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Abstract 

Chronic heart failure (CHF) is a highly prevalent condition among the elderly and is associated with considerable morbidity, institution-

alization and mortality. In its advanced stages, CHF is often accompanied by the loss of muscle mass and strength. Sarcopenia is a geriatric 

syndrome that has been actively studied in recent years due to its association with a wide range of adverse health outcomes. The goal of this 

review is to discuss the relationship between CHF and sarcopenia, with a focus on shared pathophysiological pathways and treatments. Mal-

nutrition, systemic inflammation, endocrine imbalances, and oxidative stress appear to connect sarcopenia and CHF. At the muscular level, 

alterations of the ubiquitin proteasome system, myostatin signaling, and apoptosis have been described in both sarcopenia and CHF and 

could play a role in the loss of muscle mass and function. Possible therapeutic strategies to impede the progression of muscle wasting in CHF 

patients include protein and vitamin D supplementation, structured physical exercise, and the administration of angiotensin-converting en-

zyme inhibitors and -blockers. Hormonal supplementation with growth hormone, testosterone, and ghrelin is also discussed as a potential 

treatment. 
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1  Introduction 

Chronic heart failure (CHF) affects approximately 2% of 
the population in Western countries.[1] Noticeably, the 
prevalence of CHF increases dramatically with age, doubl-
ing approximately every 10 years in men and every seven 
years in women past the age of 55 years.[2] As a result, eld-
erly people represent over 80% of all CHF patients. The 
disproportionate prevalence of CHF in late life is largely 
attributable to long-term exposure to cardiovascular risk 
factors. In addition, intrinsic cardiovascular aging, defined 
as the development of structural and functional alterations 
during aging, may render the heart more vulnerable to vari-
ous stressors, which ultimately favors the development of 
CHF.[3] It is also worth mentioning that the implementation 
of more effective therapeutics has increased life expectancy 
in individuals with CHF, with the result that a larger share 
of these patients survive into old age.[4] 
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Heart dysfunction is a major factor limiting physical 
performance in CHF patients. Skeletal muscle abnormalities, 
which often accompany CHF, may also contribute to fatigue 
and dyspnea.[5] In old age, the superimposition of “cardiac 
skeletal myopathy” with age-dependent muscle decline may 
lead to more severe functional impairment.[6] To further 
complicate the matter, 10%–15% of CHF patients develop 
cardiac cachexia, a condition characterized by the loss of 
body weight due to muscle wasting and adipose tissue de-
mise.[7] Cardiac cachexia has a dramatic prognostic impact 
in CHF patients, with an 18-month mortality rate of up to 
50%.[8] Besides, cardiac cachexia worsens the functional 
capacity of patients with CHF above and beyond the dete-
rioration that might predicted by the assessment of cardiac 
dysfunction.[8] 

While the loss of body weight is a defining component of 
cachexia, sarcopenia (i.e., the age-related loss of muscle 
mass and strength/function) is not necessarily associated 
with changes in body weight, because declining muscle 
mass can be masked by proportional increases in adipose 
tissue. Such a phenomenon may hinder the clinical detection 
of sarcopenia and requires the use of imaging techniques, 
including dual-energy X-ray absorptiometry, computed to-
mography or magnetic resonance imaging, for muscle mass  
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quantification. From a clinical perspective, it is virtually 
impossible to distinguish between sarcopenia and cachex-
ia-related muscle wasting in advanced stages of CHF. Yet, it 
should be noted that muscle mass is lost earlier than adipose 
tissue during the progression of CHF. As such, older pa-
tients with CHF may develop sarcopenia before becoming 
cachectic, by progressing along a theoretical “wasting con-
tinuum.”[6] Although sarcopenia is primarily an age-depen-
dent phenomenon, its course is accelerated by the co-   
occurrence of disease conditions, including among others 
CHF.[9] Indeed, sarcopenia affects approximately 20% of 
older adults with CHF, which exceeds the prevalence ob-
served in individuals of the same age without CHF.[10] Re-
markably, older CHF patients with sarcopenia show a lower 
exercise capacity than those with preserved muscle mass 
and function.[10] This finding suggests that the recognition of 
sarcopenia in the context of CHF and the implementation of 
ad hoc therapeutic strategies may help ameliorate the pa-
tients’ functional capacity, before the wasting disorder en-
ters its later stages.  

