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Abstract

In this work, we examine the problem of efficiently preprocessing and denoising high volume

environmental acoustic data, which is a necessary step in many bird monitoring tasks. Pre-

processing is typically made up of multiple steps which are considered separately from each

other. These are often resource intensive, particularly because the volume of data involved

is high. We focus on addressing two challenges within this problem: how to combine existing

preprocessing tasks while maximising the effectiveness of each step, and how to process

this pipeline quickly and efficiently, so that it can be used to process high volumes of acous-

tic data. We describe a distributed system designed specifically for this problem, utilising a

master-slave model with data parallelisation. By investigating the impact of individual pre-

processing tasks on each other, and their execution times, we determine an efficient and

accurate order for preprocessing tasks within the distributed system. We find that, using a

single core, our pipeline executes 1.40 times faster compared to manually executing all pre-

processing tasks. We then apply our pipeline in the distributed system and evaluate its per-

formance. We find that our system is capable of preprocessing bird acoustic recordings at a

rate of 174.8 seconds of audio per second of real time with 32 cores over 8 virtual machines,

which is 21.76 times faster than a serial process.

Introduction

Currently, many of the world’s ecosystems are vulnerable because of the impact of humans,

though the means of, among other things, deforestation [1] and climate change [2]. As such, it

has become critically important to monitor ecosystems, in order to derive conservation strate-

gies to reduce human impact on the environment.

In order to adequately monitor the Earth’s ecosystems, analyses need to be carried out over

large areas over long durations. As such, traditional approaches, such as having experts in loca-

tions of interests actively observing ecosystems are prohibitively expensive and infeasible [3].

Because of their ability to perform processes on larger scales at relatively low cost, it is

becoming increasingly popular to utilise ecoacoustics approaches to efficiently monitor ecosys-

tems using microphones to record sounds of the environment [4]. From there, researchers can
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either manually listen to recordings, or utilise computer algorithms to analyse the recordings.

This can reveal important information about ecosystems, which can lead to productive deci-

sions regarding conservation. In particular, ecoacoustics has been used frequently to study the

impact of the biodiversity of ecosystems due to climate change [5].

Almost all bioacoustic analyses require audio to be preprocessed to get it into a form

suitable for analysis. This may include data compression techniques to speed up processing

such as removing unnecessary audio channels [6] and downsampling [7]. It can also include

improving the quality of audio by reducing noise interference, which is a key challenge for

many bioacoustic studies because noise can mask vocalisations of interest [3]. Many current

bird classification techniques are evaluated using clean recordings (e.g. [6, 8, 9]), but these fail

to confront this significant challenge, and might not work effectively in real world monitoring

scenarios, which often rely on huge amounts of unsupervised environmental recording data

(e.g. [10–12]).

Noise can be considered to be any sound that is not produced by a target organism. It is of

great importance to remove these noises so that further processing (e.g. bird identification)

can focus on the parts of a recording containing bird sound without interference. Many

approaches already exist for detecting and removing noise from multiple sources [13–17].

Current bioacoustic preprocessing approaches typically do not use multiple processes to

remove noise from multiple sources and, as such, do not consider the order in which processes

should be applied in any depth. Accordingly, current processing is potentially slower and less

accurate than it could be. This presents a key challenge: to determine which order of process-

ing tasks will result in the most efficient and effective pipeline possible. An investigation of the

ordering of preprocessing tasks could improve current processing for a variety of bioacoustic

applications, such as biodiversity appraisal [18] and species classification processes [19].

Additionally, many bioacoustic preprocessing approaches are applied individually in a

manual or semi-automated way. However, such approaches are not well suited to large scale

studies because of the time required to process recordings [3, 9, 20]. Recorders are being

deployed in larger numbers across different natural environments, and so are collecting bioa-

coustic data at high volumes, sometimes on the order of hundreds of gigabytes per day [21].

Processing environmental recordings on this scale is not viable in terms of both cost and time

with existing methods [22].

We address the key challenge of how to improve the computational speeds of preprocessing

tasks in a cost efficient manner. We propose to combine preprocessing tasks into a pipeline

and distribute this pipeline among several processors, using a master-slave system to achieve

this. Determining how to best distribute processing needs to be investigated. Ideally, the sys-

tem should be linearly scalable. This means that improvements in execution time (i.e. in terms

of ratios) should be linearly proportional to the number of processors used.

A potential option for distributing processing tasks is to use an off-the-shelf system such as

Hadoop [23] or Spark [24], although these do not give low-level control over data in order to

maximise efficiency and introduce significant overhead. A previous attempt to utilise Hadoop

and Spark for some preprocessing steps (such as splitting bioacoustic audio files and generat-

ing spectrograms) by Thudumu et al. [25] did not achieve linear scalability, and only performs

a simple process.

Combining all processes together is not a simple matter of performing one process after

another, or performing any process in random order, because each process might have an

impact on the effectiveness of subsequent processes and the overall execution time of the pro-

cessing pipeline. For example, a stationary noise filter might have an effect on how accurately

rain can be detected and filtered. If heavy rain can be detected accurately without using a sta-

tionary noise filter, then the stationary noise filter does not need to be applied on data known
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to contain rain, under the assumption that rain interference irreparably damages any bird sig-

nal in the audio. Complicating matters further, rain might be detected more accurately after

stationary noise reduction, but overall processing will be slower, so there is a trade-off between

accuracy and efficiency. As such, finding the order of execution for preprocessing filters is

important and non-trivial to solve.

To address these challenges, we investigate several factors which could influence the effi-

ciency of our proposed preprocessing pipeline; most significantly, the order in which prepro-

cessing tasks are executed. This involves thoroughly investigating the execution times of

individual tasks, and the effects of split length on the accuracy of several filters. We also investi-

gate several parameters within our proposed distributed system that influence the data pro-

cessing efficiency of the system.

To summarise, the primary contributions of this paper are:

• Design of a pipeline combining multiple processes to produce a system for preprocessing

environmental recordings. We perform a thorough investigation to determine the best order

of processing tasks for effective and efficient preprocessing, including efficiency and accu-

racy trade-offs.

