent of abnor-
malities was less in ATTRv amyloidosis patients
from a conventional endemic focus in Japan

[62], which may be explained by the lower
amount of cardiac amyloid deposits in this type
of ATTR amyloidosis [42]. Two-dimensional
speckle-tracking strain imaging can demon-
strate reduced left ventricular strain in the
middle and basal segments with relatively pre-
served strain in the apex [63, 64]. This finding is
called apical sparing, which is a characteristic
feature in cardiac amyloidosis, including ATTR
amyloidosis (Fig. 2).

Ultrasonography has also been applied to
sites other than the heart. Although not speci-
fic, an enlargement of cross-sectional areas of
the nerve trunk, particularly at proximal sites,
was reported in ATTRv amyloidosis patients
[65, 66]. Additionally, a study of abdominal fat
ultrasonography suggested the usefulness of
B-mode images for in screening ATTRv amyloi-
dosis [67].

Magnetic Resonance Imaging

Recent studies have demonstrated the useful-
ness of cardiac magnetic resonance imaging
(MRI) for the diagnosis of cardiac amyloidosis,
including ATTR amyloidosis [11]. Late gadolin-
ium enhancement (LGE) is a highly sensitive
and specific finding associated with myocardial
amyloid deposition (Fig. 3) [68, 69]. LGE trans-
fers from the subendocardial pattern to the
transmural pattern as the disease progresses
[70]. As LGE tends to be more conspicuous in
patients with ATTR amyloidosis than in those
with AL amyloidosis, transmural patterns of
LGE are more frequently seen in ATTR amyloi-
dosis patients [71]. LGE may be associated with
microangiopathy that enhances the leakage of
serum components from the lumina of vessels
(Fig. 4) [72]. This hypothesis is supported by
myocardial T2 mapping, an MRI technique used
to demonstrate myocardial edema [73].

Myocardial T1 mapping, including native T1
(Fig. 5) and the measurement of extracellular
volume using contrast-enhanced imaging, is a
method to quantitatively evaluate T1 relaxation
time influenced by amyloid deposits [74, 75]. A
study of ATTRv amyloidosis patients suggested
that the sensitivity of T1 mapping to detect
cardiac amyloidosis is higher than that of LGE

294 Cardiol Ther (2021) 10:289–311



[76]. Extracellular volume in ATTR amyloidosis
patients can also be calculated by dynamic
equilibrium or dual-energy computed tomog-
raphy [77, 78].

As described earlier, the usefulness of strain
imaging for the diagnosis of cardiac amyloidosis
has been established by ultrasonography tech-
niques. Myocardial strain analysis by cardiac

Fig. 1 Representative B-mode echocardiography findings
of ATTR amyloidosis. a A thickened interventricular
septum with hyperrefractile myocardial echoes (i.e., a

granular sparkling appearance) is observed in the long-axis
view (arrows). b Concentric hypertrophy of the ventricular
wall is demonstrated in the short-axis view
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MRI has also been demonstrated to help diag-
nose cardiomyopathy in ATTR amyloidosis
patients [76]. Finally, a recent study suggested
the utility of diffusion tensor imaging for the
detection of cardiac amyloidosis, including
ATTR amyloidosis [79].

MRI has also been applied to detect neu-
ropathy in ATTRv amyloidosis patients [80, 81].
Magnetic resonance neurography studies have
demonstrated peripheral nerve lesions even in
asymptomatic carriers [80, 81]. However, the
specificity of the findings obtained by magnetic
resonance neurography has not yet been
clarified.

Nuclear Imaging

The importance of scintigraphy to detect car-
diac uptake of bone tracers, such as 99mTc-3,3-

diphosphono-1,2-propanodicarboxylic acid
(DPD), 99mTc-hydroxymethylene diphospho-
nate (HMDP), and technetium 99mTc-py-
rophosphate (PYP), for the diagnosis of ATTR
amyloidosis has recently increased (Fig. 6)
[82, 83]. According to a study of 1217 patients
suspected of having cardiac amyloidosis, the
sensitivity and specificity of scintigraphy using
these tracers for the diagnosis of ATTR amyloi-
dosis were[99 and 86%, respectively [83]. Of
note, false positives almost exclusively resulted
from uptake by AL amyloidosis patients, and
combined findings of cardiac uptake equal to or
greater than bone and the absence of serum and
urinary monoclonal protein had a specificity
and positive predictive value for ATTR amyloi-
dosis of 100% [83]. Therefore, bone scintigra-
phy using 99mTc-DPD, 99mTc-HMDP, or 99mTc-
PYP is now used as a substitute for