This review focuses on sarcopenia and “cardiac skeletal 
myopathy” in CHF patients, highlighting common patho-
physiological mechanisms and shared therapeutic strategies. 

2  Shared pathophysiological pathways be-
tween sarcopenia and CHF 

Patients with severe CHF exhibit multiple histological 
abnormalities in skeletal muscle, collectively referred to as 
“cardiac skeletal myopathy”.[11] Two thirds of cases of ad-
vanced CHF experience myofiber atrophy and decreased 
muscular capillary density. Type I to type II fiber switch is 
also commonly observed.[12] Such an inversion, together 
with reductions in mitochondrial cristae surface area, cyto-
chrome C oxidase activity and mitochondrial volume den-
sity, contributes to impairing exercise tolerance.[12] Finally, 
myofiber roundness secondary to intra-fibrillar edema and 
the deposition of fibrotic and adipose tissue alter muscular 
structure and fiber orientation, further reducing force-ge-
nerating capacity.[12,13] 

The nature of muscular changes in sarcopenia is quite 
different. During aging, as a consequence of selective den-
ervation and the loss of fast motor units, type II fibers are 
more prone to atrophy than type I fibers, with a 26% reduc-
tion of the cross sectional area of fast-twitch fibers in indi-
viduals aged 80 years compared to 20-year-olds. From ap-
proximately the age of 80 onwards, both types of fibers are 
lost. The denervation and loss of fast motor units begins at 
the age of 60 years at a rate of 3% annually, which leads to a 
60% loss of fibers by the age of 80 years. The infiltration of 

fat and connective tissue is another important contributor to 
declining muscle quality.[14] 

The frequent coexistence of sarcopenia and CHF is likely 
the result of their shared pathophysiological pathways in-
volving altered nutrient intake and absorption, inflammatory 
processes and metabolic and autonomic disturbances. These 
combined processes result in ultra-structural muscle abnor-
malities, alterations of mitochondrial structure and function, 
enhanced oxidative stress, and a shift in fiber distribution, 
eventually leading to reduced exercise capacity. 

The following paragraphs provide an overview of the 
major mechanisms involved in the development of sarco-
penia in the context of CHF (Figure 1), including malnutri-
tion, inflammation, humoral factors, the ubiquitin protea-
some system (UPS), myostatin signaling, apoptosis, and 
oxidative stress. 

2.1  Malnutrition 

Patients with CHF frequently develop anorexia as a re-
sult of dysgeusia, nausea and gastroenteropathy, the latter 
being secondary to intestinal edema which also causes ma-
labsorption. Moreover, several drugs prescribed to treat 
CHF can lead to a reduction in appetite [e.g., digoxin, an-
giotensin-converting enzyme (ACE) inhibitors, and -bloc-
kers]. In addition, diuretics may favor a loss of nutrients th-
rough urination. Collectively, an insufficient intake or ab-
sorption of primary nutritional elements, or their loss, pre-
disposes patients with CHF to malnutrition and paves the 
way for muscle depletion.  

2.2  Inflammation 

Inflammatory markers are typically elevated in individu-
als with CHF. Inflammation is also involved in the patho-
genesis of sarcopenia, therefore representing a fundamental 
point of contact between the two conditions. Notably, tumor 
necrosis factor alpha (TNF-α) and its soluble receptors have 
been associated with declines in muscle mass and strength 
over five years of follow-up in a sample of more than 2000 
older adults participating in the Health, Aging and Body 
Composition (Health ABC) study.[15] 

The mechanisms whereby inflammation impacts muscle 
physiology are multifold. TNF-α induces apoptosis of my-
onuclei,[16] while the transcription factor NF-κB stimulates 
proteolysis and inhibits the transcription of genes coding for 
myosin heavy chain.[17] TNF-α also stimulates the local syn-
thesis of other pro-inflammatory cytokines through a para-
crine effect. Sato, et al.[18] demonstrated that the TNF-like 
weak inducer of apoptosis (TWEAK) decreased mito-
chondrial content and oxidative phosphorylation, and inhib-
ited angiogenesis in skeletal muscle. 