• Design of a highly scalable distributed system built specifically for the preprocessing pipeline,

utilising data parallelism to increase the speed of processing while ensuring all processors are

highly utilised and maintaining low overhead.

We describe the distributed computing system used to execute the preprocessing pipeline,

then determine the best order of execution for this pipeline. The performance of the pipeline,

when run on the distributed system, is then evaluated.

Proposed distributed system for preprocessing

This section describes the proposed system for distributing work amongst multiple machines.

The processing pipeline is subsequently derived and distributed by this system.

Master-slave model

Our approach utilises a master-slave architecture with file parallelisation to progress through

the processing pipeline. Files are processed through the pipeline on one slave each. This

approach is selected, as opposed to distributing work on a per-process basis, because workload

can be evenly distributed among slaves by splitting files into small chunks.

The master first splits each file. Based on our investigation of individual processing tasks,

we determine if the master process should also perform other processes. Upon finishing split-

ting and any other initial processing, the master adds files into a queue. The master and slaves

then communicate with each other when they are ready to send and receive files. Slaves com-

plete what is left of the processing pipeline before sending the output back to the master.

Slaves will store chunks that have completed processing in a queue and send the results of

all finished processes at constant time intervals. This is preferable to sending one file at a time

because the amount of communication between the master and slave threads is lower.

The master tracks which files have been sent to each slave, and which have completed pro-

cessing, such that it can re-send files to different slaves if a slave disconnects or crashes.

Slave parallelisation

Parallelisation is performed both between multiple machines and between multicore proces-

sors. To parallelise work within a single machine, a central thread handles communication
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between the master and the slave, acting similarly to a secondary master (with threads being

slaves). Files given to the slave from the master are added to a queue of files pending process-

ing, which is managed by the central thread. The queue is set to a fixed size, such that if the

queue falls below this size, the slave will request more files from the master. Processing threads

then remove files from the queue and process them through the denoising pipeline. Upon

completing processing, files will enter another queue, from which they will be sent back to the

master process. If the file is deleted at some point during denoising (e.g. because it contains

heavy rain), the file name is sent back to the master to indicate that it has been processed.

Distribution of work

This system needs to perform multiple preprocessing tasks so that bird acoustic data can be

effectively analysed. There are several factors that need to be investigated in order to efficiently

distribute work amongst multiple machines. The first of these is to determine which order

work should be executed. This is significant because some processes affect the accuracy of

other processes. Additionally, some processes might make others redundant for some of the

data.

Another challenge involves determining which length of audio each slave should process at

a time. This affects the accuracy of some processes. Additionally, there is a trade-off between

minimising the amount of communication between the master and the slaves, which is

achieved by sending more work to do at once, and ensuring workloads are processed evenly,

which is easier to do if less work is done at once.

Processing pipeline

Investigation of the best sequencing of tasks

We now focus on determining the best order of execution for an efficient preprocessing pipe-

line for use in our distributed system. The pipeline is derived by first evaluating execution

times for each process, and how this varies with the lengths of audio chunks processed at a

time. We then evaluate the accuracy of noise detection processes before and after applying a

stationary noise filter (Minimum Mean Square Error Short Time Spectral Amplitude estima-

tor, or MMSE STSA [14]), and finally test to see if detection approaches have a dependency on

split length.

Experimental design

Three experiments are conducted to assist in the development of the preprocessing pipeline.

The first experiment looks at the computation times for each processing step, and how these

vary depending on the size of data they are processing at once (called file split size/length).

This experiment identifies fast and slow processes. Faster processes are placed earlier in the

pipeline where possible if they can result in later, slower processes being skipped for some data

(i.e. due to the deletion of audio). This experiment can also help to identify which split lengths

result in faster execution for each process, which can be used to improve their execution time.

For bird detection problems, ideally files should not be split such that individual bird calls

are split across two files, but this is not a problem for noise reduction, because the noise

sources being examined occur over longer time periods. Files might need to be merged for

bird detection, although this is not a consideration taken in this preprocessing pipeline. An

overlap between splits could be added for bird detection problems.
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The second experiment examines the effect of the MMSE STSA filter, which alters audio

files in a significant way and hence affects detection processes. As such, we test the accuracy of

detection approaches before and after applying the filter.

The final experiment looks at whether detection accuracy is dependent on the length of

chunks into which the audio is split. We take a random 30 minute sample of unsupervised

recordings, manually classify rain and cicada choruses and compare this to the automatic clas-

sifiers. This can show if detectors work better on certain lengths. This is important in deter-

mining the processing order, because it is easier to split audio files than to join them together,

because joining requires that consecutive chunks are processed on the same machine. This

means that detection processes with longer split lengths should run earlier than those that do

not.

Recording data. Environmental recordings for evaluating the system have been provided

by the Samford Ecological Research Facility (SERF), based in the Queensland University of

Technology (QUT). These recordings were taken over five days between 12 October 2010 and

16 October 2010, over four sensors, for a total of 20 days of audio to process. In practice, four

days of recordings are used in testing. Recordings from this group have been used in several

studies [16, 20, 21]. While these recordings are of high quality, they do contain significant lev-

els of background noise, large variations in the loudness of bird sounds (ranging from very

clear to barely audible)m and noise interference from many sources including rain and cica-

das, which makes the sample well suited for this study.

Pipeline processes

The preprocessing stage consists of the following tasks:

• Splitting: Audio is split into smaller chunks which allows for work to be distributed more

easily. Additionally, long files are not viable for processing on their own because of high

RAM requirements [21], and some classification tasks in the pipeline work better on shorter

samples.

• Downsampling: Audio files have sample rates converted to 22.05 kHz to reduce their size.

Bird sounds are normally below 11.025 kHz (the Nyquist frequency) [26], so signals of inter-

est are normally not lost.

• Converting to Mono: Only one channel of audio is needed to detect significant audio sig-

nals, so this is used to further reduce the size of files.

• High-Pass Filter (1 kHz): Birds typically do not emit sound below 1 kHz [26], so all data

below this frequency is noise and hence is attenuated.