Fig. 2 Two-dimensional speckle-tracking strain imaging
of echocardiography in a late-onset ATTRVal30Met
amyloidosis patient from a nonendemic area of Japan.
Reduced left ventricular longitudinal strain in the middle

and basal segments with relatively preserved strain in the
apex (i.e., apical sparing) is observed. A bull’s eye plot is
shown in the lower right panel
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endomyocardial biopsy in the diagnosis of car-
diomyopathy resulting from ATTR amyloidosis.

123I-Metaiodobenzylguanidine (MIBG)
scintigraphy is an imaging technique to show
cardiac sympathetic innervation [84]. MIBG has
been used to evaluate heart failure in the car-
diology field [85], whereas neurologists have
also considered reduced myocardial MIBG
uptake as one of the early signs of autonomic
dysfunctions in neurological diseases, including
ATTRv amyloidosis, even in the absence of
heart failure [25, 50, 86].

The results from studies using amyloid-speci-
fic tracers, such as 11C-Pittsburgh compound B
(PiB) [87], 18F-florbetaben [88], and 18F-florbe-
tapir [89], for positron emission tomography
(PET) have suggested the potential of these trac-
ers for the detection of cardiac amyloidosis.
Although the uptake of these tracers occurs not
only in ATTR amyloidosis tissues but also in AL
amyloidosis tissues [87–89], PET imaging can
simultaneously visualize the distribution of
amyloid deposits in other organs [90, 91].

Interestingly, a study of 11C-PiB PET revealed
that cardiac 11C-PiB uptake is lower in patients
with ATTRwt, late-onset ATTRVal30Met, and

ATTRnon-Val30Met amyloidosis than in early
onset ATTRVal30Met amyloidosis patients [92].
According to previous histopathological stud-
ies, amyloid fibrils in early onset ATTRVal30Met
patients from conventional endemic foci are
generally long and thick and have a good
affinity for Congo red accompanied by strong
birefringence under polarized light (Fig. 7A–C)
[51]. In contrast, amyloid fibrils in other types
of ATTR amyloidosis (i.e., ATTRwt, late-onset
ATTRVal30Met, and ATTRnon-Val30Met) are
fine and have a weak affinity for Congo red
accompanied by weak birefringence (Fig. 7D–F)
[32, 51, 52]. Hence, these characteristics of
amyloid fibrils may determine the affinity of
11C-PiB for amyloid deposits in ATTR amyloi-
dosis patients.

MANAGEMENT

General Considerations

The management of ATTR amyloidosis requires
a multidisciplinary approach. ATTRv amyloi-
dosis patients who were initially referred to

Fig. 3 Gadolinium-enhanced cardiac magnetic resonance
imaging in a patient with ATTRwt amyloidosis. a Late
gadolinium enhancement is observed along with the
myocardial walls in an axial section. b The left ventricular

wall shows diffuse subendocardial or transmural late
gadolinium enhancement without a coronary distribution
pattern
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neurologists usually complained of numbness
or pain in the limbs [8]. Autonomic symptoms,
such as orthostatic intolerance, diarrhea, con-
stipation, and dysuria, are also frequent [23]. In
addition to the disease-modifying therapies
described later, treatments to ameliorate these
symptoms are also important. Some of these
patients may have severe neuropathic pain
refractory to conventional medication, result-
ing in a significant disability [93]. An anesthe-
siology consultation may be worth considering
in such cases [93]. A referral to urologists is also
important, particularly in patients who already
complain of dysuria.

In contrast, ATTR amyloidosis patients ini-
tially referred to cardiologists usually have heart
failure that may necessitate treatment, such as
the administration of diuretics [9]. As conduc-
tion disorders and sudden death frequently
occur in ATTR amyloidosis patients [8, 13],
prophylactic pacemaker implantation should be
considered accordingly [1, 9]. Notably, both
neurological and cardiac complications become
evident as the disease progresses in patients
with ATTRv amyloidosis [8]. Therefore, close
communication between neurologists and car-
diologists is needed, particularly for ATTRv
amyloidosis patients.