Collamati A, et al. Sarcopenia and HF 617 

  

http://www.jgc301.com; jgc@mail.sciencep.com | Journal of Geriatric Cardiology  

 

Figure 1.  Interaction and common pathways between sarcopenia and heart failure. GH: growth hormone. 

Among the possible causes of TNF-α elevation in CHF is 
the endotoxin hypothesis. It suggests that bowel wall edema, 
a common condition in CHF, would alter gut permeability 
to endotoxin-like lipopolysaccharide (LPS), a potent in-
flammatory stimulator and inducer of monocyte activa-
tion.[19] Finally, even if TNF-α production is mostly con-
trolled by mononuclear cells, its overexpression is also sus-
tained by catecholamines, the concentrations of which are 
usually elevated in CHF patients as a response to myocar-
dial injury and peripheral tissue hypoxia.[20] 

Schaap, et al.[21] demonstrated that higher levels of inter-
leukin (IL) 6 and C-reactive protein (CRP) increased the 
risk of muscle strength loss in the longitudinal aging study 
of Amsterdam. Finally, IL-1, IL-6 and TNF-α are linked to 
the activation of the UPS and may induce anorexia and li-
polysis, thus contributing to weight loss.[22] 

2.3  Humoral factors  

A decline in anabolic hormones has been described in 
sarcopenia. Indeed, age-related decreases in growth hor-
mone (GH) and insulin-like growth factor-1 (IGF-1) levels 
are linked to reduced muscle mass and function.[23] In CHF 
patients, the expression of IGF-1 in muscle is blunted in the 
face of normal serum IGF-1 levels, possibly contributing to 
muscle mass loss.[24] However, attempts to manage sarco-
penia through IGF-1 and GH supplementation have pro-
duced conflicting results.[25] The administration of GH at 
high doses in rats with HF decreased not only muscle 

atrophy but also serum levels of TNF-α and the number of 
apoptotic myonuclei, possibly through IGF-1 over-ex-
pression.[26] Conversely, IGF-1 administration to old rats  
did not produce any sizeable changes in muscle mass or 
strength.[27] 

Ghrelin is a peptide hormone produced primarily in the 
fundus region of the stomach with pleiotropic actions, in-
cluding GH secretagogue effects. Ghrelin has recently 
gained attention since it appears to inhibit sympathetic nerve 
activity through a vasodilative effect, in order to regulate 
appetite via GH-independent mechanisms and to inhibit 
pro-inflammatory cytokine production.[22] Moreover, ghrelin 
negatively controls the secretion of leptin, a product of the 
ob gene, which decreases food intake, increases resting en-
ergy expenditure, and upregulates transforming growth fac-
tor beta 1 (TGF-β1), augmenting the fibrogenic response 
and leptin-induced cytokine expression.[28] 

Testosterone has been investigated as a possible factor 
involved in sarcopenia.[29] Furthermore, low testosterone 
levels, a common finding in CHF patients, is thought to con-
tribute to the progression of cardiac dysfunction through 
altered peripheral vascular resistance, increased cardiac af-
terload, and decreased cardiac output.[30] 

Angiotensin II, besides being involved in blood pressure 
control and cardiac remodeling, may also play a role in 
muscle wasting. Brink, et al.[31] showed that the infusion of 
angiotensin II resulted in the loss of body weight and mus-
cle mass in rats. In such a model, muscle wasting was pri-
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marily attributed to UPS-mediated protein degradation. 
Other preclinical studies showed that the administration of 
ACE-inhibitors or angiotensin II type 1 receptor blockers 
(ARBs) reduced the extent of myocyte apoptosis and mito-
chondrial free radical generation, while improving nitric 
oxide (NO) signaling and the expression of the mammalian 
target of rapamycin (mTOR) in old rats.[32,33] 

2.4  The UPS  

Muscle protein breakdown in patients with CHF has been 
primarily attributed to overactivation of the UPS pathway.[34] 
The UPS involves a multi-subunit protease that specifically 
degrades ubiquitin-conjugated proteins through the action of 
three enzymes, the ubiquitin-activating enzyme, the ubiq-
uitin-conjugating enzyme and ubiquitin ligases (atrogin-1 
and MuRF-1).[34] Elevated levels of MuRF-1 have been 
detected in skeletal muscle of patients with CHF.[35] Induc-
ers of MuRF-1 expression are pro-inflammatory cytokines 
such as TNF-α, IL-6, and IL1β. Whether the UPS is acti-
vated in sarcopenic muscle is still under debate with some 
studies showing a marked increase in UPS activity,[36] others 
finding only a small degree of UPS activation,[37] and others 
still failing to demonstrate any connection at all.[38] 

