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Abstract

Protein remote homology detection is one of the most important problems in bioinformatics. Discriminative methods such
as support vector machines (SVM) have shown superior performance. However, the performance of SVM-based methods
depends on the vector representations of the protein sequences. Prior works have demonstrated that sequence-order
effects are relevant for discrimination, but little work has explored how to incorporate the sequence-order information
along with the amino acid physicochemical properties into the prediction. In order to incorporate the sequence-order
effects into the protein remote homology detection, the physicochemical distance transformation (PDT) method is
proposed. Each protein sequence is converted into a series of numbers by using the physicochemical property scores in the
amino acid index (AAIndex), and then the sequence is converted into a fixed length vector by PDT. The sequence-order
information can be efficiently included into the feature vector with little computational cost by this approach. Finally, the
feature vectors are input into a support vector machine classifier to detect the protein remote homologies. Our experiments
on a well-known benchmark show the proposed method SVM-PDT achieves superior or comparable performance with
current state-of-the-art methods and its computational cost is considerably superior to those of other methods. When the
evolutionary information extracted from the frequency profiles is combined with the PDT method, the profile-based PDT
approach can improve the performance by 3.4% and 11.4% in terms of ROC score and ROC50 score respectively. The local
sequence-order information of the protein can be efficiently captured by the proposed PDT and the physicochemical
properties extracted from the amino acid index are incorporated into the prediction. The physicochemical distance
transformation provides a general framework, which would be a valuable tool for protein-level study.
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Introduction

A vast amount of protein sequences has been obtained with the

development of large-scale sequencing techniques, which need to

be classified into structural and functional classes by means of

homologies. Therefore, fast and accurate algorithms that can

automatically detect the protein remote homologies are needed.

However, protein remote homology detection, referring to the

detection of evolutional homology in proteins with low similarities,

is still a challenging problem in bioinformatics.

Because of the importance of remote homology detection, it has

been intensively studied for a decade. Many computational

methods have been proposed to address this problem, which can

be split into three groups: pairwise comparison methods,

generative models and discriminative algorithms. Pairwise com-

parison methods measure the pairwise similarities between protein

sequences. For example, in the pairwise method [1], each protein

sequence is represented as a vector of pairwise similarities to all

protein sequences in the training set. Smith-Waterman dynamic

programming algorithm [2] is adopted to calculate an optimal

score for similarity according to a predefined objective function.

RANKPROP [3] depends on a precomputed network of pairwise

protein similarities. LESTAT [4] detects remote homologies by

constructing the iterative profiles. Generative models induce a

probability distribution over the protein family and try to generate

the unknown proteins as new member of the family from the

stochastic model. For example, hidden Markov model (HMM) [5]

can be trained iteratively in a semi-supervised manner, which uses

both positively labeled and unlabeled samples of a particular

family by pulling in close homology and adding them to the

positive set [6]. Recent methods have applied the discriminative

algorithms for accurate remote homology detection. Different

from the generative methods, the discriminative methods lean a

combination of the features that can discriminate the protein

families. Among these methods, the top-performing methods use

the support vector machines (SVM) [7] to build the discriminative
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framework. The core component in the SVM is the calculation of

the kernel functions, which measure the difference between any

two pair of samples. Many approaches have been proposed to

build the kernel functions. LA kernel [8] measures the similarity

between a pair of proteins by taking all the optimal local alignment

scores with gaps between all possible subsequences into account.

SVM-HUSTLE [9] builds a SVM classifier for a query sequence

by training on a collection of representative high-confidence

training sets, recruits additional sequences. Lingner and Meinicke

present a kernel based on the average word similarity between two

protein sequences [10]. Other kernels are built by using the

sequence features, such as the motifs [11,12,13], mismatch [14],

SVM-I-sites [15], SVM-n-peptide [16], N-gram [17], Patterns

[18], SVM-BALSA [19] and so on. The advantage of these

methods is they don’t need computational expensive feature

generation step, but their Receiver Operating Characteristic

(ROC) scores generally is low, ranging from 0.87 to 0.90 on the

standard SCOP 1.53 benchmark. Our prior work shows that the

performance of these methods can be improved by using the latent

semantic analysis (LSA) [20]. Some top-performing methods

employ the evolutional information extracted from the profiles.

These methods need an additional alignment step to generate the

profiles by searching against a non-redundant database, which

leads to higher computational cost. SW-PSSM [21] employs the

profile-to-profile scoring schemes for measuring the similarity

between pairs of proteins. Profile kernel [22] extracts the short

substrings according to the profile-based ungapped alignment

scores. Top-n-grams [23] extract the profile-based patterns by

considering the most frequent elements in the profiles. The feature

vector of ILP-SVM [24] is based on the frequent patterns in the

profiles detected by inductive logic programming. The recently

proposed ACC method [25] treats the protein sequence as a time

sequence and applies the auto-cross covariance (ACC) transfor-

mation to capture the correlation between any two properties in

the profiles. The ROC scores of these methods generally range

from 0.92–0.98. However, due to the high computational cost in

the feature generation stage, applying these profile-based methods

to large-scale remote homology detection is often unfeasible.

Other profile-based methods focus on the development of more

sensitive profiles, such as HHsearch method [26] proposes a novel

profile based on hidden Markov models. FFAS [27] is another

profile-profile alignment method, which is based on a new

procedure for profile generation that takes into account all the

relations within the family. COMPASS [28] generates numerical

profiles, constructs optimal profile-profile alignments and estimates

the statistical significance of the corresponding alignment scores.