• Sound Enhancement: Stationary background noise is reduced. While there are several

approaches that can achieve this [17, 27, 28] we use the Minimum Mean Square Error Short

Time Spectral Amplitude estimator (MMSE STSA) filter [14], which was found in separate

work [3] to be highly effective. Our previous work [29] showed that this was more effective

and time efficient than alternatives.

• Short-Time Fourier Transform: Time-based information is transformed into frequency-

based information. Several acoustic indices used in cicada and rain detection use frequency-

based information, so this is only executed once, rather than for each acoustic index calcu-

lated, or for each process. The FFT implementation used here is from the Apache Commons

Math library [30] and is described by Demmel [31]. A window size of 256 samples is used

with Hamming windows with 50% overlap.
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• Heavy Rain Detection and Removal: Heavy rain is detected by using rules derived from a

C4.5 classifier [32] using acoustic indices. This approach is similar to Towsey et al. [16] and

Ferroudj [15]. Spectral-based signal to noise ratio and power spectral density used by Bedoya

et al. [13] were added to the acoustic indices used in the classifier. The classifier was trained

on a separate sample of data and its rules then hard coded into our Java-based implementa-

tion prior to beginning the pipeline.

• Cicada Detection: Cicada choruses are detected using the same general approach as rain

detection.

• Cicada Removal: Cicada choruses are removed using band-pass filters to eliminate audio

from frequency ranges containing cicada choruses. These ranges are calculated by examining

FFT coefficients. Although it is possible that this filter will remove some bird signal, the

cicada chorus is usually significantly louder than bird signals. As such, we assume that any

bird signal in the same frequency region as the cicada chorus could not be accurately ana-

lysed because of extra noise interference.

Per-step execution time. A test is conducted where each step is performed independently.

Two hours of audio known to contain rain, cicada choruses and bird sounds is passed through

the processing pipeline in sequence, using one processor. The split length is varied (from 5 to

30 seconds in 5-second increments) to observe its effects on processing time. Each test is com-

pleted five times for each split length, and the average and standard deviation of the computa-

tion times are taken.

Fig 1 and Table 1 shows the execution times for all processes for 2 hours (1.2 GB) of audio.

Each process is applied to every file, although, once the pipeline is developed, not all processes

are applied to every file, because some files containing rain may be removed early.

The figure shows two distinctive features. First is the large decrease in the execution time of

the high-pass, cicada, and MMSE STSA filters filters when the split size is larger. The differ-

ences in high-pass and cicada execution times are likely due to the use of the non-native sound

Fig 1. Computation times per process for different split lengths up to cicada detection. Error bars indicate standard deviation (FFT = Fast

Fourier Transform, HPF = High-Pass Filter, MMSE STSA = Minimum Mean Square Error Short Time Spectral Amplitude filter).

https://doi.org/10.1371/journal.pone.0201542.g001
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processing library Sound eXchange (SoX) [33]. This causes extra overhead with each call, and

shorter split sizes require more calls to SoX. This is more of a problem for high-pass filtering

than cicada filtering, as this is executed on every file, whereas cicada filtering only applies to

parts of the recording where cicada choruses are detected, which, as determined by subsequent

testing, is a small fraction of the total recording.

The second observation is that the MMSE STSA filter takes much longer than the other pro-

cessing steps combined. As such, execution time can be significantly saved by removing audio

before the MMSE STSA filter is applied.

The trend in high pass filter execution time gives rise to a potential improvement. If clips

are split into larger chunks first, downsampled and high-pass filtered, and then split into

smaller chunks, execution time can be improved. Testing an approach that performs this

shows an improvement in execution time, as shown in Fig 2. Here, audio is split into 1-minute

(2.5 MB) long chunks, downsampled, high-pass filtered, and then split to the target split

length. Two hours of audio is tested against two approaches, one that splits audio to the target

length immediately, and one that split files into 1-minute long chunks first, and then splits

again.

Table 1. Computation times for each processing step in relation to split lengths with standard deviations.

Processing Step Split Length (seconds)

5 10 15 20 30

Splitting 7.85±0.42 7.95±0.49 8.13±0.51 9.24±0.42 8.87±0.42

Downsampling 10.18±0.42 9.59±0.68 9.30±0.30 9.29±0.52 9.57±0.19

High-pass Filter 86.63±0.13 47.79±0.17 34.8±0.18 28.2±0.11 21.67±0.09

Fast Fourier transform 2.39±1.01 47.79±1.44 71.90±1.36 73.15±0.56 73.21±0.95

Rain Filter 41.11±0.20 40.46±0.20 39.86±0.15 39.94±0.18 42.67±1.16

Cicada Detection 30.47±0.20 31.58±0.20 32.04±0.08 32.32±0.26 31.36±0.60

Cicada Filter 103.48±0.56 64.30±0.18 51.94±0.22 45.27±0.23 37.46±0.52

MMSE STSA 1020.57±6.49 1002.65±5.98 993.10±3.39 986.92±3.09 923.21±21.78

https://doi.org/10.1371/journal.pone.0201542.t001

Fig 2. High-pass filtering computation times. High-pass filtering computation times comparison, between splitting

to the final length, downsampling, and then high-pass filtering (one split) and splitting to 1-minute (2.5 MB) chunks

first, downsampling and high-pass filtering, then splitting to the final length (two splits).

https://doi.org/10.1371/journal.pone.0201542.g002
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While it would be theoretically optimal to run a high-pass filter on whole audio files, rather

than running an initial split to 1-minute long chunks, some consideration needs to be made

for when this pipeline is processed in parallel, where it is advantageous to start allocating files

to machines to process as quickly as possible, and to give them shorter files such that work can

be distributed more evenly. As such, this initial split length is used as an input parameter to

test the distributed system to find an efficient configuration.

Silence removal. As discussed above, it is highly advantageous to remove audio before

execution the MMSE STSA filter because of its long execution time. Audio containing heavy

rain is already removed, but even more audio can be removed by detecting audio that does

not contain any bird sound of interest. Because of this, we introduce a basic silence removal

approach to the processing pipeline. This approach uses a simple threshold. The choice of

threshold is derived next, based on one of two acoustic indices taken from Bedoya et al. [13]:

Power Spectral Density (PSD), and Signal to Noise Ratio (SNR). Execution time testing shows

that this silence detection approach takes a very short time relative to other processes, taking

approximately 10 seconds to process 2 hours (1.2 GB) of audio, regardless of the split length.