Fig. 4 Microangiopathy in a late-onset ATTRVal30Met
amyloidosis patient from a nonendemic area of Japan. A
cross section of a sural nerve biopsy specimen. Uranyl
acetate and lead citrate-stained specimens. The continuity

of the endothelial cells of an endoneurial microvessel is lost
(arrows), indicating the disruption of the blood–nerve
barrier at this site. Scale bar 2 lm

298 Cardiol Ther (2021) 10:289–311



An approach by ophthalmologists is also
important for ATTRv amyloidosis patients
because serious ophthalmological complica-
tions, such as vitreous opacity and glaucoma,
may occur [94]. As variant TTR is produced
independently from the retinal pigment
epithelium in the eye, which is segregated from
the systemic circulation by blood–ocular barri-
ers, ocular amyloidosis progresses even though
patients receive currently available disease-
modifying therapies [95].

Disease-Modifying Therapies

Liver transplantation Liver transplantation has
been performed since 1990 in ATTRv amyloi-
dosis patients to prevent the production of
variant TTR from the liver [96]. Although long-
term efficacy of liver transplantation has been
confirmed with respect to survival, particularly
in early onset ATTRVal30Met patients from
conventional endemic foci [97], some of the
patients exhibited a progression of neuropathy
and cardiomyopathy resulting from wild-type
TTR deposition even after liver transplantation
[98–100]. According to the data obtained from
the Familial Amyloidotic Polyneuropathy
World Transplant Registry, an early age of

onset, short disease duration, and Val30Met
mutation are predictors for better survival [101].

As the production of TTR also occurs in
organs other than the liver, such as the choroid
plexus in the brain and retinal pigment
epithelium in the eye [102], ocular and lep-
tomeningeal amyloidosis become conspicuous
long term after liver transplantation even
though neuropathy and cardiomyopathy seem
to be stable [90, 103].

TTR stabilizers Small molecules that stabilize
the native quaternary structure of TTR tetramers
by binding to thyroxin-binding sites have been
considered to be effective for ATTR amyloidosis,
as they prevent the dissociation of TTR tetra-
mers into monomers, which is a crucial step for
the subsequent process of protein misfolding
and amyloid fibril formation [104, 105].

Tafamidis is an analog of thyroxine designed
to bind to the thyroxin-binding site of TTR
[106], and it can stabilize TTR tetramers and
prevent their dissociation into monomers
[1, 21]. The first phase III trial enrolling 128
ATTRVal30Met amyloidosis patients with
polyneuropathy in which patients were ran-
domly assigned in a 1:1 ratio to receive 20 mg of
tafamidis (tafamidis meglumine) once daily or
placebo for 18 months suggested efficacy in

Fig. 5 Myocardial T1 mapping of magnetic resonance imaging in a late-onset ATTRVal30Met amyloidosis patient from a
nonendemic area of Japan. Native myocardial T1 mapping indicates abnormally increased T1 relaxation time
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terms of neuropathy and quality-of-life scores
[107]. This drug was first approved for use in
early ATTRv amyloidosis with polyneuropathy
by the European Medicines Agency in 2011 and
subsequently in other countries. A later
prospective observation of ATTRv amyloidosis
patients with polyneuropathy suggested a long-
term efficacy of tafamidis for up to 6 years in
terms of the slowing of neuropathy progression
without any unexpected adverse events [108].
Another study using data from clinical trials
where ATTRv amyloidosis patients with
polyneuropathy received tafamidis for up to
8.5 years demonstrated a favorable survival rate
compared with patients with a natural history
of the disease [8, 109].

The efficacy of tafamidis for cardiomyopathy
resulting from ATTR amyloidosis was also eval-
uated by a phase III trial involving 441 patients
who were randomly assigned to receive 80 mg
of tafamidis, 20 mg of tafamidis, or placebo in a
2:1:2 ratio for 30 months [110]. This study
included 335 ATTRwt amyloidosis patients and
106 ATTRv amyloidosis patients and demon-
strated reduced all-cause mortality and cardio-
vascular hospitalization rates in patients
receiving tafamidis. A subanalysis in this trial
also demonstrated a reduced decline in quality-
of-life scores [111]. The use of tafamidis for the
treatment of cardiomyopathy resulting from
ATTR amyloidosis was first approved by the
Pharmaceuticals and Medical Devices Agency of

Fig. 6. 99mTc-Pyrophosphate cardiac scintigraphy images
in a late-onset ATTRVal30Met amyloidosis patient from a
nonendemic area of Japan. a Myocardial uptake of the
99mTc-pyrophosphate tracer is observed on axial planes of

single-photon emission computed tomography (SPECT).
b Plain computed tomography (CT) images that corre-
spond to a. c Reconstruction of SPECT images linked to
plain CT images

300 Cardiol Ther (2021) 10:289–311



Cardiol Ther (2021) 10:289–311 301



Japan in February 2019 and subsequently
approved by the United States Food and Drug
Administration and the European Medicines
Agency.