2.5  Myostatin signaling 

Myostatin, also known as growth differentiation factor 8, 
is a negative regulator of muscle mass. Myostatin is primar-
ily expressed in skeletal muscle where it acts as an inducer 
of muscle atrophy.[39] Myostatin is further expressed in the 
myocardium where it exerts an anti-hypertrophic, but 
pro-fibrotic effect.[39] It has been demonstrated that myosta-
tin gene and protein expression is increased in older men 
relative to younger individuals.[40] The downregulation of 
myostatin’s gene expression leads to muscle hypertrophy 
and hyperplasia and myostatin-null mice show an increase 
in the cross-sectional area of type II fibers.[41] It is interest-
ing to note that the baseline expression of myostatin mRNA 
was found to be about 50% higher in vastus lateralis muscle 
biopsies from patients with CHF than in those obtained 
from healthy age-matched controls.[35] Shyu, et al.[42] showed 
that myocardial myostatin expression was also up-regulated 
in a rat model of volume overload-induced HF. Interest-
ingly, Heineke, et al.[43] demonstrated that myostatin re-
leased from cardiomyocytes induced muscle atrophy in HF. 
These authors also showed that the infusion of the my-
ostatin-blocking antibody JA-16 promoted greater mainte-
nance of muscle mass in mice with HF, paving the way 
for myostatin inhibition as a candidate therapeutic target. 
However, myostatin-blocking agents need to be tested 
thoroughly in preclinical models before their safety and 

effectiveness can be evaluated in clinical studies of patients 
with CHF.[39] 

2.6  Apoptosis in myocytes 

In recent years, the accelerated elimination of myonuclei 
through an apoptosis-like process (myonuclear apoptosis) 
has been proposed as a mechanism contributing to sarco-
penia.[44] Several apoptotic pathways have been linked with 
age-related muscle atrophy. In particular, the death recep-
tor-mediated pathway of apoptosis, triggered by TNF-α, has 
been shown to be activated in the skeletal muscle of older 
rodents,[27] suggesting its possible involvement in age-re-
lated muscle loss. Marzetti, et al.[45] showed that aging is 
associated with decreased IL-15 signaling in rat gastrocne-
mius muscle, which may contribute to sarcopenia partly 
through enhanced TNF-α mediated apoptosis. Notably, TNF- 
α-related and mitochondrion-mediated apoptotic signaling 
was found to predict low muscle mass and slow gait speed 
in a sample of older adults.[46]  

A higher frequency of myonuclear apoptosis has also 
been found in the muscle of patients with CHF relative to 
age-matched healthy controls.[47] In this same study, cardiac 
cachexia was not accompanied by the elevation of myocyte 
apoptosis, but was instead associated with increased fibrosis, 
suggesting a divergent mechanism of muscle wasting in 
CHF and cachexia.  

2.7  Oxidative stress 

Under physiological conditions, aerobic metabolism ge-
nerates small amounts of reactive oxygen species (ROS) 
which are rapidly detoxified by endogenous antioxidant 
systems. When an imbalance between pro-oxidants and 
antioxidants exists, oxidative stress occurs. ROS production 
increases as an organism ages and is postulated to be one of 
the factors leading to senescence.[48] ROS can accelerate 
skeletal muscle degeneration since they accumulate during 
contractile activity, while the muscle enzymatic scavenger 
systems (such as catalase, glutathione transferase, and su-
peroxide dismutase) decline with age.[49] 

Elevated levels of oxidative stress markers have been 
documented in CHF patients and have correlated with 
NYHA class, reduced exercise tolerance, lower antioxidant 
levels, and other indices of worse prognosis.[50] The under-
lying mechanisms could be related to endothelial dysfunc-
tion, tissue ischemia and hypoxia, and alterations of the 
xanthine oxidase system.[51] Further research on these path-
ways may possibly lead to the development of new strate-
gies targeting ROS generation systems and antioxidant 
agents to maintain muscle homeostasis in CHF. 