Silence detection testing is now added to subsequent tests used in evaluating the processing

pipeline.

Effect of the MMSE STSA filter on noise reduction. The MMSE STSA filter [14] is a pro-

cess within the processing pipeline that reduces stationary background noise, hence, making

signals clearer. However, this process is time consuming, as shown in Fig 1, so processes

should only be applied after the MMSE STSA filter if they show significant improvement in

detection accuracy, particularly if these processes remove audio, as removed audio does not

need to be processed further. Here, we test the accuracy of rain, cicada, and silence filters

before and after applying the MMSE STSA filter to determine where they belong in the pipe-

line, relative to the MMSE STSA filter.

We first evaluate the accuracy of rain and cicada detection when the MMSE STSA filter is

applied. For this test, acoustic indices were calculated for raw audio, and audio processed by

the MMSE STSA filter (although a 1 kHz high-pass filter was used for each set). The audio in

each set was otherwise identical outside of processing.

The classification accuracies of each set are given in Table 2. This clearly shows that the

MMSE STSA filter does not improve accuracy, and actually reduces it for rain detection. This

is likely because rain has stationary and non-stationary components (i.e. raindrops distant

from the sensor make a constant background noise, whereas closer raindrops are clearly audi-

ble and distinguishable). As such, the MMSE STSA reduces some, but not all of the noise

sources, making them more difficult to detect.

For silence detection, thresholds using two different measures are considered: power spec-

tral density and signal to noise ratio (SNR). These are applied to files with and without the

MMSE STSA filter to evaluate accuracy. Because only one measure is used, an ROC curve (Fig

3) is employed to visualise the accuracy of the thresholds as they are increased, in terms of the

sensitivity and selectivity. The Area Under the Curve (AUC) is taken for each threshold and

recording set, shown in Table 3.

The results of this show that, if using the Power Spectral Density measure, the MMSE STSA

filter would be necessary to obtain good results. However, the SNR measure performs similarly

Table 2. Comparison of detection accuracy depending on use of MMSE STSA filter.

Filter Cicada Accuracy Rain Accuracy

Raw 99.3% 96.9%

MMSE STSA 99.1% 92.9%

https://doi.org/10.1371/journal.pone.0201542.t002
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well regardless of the use of the MMSE STSA filter. Because of the time cost of using the

MMSE STSA filter, it is more efficient to execute silence detection based on SNR prior to exe-

cuting the MMSE STSA filter.

Effect of split length on noise reduction. This section examines if detection approaches

are dependent on split lengths. To do this, the accuracy of each detector (silence, rain, and

cicada chorus) is tested on 30 minutes of audio composed by randomly selected 1-minute

chunks spread over four days of original recordings. These chunks are then split into 5, 10, 15,

20, and 30 second chunks (these divide evenly into 60 seconds). These are listened to and man-

ually labeled as rain, cicada, or silence, to a resolution of 5 seconds. Each detection approach

is then tested for each split length. Manual labelling is performed on audio filtered by the

MMSE STSA algorithm, even though automatic methods work with raw audio. This gives

Fig 3. ROC curve for classifying silence.

https://doi.org/10.1371/journal.pone.0201542.g003

Table 3. Area Under the Curve (AUC) results for silence removal, with 95% Confidence Intervals (CI) for raw and

MMSE STSA filtered audio using Power Spectral Density (PSD) and Signal to Noise Ratio (SNR) thresholds.

Audio Source Index AUC 95% CI

Raw PSD 0.768 0.745–0.831

Raw SNR 0.939 0.910–0.969

Filtered PSD 0.913 0.8818–0.944

Filtered SNR 0.929 0.894–0.964

https://doi.org/10.1371/journal.pone.0201542.t003
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better accuracy for manual labelling, particularly for detecting silence, because very quiet calls

become clearer.

Accuracy is evaluated for each split length to a precision of 5 seconds, despite the fact that

these approaches do not have this level of precision for longer split lengths. For example, given

a 10-second long chunk, if there is silence in the first 5 seconds, but a sound in the following 5

seconds, and that chunk is labelled as silence by the system, this is interpreted as one true posi-

tive and one false positive result, even though only one file was classified.

In practice, the silence classifier labels some rain as silence. This makes intuitive sense,

given it is using an estimated signal to noise ratio (SNR) threshold, which is a measure of peak

volume to average volume. If the average volume is very loud then the SNR will be low, even if

the peak volume is also loud (compared to times when it is not raining). Despite technically

being a false positive, this is not a significant issue, because rain is removed by the rain filter

anyway. However, this creates a complication, because some rain samples contain audible rain

drops, which results in files with a high signal to noise ratio. Consequently, because the silence

filter detects some, but not all rain samples as containing silence, samples manually classified

as containing rain were removed from the silence classification test.

For all figures in this section, the number of true positives, false positives, and false nega-

tives are shown. True negatives are excluded from these figures as the number of true negatives

is much greater than the others in every case, which makes visual comparison more difficult.

• Cicadas: The cicada detection results, depicted in Fig 4 and Table 4, shows that cicada detec-

tion works well for all split lengths, detecting all cicada choruses in the sample, with a small

number of false positives. The best performing split length is 15 seconds, which contained

no false positives, although this strong result could be partially due to chance.

• Rain: Similar to cicada detection, the amount of rain detected does not vary much depend-

ing on split length, as shown in Fig 5 and Table 5. Somewhat surprisingly, rain detection is

slightly more sensitive, and more accurate, for longer split lengths, at least up to 30 seconds,

at which point a steep drop-off occurs. This is likely because rain tends to occur over a long

duration, and patterns that can be used to detect rain are clearer over longer time periods.

In practice, the accuracy of rain detection is not as poor as this evaluation suggests. When

manually labelling the data, only rain considered intense enough to drown out any bird

Fig 4. Results of cicada classification test.

https://doi.org/10.1371/journal.pone.0201542.g004
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signal was classified as rain, although the rain classifier classifies some lighter rain without

significant bird sound as containing rain. While these are labelled as false positives, many of

these would be (validly) removed by the silence detector anyway.