Diflunisal is another TTR stabilizer that has
been used as a nonsteroidal anti-inflammatory
drug [105]. A study involving 130 ATTRv amy-
loidosis patients who were randomly assigned
in a 1:1 ratio to receive 250 mg of diflunisal
twice daily or placebo for 2 years suggested that
this drug can also delay the progression of
neuropathy [112]. Expected adverse events
resulting from the use of nonsteroidal anti-in-
flammatory drugs, such as gastrointestinal and
renal disorders, were not different between
diflunisal and placebo groups in this study.

Gene silencing agents As ATTR amyloidosis is a
gain-of-toxic-function protein misfolding dis-
ease, the elimination of causative proteins by
gene silencing agents has been considered to be
another therapeutic strategy for this disease
[113].

Patisiran is an RNA interference therapeutic
composed of an siRNA formulated as a lipid
nanoparticle designed to be delivered to the

liver to reduce TTR production [1]. In a phase III
trial, 225 ATTRv amyloidosis patients with
polyneuropathy were randomly assigned in a
2:1 ratio to receive intravenous patisiran
(0.3 mg/kg of body weight) or placebo once
every 3 weeks [114]. In addition to better pri-
mary outcome measures represented by neu-
ropathy and quality-of-life scores, exploratory
cardiac measures were also better in patients
who received patisiran than in those who
received placebo. A subgroup analysis of pre-
specified patients with cardiomyopathy showed
that patisiran decreased left ventricular wall
thickness, global longitudinal strain, and NT-
proBNP compared with placebo [115, 116].
Subsequent reports of open-label extension
studies demonstrated that patisiran maintained
efficacy with an acceptable safety profile in
ATTRv amyloidosis patients with polyneuropa-
thy for up to 30 months [117, 118].

Inotersen is a second-generation ASO
designed to prevent the production of TTR
[113]. A phase III trial involving 172 ATTRv
amyloidosis patients in which patients were
randomly assigned to receive weekly subcuta-
neous injections of inotersen (300 mg) or pla-
cebo in a 2:1 ratio for 15 months demonstrated
significantly better primary endpoints repre-
sented by neuropathy impairment and quality-
of-life scores [119]. A subsequent open-label
extension study reported 2 years later recon-
firmed the results of this study [120]. Addi-
tionally, another open-label study assessing
ATTR amyloidosis patients with cardiomyopa-
thy suggested the efficacy of inotersen even for
cardiomyopathy [121]. Because glomeru-
lonephritis and thrombocytopenia were repor-
ted as severe adverse events, close monitoring of
platelet count and renal function is required in
patients receiving inotersen. To improve the
safety profile, a ligand-conjugated ASO of a
nucleotide sequence identical to that of inot-
ersen designed to facilitate receptor-mediated
uptake by hepatocytes was also designed [122].
Currently, it is under investigation in phase III
trials in ATTRv amyloidosis patients with
polyneuropathy and ATTR patients with car-
diomyopathy [122, 123].

bFig. 7 Differential characteristics of amyloid deposits
between early onset ATTRVal30Met amyloidosis patients
from conventional endemic foci (a–c) and late-onset
ATTRVal30Met amyloidosis patients from nonendemic
areas (d–f). Biopsy specimens of the sural nerve (a, d) and
autopsy specimens of the heart (b, c, e, f). Uranyl acetate
and lead citrate-stained specimens (a, d). Alkaline Congo
red-stained specimens (b, c, e, f). On electron microscopy,
amyloid fibrils tend to be long and thick in early onset
patients from endemic foci (a). On light microscopy,
amyloid deposits tend to be highly congophilic (b) and
exhibit a strong apple-green birefringence under polarized
light (c) in early onset patients from endemic foci. The
atrophy and degeneration of myocardial cells result in the
formation of amyloid rings (arrowhead). In late-onset
patients from nonendemic areas, amyloid fibrils are
generally short and thin on electron microscopy (d). On
light microscopy, amyloid deposits are generally weakly
congophilic (e) and exhibit a faint apple-green birefrin-
gence (f) in late-onset patients from nonendemic areas.
Compared with (b), the atrophy of myocardial cells is not
conspicuous despite massive amyloid deposition in (e).
Scale bars 0.2 lm (a and d) and 20 lm (b, C, e, and f)
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SUMMARY AND CONCLUSIONS