The following provide an overview of the major mecha-
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nisms involved in the development of sarcopenia in the 
context of CHF (Figure 1), including malnutrition, inflam-
mation, humoral factors, the ubiquitin proteasome system 
(UPS), myostatin signaling, apoptosis, and oxidative stress. 

3  Treatment 

As of now, no treatment is available to specifically pre-
vent muscle wasting or restore muscle health in CHF. 
ACE-inhibitors, -blockers, and mineralocorticoid-receptor 
antagonists at their maximal tolerated doses should be of-
fered to all patients with CHF. It is interesting to note that, 
besides their beneficial effect on survival, some of these 
agents, in particular ACE-inhibitors, may offer therapeutic 
advantage in sarcopenic patients irrespective of CHF. Apart 
from cardiological treatments, nutritional support and phys-
ical activity seem to convey remarkable benefits on muscle 
function and physical performance in patients with CHF. 
Anti-inflammatory agents, appetite-stimulating drugs, in-
hibitors of proteolysis and apoptosis, and specific hormonal 
supplementation regimens are currently under study as 
possible future therapeutic options. The following subsec-
tions provide an overview of treatment strategies that can 
simultaneously target cardiac dysfunction and sarcopenia. 

3.1  Nutritional supplementation 

In order to maintain muscle mass, restore energy reserves 
and improve exercise capacity, an adequate nutritional sta-
tus must be achieved and maintained in all CHF patients. 
The relationship between protein/caloric intake and muscle 
mass has been actively investigated in the context of sarco-
penia.[52] It is widely acknowledged that the provision of 
adequate amounts of protein and several other nutrients is 
instrumental to preserving muscle homeostasis in older 
adults.[53] 

Although evidence is still preliminary, available data 
suggest that specific dietary regimens or nutrient supple-
mentations may offer therapeutic gain in CHF patients with 
sarcopenia. For instance, Rozentryt, et al.[54] performed a 
clinical, randomized, double-blind, placebo-controlled pilot 
study in which 29 patients with CHF and cachexia were 
allocated to either a high-caloric (600 kcal) high-protein (20 g) 
oral nutritional supplement in addition to usual food intake 
or placebo for six weeks. The active intervention group ex-
perienced increased body weight (70% fat tissue, 30% mus-
cle tissue) during treatment and the subsequent 12-week 
follow-up period, and showed reduced systemic TNF-α 
levels. The quality of life of patients was significantly im-
proved during the first six weeks of the intervention, but 
decreased somewhat in the follow-up. Moreover, in a ran-

domized, placebo controlled, double-blind trial conducted in 
38 stable CHF patients with severe muscle depletion, sup-
plementation with essential amino acids improved exercise 
output, peak oxygen consumption and walking capacity 
during two months of follow-up.[55] 

3.2  Physical activity 

The effectiveness of physical activity in achieving and 
maintaining cardiorespiratory, musculoskeletal, and neuro-
motor fitness is undisputed.[56] In patients with CHF, en-
gaging in aerobic exercise with or without a resistance 
training component has been associated with a reduced hos-
pitalization rate and an improved health-related quality of 
life.[57] As such, the European Society of Cardiology rec-
ommends CHF patients engage in regular aerobic exercise 
to improve functional capacity and symptoms.[58] 

Physical exercise is also recognized as one of the most 
effective interventions for sarcopenia.[59] Consequently, it is 
reasonable to believe that exercise training may provide a 
remarkable therapeutic advantage in the management of 
muscle wasting in the context of CHF. Indeed, physical 
exercise has been shown to act on most of the pathways 
proposed to underlie CHF-associated muscle decline, in-
cluding the UPS pathway,[60] inflammation,[61] and my-
ostatin signaling.[62] In addition, physical exercise may en-
hance vagal tone and decrease sympathetic activity, thereby 
improving endothelial function in CHF patients.[63,64] As a 
result, a consensus statement produced by the European 
Association for Cardiovascular Prevention and Rehabilita-
tion recommends practicing regular physical activity for the 
prevention of body wasting in CHF.[65] Future, large-scale 
clinical trials are needed to establish the type, duration and 
frequency of physical exercise needed to maximize the ben-
efits and reduce the risk of adverse events. 