• Silence: Figs 6 and 7, and Table 6, show the accuracy of the silence detector at different signal

to noise ratio thresholds. Unlike rain and cicada detection, split length has a significant effect

on the sensitivity of silence detection. This is because silence is much more likely to occur

over shorter durations.

Overall, the silence detector performs somewhat poorly, producing about as many false posi-

tives as true positives on more aggressive settings, and failing to detect many instances of

silence on all settings, with worsening performance for longer split lengths and lower thresh-

olds. This indicates a better approach is needed for removing silence overall, which will be

the subject of future work. For the present investigation a less sensitive threshold is selected,

as this is more accurate overall and retains more samples containing bird sound, which is

Table 4. Cicada detection accuracy.

Split Length True Pos. False Pos. False Neg. True Neg. Accuracy

5 10.3% 2.0% 0.0% 87.6% 98.0%

10 10.3% 1.7% 0.0% 87.9% 98.3%

15 10.3% 1.7% 0.0% 89.7% 100.0%

20 10.3% 2.3% 0.0% 87.4% 97.7%

30 10.3% 1.7% 0.0% 87.9% 98.3%

https://doi.org/10.1371/journal.pone.0201542.t004

Fig 5. Amount of audio detected as rain in a sample as it varies with split length.

https://doi.org/10.1371/journal.pone.0201542.g005

Table 5. Rain detection accuracy.

Split Length True Pos. False Pos. False Neg. True Neg. Accuracy

5 6.8% 5.4% 4.8% 83.0% 89.9%

10 6.9% 4.0% 4.3% 84.7% 91.7%

15 7.5% 4.6% 3.7% 84.2% 91.7%

20 8.3% 5.5% 2.9% 83.3% 91.7%

30 6.0% 4.3% 5.2% 84.5% 90.5%

https://doi.org/10.1371/journal.pone.0201542.t005
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more important than any efficiency gained from removing silence, as these can be dropped

at a later point. As such, the 5-second sample with the lower threshold is considered the best

setting for our filter, which does remove over one third of silence, while classifying relatively

few false positives. Though using 5 second splits means that the MMSE STSA filter takes lon-

ger to execute (see Fig 1), the effect of removing silence will have a greater effect on reducing

execution time overall.

It is notable that, while the silence detector does produce many false positives, the false posi-

tives contain quiet bird calls, not significantly louder than the background noise. Even after

applying the MMSE STSA filter, noise still masks these faint calls, making them poor candi-

dates for automated species identification. In our testing, the silence filter never removed

any audio with very clear bird calls.

Work distribution between the master and slaves. Based on our investigation of individual

processes, we perform downsampling and high-pass filtering alongside splitting using the master

Fig 6. Silence detection accuracy for the higher of the two thresholds tested.

https://doi.org/10.1371/journal.pone.0201542.g006

Fig 7. Silence detection accuracy for the lower of the two thresholds tested. All split lengths above 15 seconds detect

no silence.

https://doi.org/10.1371/journal.pone.0201542.g007
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process. The time taken to perform these steps is small compared to the overall processing time

of the pipeline, so executing these steps serially does not increase processing time. Downsam-

pling reduces file sizes which means that less time and bandwidth is used in sending files to

slaves. High-pass filtering is performed on the master process because it utilises long split lengths.

By doing this on the master process, files can be split into shorter chunks for distribution.

Final pipeline

Based on the above findings and evaluation results from the previous sections, the final pipe-

line for preprocessing bioacoustics recording based on denoising filters is given in Algorithm

1 and summarised in Figs 8 and 9.

Files are first split to break up processing into smaller steps which can be parallelised. Com-

pression processes are then applied to reduce execution time of all other processes. High-pass

filtering is applied, removing any noise below 1 kHz and improving detection mechanisms.

This also works better with longer split lengths, so applying earlier improves execution times.

Then rain and cicada detection are executed, with rain detection executing earlier because it

may eliminate audio from further processing. Files are then split to 5 seconds, before silence

detection is performed. Finally, the MMSE STSA filter is executed. Placing this at the end

reduces execution time because any files removed by other processes do not need to undergo

MMSE STSA filtering, which has the longest execution time of any individual process.

Importantly, any file removed in earlier processes does not need to complete the pipeline,

saving significant execution time. Hence, silence and rain detection steps significantly improve

execution times, while resulting in higher quality output because useless chunks are discarded.

In particular, skipping the MMSE STSA step removes the majority of processing time of any

given file.

Identifying best settings for efficient workflow distribution

Now that the pipeline has been constructed, the next step is to integrate it into a distributed

system, and determine the best configuration for this system. A large number of configurations

are examined to find which set produces the fastest execution. In particular, the split length,

the split length before applying the high-pass filter, referred to here as the long split length, the

maximum queue size of slaves’ central threads, and the interval between slaves sending results

are considered. These tests are carried out using 4 virtual machines with 4 cores each and 16

GB of RAM. These machines are hosted in the Nectar Cloud, which is a cloud platform used

by Australian and New Zealand universities.

Table 6. Silence detection accuracy.