ATTR amyloidosis, mainly including ATTRv
amyloidosis and ATTRwt amyloidosis, is a sys-
temic disease that necessitates multidisciplinary
approaches for diagnosis and treatment. Until
recently, ATTRv amyloidosis has been consid-
ered a disease in the field of neurology because
neuropathic symptoms predominated in
patients described in early reports [3], whereas
advances in diagnostic techniques and
increased recognition of this disease revealed
the presence of patients with cardiomyopathy
as a predominant feature [7–9, 25]. In contrast,
ATTRwt amyloidosis has been considered a
disease in the field of cardiology [10]. However,
recent studies have suggested that some
patients present tenosynovial tissue complica-
tions, particularly carpal tunnel syndrome, as
an initial manifestation of amyloidosis [13, 14],
suggesting the necessity of an awareness of this
disease among neurologists and orthopedists.

Although a histopathological confirmation
of amyloid deposits has traditionally been con-
sidered mandatory for the diagnosis of ATTR
amyloidosis [1], the development of noninva-
sive imaging techniques in the field of cardiol-
ogy, such as echocardiography, MRI, and
nuclear imaging, enabled nonbiopsy diagnosis
of this disease. In particular, bone scintigraphy
using 99mTc-DPD, 99mTc-HMDP, or 99mTc-PYP is
now used as a substitute for endomyocardial
biopsy for the diagnosis of cardiomyopathy
resulting from ATTR amyloidosis [83].

The mechanisms underlying characteristic
cardiac imaging findings have been deciphered
by histopathological studies. For example, the
leakage of gadolinium on MRI, called LGE,
seems to be associated with microangiopathy
that enhances the leakage of serum components
from the lumina of vessels [72]. Myocardial T2
mapping used to demonstrate myocardial
edema supports this view [73]. Cardiac 11C-PiB
uptake is lower in patients with ATTRwt, late-
onset Val30Met ATTRv, and ATTRnon-Val30-
Met amyloidosis than in early onset
ATTRVal30Met amyloidosis patients [92], cor-
responding to the differences in the

characteristics of amyloid fibrils in these
patients [32, 51, 52].

Novel disease-modifying therapies for ATTR
amyloidosis, such as TTR stabilizers, siRNA, and
ASO, were initially approved for ATTRv amy-
loidosis patients with polyneuropathy
[107, 112, 114, 119]. However, the indications
for these novel disease-modifying therapies
gradually widened to include ATTRv and
ATTRwt amyloidosis patients with cardiomy-
opathy [110]. Therefore, the necessity for close
cooperation of multiple departments is
increasing to facilitate earlier diagnosis and
better management to maintain patients’ qual-
ity of life. Currently, we have little knowledge
on whether all patients will positively respond
to all disease-modifying therapies or whether
there will be some who respond only to a
specific therapy or do not respond at all [124]. A
strategy for monitoring patients that enables
the choice of an appropriate treatment for
individual patients should also be established
from multiple perspectives.

Since the pandemic of coronavirus disease
2019 (COVID-19), which is caused by severe
acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection, occurred, the mini-
mization of hospital visits and telemedicine
have become increasingly important [125, 126].
As older age and cardiovascular disease are
major factors associated with increased disease
severity and mortality of COVID-19 [127, 128],
many ATTR amyloidosis patients are at
increased risk of disease aggravation when they
are infected with SARS-CoV-2. ATTRv amyloi-
dosis patients who have undergone liver trans-
plantation and receive immunosuppressive
agents may also have a risk of higher mortality,
although the association between liver trans-
plantation and COVID-19 is still under debate
[129–131]. From this viewpoint, close interspe-
cialty communication to determine the optimal
interval of evaluation is needed for the man-
agement of patients with ATTR amyloidosis.
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