3.3  Hormonal treatment 

3.3.1  Testosterone 

Testosterone deficiency is frequently observed in patients 
with CHF and is associated with muscle wasting, reduced 
functional capacity, and increased mortality.[66,67] Caminiti, 
et al.[68] studied 70 men with stable CHF who were randomly 
assigned to receive either intramuscular injections of testos-
terone every six weeks or a placebo. In the intervention 
group, peak VO2, walk distance and body weight improved 
significantly after 12 weeks of treatment. Similar results 
were obtained in a related study that tested the effect of tes-
tosterone transdermal patches versus placebo in older wo-
men with CHF.[69] Other reports showed that testosterone 
administration increased both strength and walking distance 
in patients with CHF.[70,71] 
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While testosterone has been utilized as a therapeutic 
agent since the 1940s, there is a fear that it may produce 
excessive side effects.[72] A meta-analysis of controlled stu-
dies of testosterone supplementation in older men found no 
increase in mortality.[73] However, there is still some con-
troversy surrounding potentially adverse cardiovascular 
effects, particularly during the first three months of treat-
ment.[74,75] Selective androgen receptor modulators (SARMs) 
have therefore been explored as an alternative option since 
they may theoretically be safer. These agents are emerging 
as a new class of anabolic therapies for a number of clinical 
indications, including sarcopenia, osteoporosis, CHF, and 
cachexia. Preclinical studies and small clinical trials have 
shown positive effects of SARMs on sarcopenia and 
cachexia, but their efficacy and safety need to be defini-
tively established through larger-scale trials.[76] 

3.3.2  GH 

GH administration for the management of sarcopenia in 
CHF patients has seen significant trial activity in the past, 
but its clinical benefits are still disputed. Improvements in 
cardiac function and exercise capacity were observed in a 
small-scale, open-label trial in patients with idiopathic di-
lated cardiomyopathy and moderate-to-severe HF.[77] Simi-
lar benefits were achieved in 22 patients with CHF of dif-
ferent etiologies and reduced ejection fraction treated with 
recombinant human GH for three months.[78] Conversely, no 
symptomatic or functional improvements were observed in 
patients with dilated cardiomyopathy by Osterziel, et al.[79] 
in the largest clinical trial on GH supplementation con-
ducted thus far.  

Despite these conflicted findings, interest in GH as a 
treatment option in sarcopenic patients with CHF has not 
disappeared, but more research is needed to properly assess 
its safety profile and efficacy. 

3.3.3  Ghrelin 

Ghrelin is a peptide hormone mainly produced in the 
fundus region of the stomach that promotes gastric motility, 
stimulates appetite, and induces GH release.[80] Due to its 
anabolic, orexigenic, and anti-inflammatory properties, ghre-
lin represents a promising treatment option for muscle 
wasting associated with aging and various disease condi-
tions. A small, uncontrolled study of intravenous infusion of 
ghrelin in 10 patients with CHF showed improvements in 
left ventricular function, exercise capacity, muscle strength, 
and lean body mass.[81] The main disadvantages of ghrelin 
as a therapeutic agent are its short half-life and need for 
intravenous administration. These limitations have been 
overcomed by the development of ghrelin receptor agonists 

with longer half-lives and the opportunity for oral admini-
stration. Some ghrelin agonists have already shown promis-
ing results in animal models of HF-related body wasting, 
reducing, for example, the expression of myostatin in skele-
tal muscle and increasing lean and fat mass.[82,83] 

3.3.4  Vitamin D 

Low serum levels of vitamin D have been associated 
with reduced muscle mass and physical performance in older 
people with and without CHF.[84,85] As such, vitamin D sup-
plementation is regarded as an appealing strategy to manage 
sarcopenia also in the setting of CHF. A recent study 
showed that a 13-week supplementation with vitamin D and 
leucine-enriched whey protein improved appendicular mus-
cle mass and lower-extremity function among sarcopenic 
older adults.[86] Along the same lines, another recent study 
carried out in post-menopausal women demonstrated that 
vitamin D increased muscle strength and prevented the loss 
of muscle mass during nine months of follow-up.[87] 