Split Length True Pos. False Pos. False Neg. True Neg. Accuracy

SNR threshold = 0.25
5 9.1% 8.4% 11.0% 71.5% 80.6%

10 5.5% 4.9% 14.5% 78.0% 80.5%

15 3.9% 1.9% 16.2% 78.0% 81.9%

20 3.6% 1.3% 16.5% 78.6% 82.2%

30 0.0% 0.0% 20.7% 79.9% 79.9%

SNR threshold = 0.2
5 7.2% 3.3% 12.9% 79.9% 83.8%

10 2.9% 1.0% 17.2% 78.9% 80.0%

15 0.0% 0.0% 20.1% 79.9% 79.9%

https://doi.org/10.1371/journal.pone.0201542.t006

Scalable preprocessing of high volume environmental acoustic data for bioacoustic monitoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0201542 August 3, 2018 13 / 24

https://doi.org/10.1371/journal.pone.0201542.t006
https://doi.org/10.1371/journal.pone.0201542


Algorithm 1 Processing Pipeline
Split an audio file into “long” chunks (the best length for these will
be tested subsequently)
for all “long” chunks do
Downsample audio to 22.05 kHz and convert to mono
Apply a 1kHz high pass filter
Split audio into “short” chunks (the best length for these will be

tested later)
for all “short” chunks do
Apply an STFT
if chunk contaminated by rain then
Delete chunk

else
if chunk contains cicada chorus then
Identify chorus frequency range
Apply Sinc Filter to elimiate cicada chrous

end if
Split chunk to 5 second long sub-chunks
for all sub-chunks do
if sub-chunk is silent then
Delete sub-chunk

else
Apply MMSE STSA filter

end if
end for

end if
end for

end for

Fig 8. Early steps of the processing pipeline, processed by the master. The “long length” and “short length” are

determined in subsequent tests.

https://doi.org/10.1371/journal.pone.0201542.g008
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Initially, we conduct ad hoc tests using a large number of different parameter sets to reduce

the number of configurations to undergo more thorough testing to a more manageable level.

In these tests, each set is only tested once. From this ad hoc testing, parameter ranges are set to

evaluate 90 configurations in more depth. Each test is conducted five times each with the same

two hours of audio used in earlier tests being processed each time. Of these, 10 configurations

with the lowest average execution time are shown in Table 7.

A key insight from these results is that there is little difference in performance between the

best configurations, with the top 10 being separated by 0.6 seconds over 2 hours (1.2 GB) of

audio (0.8% of the fastest time) and well within the standard deviation of all the top 10. The

fastest configuration equivalently processes audio at a rate of 16.4 ± 0.3MBs−1, or 99.2 ± 1.6

seconds of audio processed per second of real time (error given by the standard deviation).

The only poor combination is to have a split length of 5 and maximum slave queue size of 3,

Fig 9. Denoising steps of the processing pipeline, processed by the slaves.

https://doi.org/10.1371/journal.pone.0201542.g009
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and any combination of other settings. These configurations are about 25 seconds slower on

average than any other configurations. The top 84 configurations (i.e. all configurations except

the known bad ones) are separated by 8.03 seconds (this becomes 2.81 seconds for the top 50),

which is statistically significant, so there is a small time efficiency advantage from thoroughly

testing configurations as opposed to selecting one at random.

This indicates that configurations can be selected for accuracy, without significant loss of

efficiency. Because splitting into 15 second chunks is the most accurate approach for removing

rain and cicada sounds, this is taken to be the split length in further testing. This gets split into

5 second chunks for silence detection at a later point of the pipeline.

Performance evaluation of preprocessing pipeline

Given the determined efficient order of execution for the preprocessing steps and determined

how to distribute the resulting pipeline efficiently, we evaluate the system’s performance for

preprocessing high volume data. We perform multiple tests, comparing execution times, load

balancing, and resource usage over different numbers of resources, some of which have differ-

ent levels of processing power.

Execution time and scalability testing and analysis

We first evaluate the system’s ability to scale given differing amounts of processing power.

The system is tested using two hours of audio known to contain bird sound, rain, cicada cho-

ruses, and silence with varying numbers of machines. The test is run four times for each case,

and the average execution time recorded. The 1-core execution test uses a process specifically

written for sequential execution, while the others uses the distributed system. The CPU

count includes the master and slave nodes. Because the master node does not require a large

amount of resources, a slave node is also executed on the same machine as the master. Each

instance tested contained 4 cores and 16 GB RAM, though most of this RAM is not used by

the system. The 2-core case was tested using a single 2-core instance running a master and a

slave process.

Fig 10 shows the average execution time for the number machines used. Fig 11 presents the

improvement in the execution time over 1 core by measuring how many times faster execution

is compared to the sequential (1-core) case. Table 8 gives a numerical summary of results.

The first investigation considers the execution time of the pipeline in serial (1 core). Note

that [naively] adding the execution times for all individual processes given 15 second splits

(see Table 1) suggests a likely overall processing time of 1251.2 plus/minus 3.7 seconds.

Table 7. Ten best configurations identified in distribution testing.

Split length (s) Long split length (s) Max queue size Time per send (s) Average execution time (s) Std. dev. (s)

10 120 7 2 72.55 1.14

20 60 5 2 72.74 0.90

10 60 5 2 72.75 0.56

5 120 7 3 72.76 1.13

30 60 3 2 72.95 0.42

10 120 5 3 72.95 0.45

15 60 5 3 73.14 0.70

5 60 7 4 73.14 1.41

10 60 7 2 73.15 1.00

20 60 3 2 73.15 1.58

https://doi.org/10.1371/journal.pone.0201542.t007
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However, with our processing pipeline, which removes some audio earlier in processing,

negating the need to perform all processing steps, the same processing is achieved in

896.6 ± 14.5 seconds. This gives a 1.4 times improvement, simply by considering the order of

execution for the pipeline and avoiding redundant computations.

Fig 11 shows that the system is indeed scaling almost linearly, with significant speed boosts

from using extra processors. The improvement rate does begin to slightly diverge from perfect

linearity when high numbers of cores are used, but even a 32-core distributed system still

shows significant performance increases over a 24-core system. There is also a slight statistical

anomaly where the 2-core system does not improve as much over the sequential 1-core system

as might be expected. This is likely because of the extra overhead involved in using the distrib-

uted system over the sequential system. However, this extra overhead does not seem to prevent

the system from being linearly scalable.

Fig 10. Average execution time of the system given a number of cores. The master and each slave have 4 cores, so 16

cores uses 4 virtual machines. Standard deviations are too small (4.9 seconds at most) for most error bars to be visible.

https://doi.org/10.1371/journal.pone.0201542.g010

Fig 11. Rate of improvement in execution time per number of cores. This is given by Execution Time of 1 core/

Execution time of x cores.

https://doi.org/10.1371/journal.pone.0201542.g011
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A further test is conducted using smaller machines which, when combined, give a similar

power level to large machines. The configurations compared are as follows:

1. One 4-core, 16 GB RAM master, one 4-core, 16 GB RAM slave

2. One 4-core, 16 GB RAM master, two 2-core, 6 GB RAM slaves

3. One 4-core, 16 GB RAM master, four 1-core, 4 GB RAM slaves

The master also runs a slave instance in all cases, to make a fairer comparison with the pre-

vious tests. This also has the effect of testing system performance where different sizes of vir-

tual machines are operating at the same time, as the master virtual machine runs a slave with 4

cores in all cases, albeit while competing for resources with the master thread.

The results shown in Fig 12 indicate that the system works as well with the master and

two 2-core slaves compared to the master and one 4-core slave, and slightly worse when four

1-core slaves are used. The slower execution time when using 1-core machines could be due to

extra overhead caused by the use of the centralised slave thread. This use of the central slave

thread (which can be further broken down into six small threads) results in excessive overhead

with smaller machines, while with larger machines reducing the amount of communication

to the master and waiting times in processing files become advantageous. It could also be

due to an inappropriate queue size being used for smaller machines, leading to imbalances in

Table 8. Execution times for processing 2 hours of audio for different distributed system configurations. The master and each slave have 4 cores, so 16 cores uses 4 vir-

tual machines. Improvement rate is given by execution time of 1 core/Execution time of x cores.

# Machines #Cores Execution Time Improvement Rate

1 1 896.6 ± 14.5 1×
1 2 526.0 ± 6.1 1.70 ± 0.03×
1 4 262.3 ± 1.4 3.42 ± 0.06×
2 8 135.6 ± 2.0 6.61 ± 0.11×
3 12 95.2 ± 1.9 9.42 ± 0.15×
4 16 73.2 ± 1.9 12.25 ± 0.20×
6 24 51.7 ± 0.6 17.35 ± 0.94×
8 32 41.2 ± 0.9 21.76 ± 0.35×

https://doi.org/10.1371/journal.pone.0201542.t008

Fig 12. Execution time comparison between using more smaller machines and using fewer larger machines. The

master on its own is also shown for comparison.

https://doi.org/10.1371/journal.pone.0201542.g012
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workload during later stages of execution. The system is developed for larger machines, so it

makes intuitive sense that they would compute faster. Overall, the system is capable of per-

forming efficiently with virtual machines of any size, although slightly less efficiently when

1-core machines are used. It also shows that the system can maintain efficiency when machines

of different sizes are processing at once, because the master is running a slave thread with 4

available cores in all tests.

Load balancing testing and analysis

We also conduct an analysis of load balancing at the same time as the scalability tests. This

measures how many files are going to each of the slaves. Because all the slave machines have

identical specifications, the file distribution should be even in an ideal case, apart from one

slave which will have a lower number of files because it is sharing resources with the master

process.

As shown in Table 9, while work is not distributed entirely evenly for all cases (particularly

when four 4-core machines are used), it is very close to being so.

Table 10 demonstrates that the system is capable of balancing workload where the machines

being used are of unequal power. This data are taken from earlier tests where the master, with

4 cores, is running a slave process simultaneously and less powerful machines are also running

slave processes. Here, the machine running the master process correctly allocates more files to

itself compared to what it allocates to each of the slaves, proportional to the differences in com-

puting power, though more computation is done by the machines with fewer cores overall,

because the 4-core machine is also executing the master process.

Resource usage test and analysis

A test is conducted to see how efficiently the system is using resources. This is done by process-

ing two hours of audio with four slaves, and sampling the CPU and RAM usage approximately

every 8 seconds. This sampling is done using a shell script running in parallel to Java execu-

tion, although some data regarding timing is sent to the debugging logs to help synchronise

the timings between slaves. While accuracy of the times is imperfect, it should be accurate to

within 3 seconds.

Table 9. Load balance distribution across different numbers of machines. The maximum and minimum load refer

to the average load of VMs with the largest and smallest loads (in terms of percentage of files processed) over five trials.

The p-value is derived from a single-factor ANOVA test. p� 0.05 indicates, with 95% confidence, that processing loads

are not equal.

# Machines Max Load Min Load p-value (ANOVA)

2 51.7±2.0% 48.3±2.0% 0.026

3 34.1±2.6% 32.7±1.9% 0.54

4 26.2±0.7% 23.9±0.5% <0.001

https://doi.org/10.1371/journal.pone.0201542.t009

Table 10. Load balance distribution across different numbers of machines that have differing numbers of CPU cores. In each test, one machine has 4 cores and exe-

cutes the master process alongside a slave process, and the smaller machines run slave processes. The maximum and minimum load refer to the average load of VMs with

the largest and smallest loads (in terms of % of files processed) over five trials. The p-value is derived from a single-factor ANOVA test. p<= 0.05 indicates, with 95% confi-

dence, that processing loads are not equal.

# Machines # Cores 4-Core Load Max Load Min Load p-value

2 2 46.8±1.2% 27.2±1.9% 26.1±1.6% 0.34

4 1 46.4±0.9% 14.2±1.1% 12.3±0.9% 0.10

https://doi.org/10.1371/journal.pone.0201542.t010
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Fig 13 shows that CPU usage remains at about 90% for most of the processing of the two

hours of audio. There does appear to be a slight drop below this number at the start of process-

ing, presumably due to the master still performing early processing and not having files to

send. Overall, assuming the overhead is not significant to CPU usage, it would be difficult to

significantly improve upon the current pipeline without changing the pipeline itself. Note that

the master is also running as a slave, and the master CPU usage relates to the usage by the slave

and master processes running on that machine.

Fig 14 shows that the three slaves utilise around 11% of the machines’ 16 GB of available

RAM, remaining constant after the first 10 seconds. The master uses more RAM, presumably

due to holding information about slave sockets and data streams, as well as information about

files, relating to whether they have been sent and which slave is processing them, in addition to

running a slave process.