It is noteworthy that vitamin D influences the patho-
physiology of CHF, by modulating the renin-angiotensin 
system, calcium handling, inflammation, blood pressure, 
and endothelial function.[88] Indeed, vitamin D deficiency is 
common in patients with CHF, especially elderly, obese and 
black populations, and is associated with adverse out-
comes.[89] 

A recent meta-analysis of seven randomized controlled 
trials affirmed that vitamin D supplementation may decrease 
serum levels of parathyroid hormone and inflammatory 
cytokines (i.e., TNF-α and CRP) in CHF patients, whereas 
no beneficial effects were demonstrated for left ventricular 
function or exercise tolerance.[89] These results warrant fur-
ther investigations to assess whether add-on supplementa-
tion therapy including vitamin D, which could have a role in 
the management of sarcopenic patients with CHF. 

3.4  Cardiovascular drugs 

3.4.1  ACE-inhibitors and ARBs 

ACE inhibitors and ARBs, besides serving as first-line 
agents for the treatment of CHF, have also been shown to 
possess a plethora of extracardiac effects, some of which 
may be harnessed for the management of body wasting.[90] 
For instance, Anker, et al.[91] found that, among CHF pa-
tients, those taking the ACE-inhibitor enalapril had lower 
chances of losing weight compared with patients not taking 
that drug. An analysis of the Women’s Health and Aging 
Study carried out by Onder, et al.[92] showed that partici-
pants who had taken ACE-inhibitors continuously over a 
3-year period had a lower decline in muscle strength and 
walk speed compared with those who had used ACE-in-
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hibitors intermittently or not at all. The observational nature 
of these studies does not untangle whether the effects of 
ACE-inhibitors on physical performance are linked to direct 
actions on skeletal muscle or are secondary to improve-
ments in hemodynamics. However, preclinical studies sug-
gest that ACE-inhibitors and ARBs possess muscle-pro-
tective properties spanning mitochondrial function, oxida-
tive stress, insulin sensitivity, NO signaling, and local in-
flammation.[32,33,93]  

The enthusiasm surrounding the possibility of using 
ACE-inhibitors to manage sarcopenia has been tempered by 
the finding that neither physical performance nor muscle 
strength were significantly affected after six months of fos-
inopril use in older persons with high cardiovascular risk 
profiles enrolled in the TRAIN study.[94] Furthermore, a 
recent systematic review and meta-analysis concluded that 
treatment with ACE-inhibitors did not significantly improve 
walk distance or muscle strength among older participants 
in randomized clinical trials.[95] Given these contrasting 
findings, specifically designed trials are needed to defini-
tively establish if ACE-inhibitors and ARBs may offer the-
rapeutic gain in the treatment of sarcopenia and CHF-related 
muscle wasting.  

3.4.2  -blockers 

Like ACE-inhibitors, -blockers represent a fundamental 
pillar in the treatment of CHF. Previous studies have also 
shown that carvedilol and bisoprolol reduce the risk of 
weight loss in patients with CHF.[96,97] However, improve-
ments in body weight in these patients appeared to be pri-
marily attributable to the inhibition of lipolysis and gains in 
fat mass, whereas no muscle-specific effects could be dem-
onstrated.[98,99] 

4  Conclusions 

The pathophysiology of muscle wasting in CHF is com-
plex and researchers are only beginning to understand the 
many different mechanisms involved in its pathogenesis. 
Available evidence suggests that sarcopenia and CHF share 
several pathways and they could therefore benefit from a 
common treatment plan. First-line agents for the manage-
ment of CHF should be offerred at their maximal tolerated 
dosages to all CHF patients, keeping in mind that some of 
these compounds (e.g., ACE-inhibitors and ARBs) may 
directly improve muscle homeostasis. A shared treatment 
plan should also include specific nutritional supplementa-
tion regimens, exercise training, vitamin D administration, 
and possibly the correction of certain hormonal derange-
ments. Preclinical studies have shown that the inhibition of 

UPS-dependent muscle protein degradation, myonuclear 
apoptosis and inflammation may offer therapeutic gain in 
muscle wasting associated with CHF. Future studies are 
warranted to establish the effectiveness and safety profile of 
compounds targeting these biological targets as well as to 
identify the subset of CHF patients that benefits the most 
from such treatments. 
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