RAM is underutilised overall. The system relies heavily on file writes and file reads using

data storage, which results in low RAM utilisation. Keeping more data in RAM could result in

Fig 13. CPU usage over four 4-core machines processing 2 hours (1.2 GB) of audio.

https://doi.org/10.1371/journal.pone.0201542.g013

Fig 14. RAM usage over four 4 core machines processing 2 hours (1.2 GB) of audio.

https://doi.org/10.1371/journal.pone.0201542.g014
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faster memory access and in turn, faster processing. However, as CPU usage is already fairly

high, hard disk reading and writing does not seem to be a significant bottleneck in processing

these audio files. Nonetheless, this is a potential area for performance improvements in future

work.

Comparison with similar approaches

Dugan et al. [22] focus their cloud infrastructure on completing two tasks: auto detection and

noise analysis. In each of these, a process manager divides work into M nodes which each inde-

pendently work on their own tasks. Their sensor data is multiplexed in the data files (i.e. data

from multiple sensors are shared in the one place), so data are divided by time, rather than

by sensor. Recordings for the time period to be analysed are split into blocks equal to the num-

ber of processing nodes and each of these blocks are assigned a node. Nodes process indepen-

dently, then return their output. Using this they found that, while speed improvements varied

between the process being tested, the most improved process (classifier-based detection) was

6.57× faster for an 8-node server over a serial process, although another process (template-

based detection) only improved by 3.33× over a serial process using an 8-node server running

in parallel. A drawback to their approach is the use of a MATLAB package to handle distribu-

tion, which, while easier to develop, lacks low-level control over the data, and adds overhead.

They have expanded this work with numerous publications, such as in a 2015 work [34] where

they built an Acoustic Data-Mining Accelerator (ADA), which parallelises mapping and gath-

ering operators in an otherwise sequential process.

Truskinger et al. [21] aim to extract acoustic indices to visualise their bioacoustics data. To

do this, they distribute work by splitting audio into smaller chunks, similarly to Dugan et al.

[22]. The research claims it is not feasible to process audio files any longer than two hours due

to the high amounts of RAM required, so they use a specialised program called mp3splt to divide

the audio into 1-minute long chunks. A master task creates a list of work items for work tasks to

do. Each work task is given a different chunk of audio to analyse. The results of these tasks are

aggregated by the master task. Through this parallelisation, the execution time of an analysis

task involving the computation of spectral indices is improved by a modest 24.00× for a 5

instance, 32 thread (with 32 cores per instance) distributed cluster over a single threaded pro-

cess. While certainly an improvement, the parallelisation appears inefficient as the improvement

rate is much lower than the increase in resources. While discussion of the pipeline is not detailed

in the paper, a possible reason for this low improvement rate is that there is a large serial compo-

nent to the processing pipeline used and so the parallel processors are not fully utilised.

Thudumu et al. [25] have developed a scalable framework to process large amounts of bio-

acoustics data using Apache Spark Streaming [24] and the Hadoop Distributed File System

(HDFS) [23] which utilises a master-slave model. The system parallelises the chunking of audio

data and the generation of spectrograms. Parallelisation is handled by Hadoop and Spark. For a

task involving splitting 1 GB of audio into 10 second chunks and generating spectrograms, the

system showed a 4.50× improvement in execution time in a test with a 1 core master node and

a 4 core slave node, but a weaker 7.50× improvement in execution time with a 1 core master

and three 4 core slaves compared to a serial process, indicating the system is not as scalable as

it could be. Using an equivalent number of processing resources, our system achieves a 9.98×
improvement, with a much more computationally intensive processing pipeline.

Conclusions and future directions

In this work, we addressed the problem of efficiently pre-processing high volume bioacoustics

data. In particular, we investigated how to efficiently sequence pre-processing tasks, while also
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considering their effect on others. We also investigated how to distribute these pre-processing

tasks among multiple machines. We did this by examining the processing time and accuracy

of individual preprocessing tasks, and how these changed depending on the order in which

tasks are processed and how the audio is split into smaller chunks. We then applied the result-

ing processing pipeline in a distributed architecture designed specifically for processing this

pipeline. We utilised data parallelism to distribute processing work.

In testing individual components of the system, we found that the MMSE STSA filter con-

sumes a very large amount of the execution time, meaning this should be executed as late as

possible in the sequence. We also found that high-pass and cicada filtering using SoX con-

sumes more time when more, shorter files are being processed compared to fewer, longer files,

which gave rise to an efficiency improvement. From these findings, we were able to derive a

processing pipeline that executes 1.40 times faster compared to manually executing all prepro-

cessing tasks in order.

Upon applying this processing pipeline in a distributed system, we are able to achieve near-

linear scalability, even when using 32 cores, which improves execution time by 21.76 times

over serial processing. This compares favourably to existing research. It has also been found

that the system balances load evenly between machines, and can proportionally distribute

more files to more powerful machines. Cores on all machines are found to consistently utilise

90% of their available power, though RAM is underutilised.

While this work presents a strong basis for creating a fast, efficient, and scalable bird acous-

tic preprocessing pipeline, there is great potential for expansion in the future. Silence detection

currently performs poorly and is limited in that it can only choose to keep or drop 5-second

long chunks. This is not a large problem for the present investigation, as we are more con-

cerned with combining existing preprocessing filters together to efficiently process data. How-

ever, if we wanted to improve the accuracy and utility of our pipeline, we could replace our

relatively simplistic approach with one of many existing segmentation processes, which divide

animal calls into syllables, often being insensitive to noise (e.g. [35, 36]). Additionally, the

cicada filter operates under a big assumption that bird sound within the same frequency region

is irrecoverable, which might not necessarily hold true. Potentially, a filter could by designed

to preserve these bird sounds, or at least, testing could be done to investigate if this assumption

is valid.

This processing pipeline is simple and generic enough such that additional noise reduction

techniques could be added to the pipeline without difficulty. Adding additional processes to

the pipeline would likely mean nothing more than inserting a new process in between two

existing ones. However, the extra processes’ impact on the execution time and effectiveness of

the existing pipeline would need to be examined to maintain high efficiency and effectiveness.

Although this work focuses on the removal of noise from two sources, cicada choruses and

rain, there are many other noise sources that could be targeted in the future.

Supporting information

S1 File. Source code for used for this paper can be found at https://sourceforge.net/

projects/fast-bioacoustics-processing/.
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