Some web servers implementing the profile-profile alignment

algorithms are available, including COMA[29], PHYRE[30],

GenThreader[31], FORTE [32] and webPRC [33].

A key step to improve the performance of the SVM-based

methods is to find a fast and accurate representation of protein

sequence. Although the profile-based features improve the

accuracy by considering the evolutional information extracted

from the profiles, the high computational cost prevents the

widespread application of these methods to a large database. By

contrast, the methods based on the sequence composition

information can generate the feature vectors with low computa-

tional cost. However, if a protein is represented by its amino acid

composition alone, all the information of its sequence order and

sequence length is totally lost. Previous studies show that the

sequence-order effects are relevant for remote homology detection.

Lingner and Meinicke propose a method based on distances

between short oligomers [34], which outperforms other position

independent approaches. In ACC method, the sequence-order is

captured by the autocross-covariance (ACC) transformation[35].

SVM-HMMSTR [36] can capture the sequential ordering of the

local structures. SVM-RQA [37] uses the recurrence quantifica-

tion analysis (RQA) to detect the autocorrelation patterns along

the protein sequences. Previous studies show that the predictive

performance of other problems can also be improved by adding

the sequence order information into the feature vectors, such as

membrane protein family prediction[38], structural class predic-

tion [39,40], and secondary structure content prediction [41,42].

The difficulty to include the sequence-order information into the

prediction is that protein sequence lengths vary widely. Besides,

the protein sequence information only describes the amino acid

composition of a protein without considering the physicochemical

properties of the amino acids. Because protein structure and

function are more conserved during evolutionary process, the

similarity between two distantly related proteins may lie in the

physicochemical properties of the amino acids rather than the

sequence identities. In this study, we propose the physicochemical

distance transformation (PDT) method for remote homology

detection, which is able to include the local sequence-order

information of the entire protein sequences and use the amino acid

physicochemical properties in the Amino Acid Index (AAIndex)

[43]. The protein sequences are converted into fixed length vectors

by using PDT, and then input to a SVM classifier for the

prediction. Testing on the SCOP 1.53 benchmark, we show that

the proposed method (SVM-PDT) performs similar or better than

other SVM-based methods with a significant decrease in

computational time. Finally, the performance of SVM-PDT is

further improved by taking the evolutionary information extracted

from the frequency profiles into account.

Results

Comparative results of the methods based on sequence
composition information

In order to compare the proposed sequence-based PDT

vectorization approach with other relevant protein remote

homology detection methods, the proposed method SVM-PDT

was evaluated on the widely used SCOP 1.53 dataset to give an

unbiased comparison with prior methods that are based on

sequence composition information.

The value of b would impact the performance of SVM-PDT

(see method section for more information). b can be any integer

between 1 and L-1, where L is the shortest protein sequence in the

dataset. The average ROC scores obtained by using different b
values are shown in Figure 1. As we can see from the figure, the

performance increases dramatically when b is less than 4, and then

turns stable, indicating longer distances between two amino acids

along the protein sequences are more important for the

discrimination. The optimal value of b is selected as 8 in this study.

Although previous study tuned both the features and SVM

parameters for each protein family, in order to evaluate the

robustness and generalization of the proposed PDT vectorization

approach, no feature selection was performed to select the best

features for the proteins or the families. All the 531 amino acid

indices were used for predicting each family. However, in order to

give an unbiased comparison with another AAIndex-based

method SVM-PCD [44], we followed their approach to select

the most appropriate kernel function for each family. Both the

quadratic and RBF kernels were evaluated. Finally, 26 families

used quadratic kernel and 28 families used RBF kernel. The results

of SVM-PDT and other approaches are summarized in Table 1.

The results indicate the PDT approach is well-comparable with

other state-of-the-art methods. Although the local alignment

Protein Remote Homology Detection
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kernel method SVM-LA shows better average ROC and ROC50

scores, the performance of this method depends on several

hyperparameters and its computational cost is much higher than

our approach (see computational efficiency section for more

information). By contrast, our method only has one parameter b,

and doesn’t need any time consuming local alignment step. SVM-

PDT outperforms other feature-space based methods as well as the

Pairwise and the WCM kernels. Therefore, the proposed

sequence-based PDT approach is one of the best methods which

don’t need any time consuming local or multiple alignment.

Comparison with closely related methods
Beside our method, several other methods attempted to predict

protein remote homologies based on AAIndex [43]. Both SVM-

PCD [44] and SVM-RQA [37] take the physicochemical

information extracted from the AAIndex into consideration.

SVM-PCD is based on the normalized distribution of the average

AAIndex value over all sequential 4-mers in a protein sequence.

SVM-RQA uses both the AAIndex and the recurrence quantifi-

cation analysis (RQA) to detect the auto correlation patterns along

a protein sequence. Our method outperforms both of the two

methods. The key difference among the three methods is that our

method takes the average effects of any two amino acids within a

given short distance (8 in this study) in a protein sequence into

consideration by using the proposed PDT vectorization approach,

while the other two methods only use the local sequence

information, for example SVM-PCD only uses the 4-mer local

information. We conclude that the sequence-order information is

relevant for discrimination. Previous study also demonstrated the

importance of the sequence-order information. Lingner and

Meinicke proposed the ODH Monomer method [34], which is

based on the distances between short oligomers. Although this

method considers the distances for all possible pair of K-mers, only

the amino acid composition of the sequence is not enough to

accurately detect the remote homologies. By contrast, our

approach makes use of both the physicochemical properties of

amino acids extracted from the Amino Acid index and the local

sequence-order information detected by using PDT vectorization

approach. As can be seen from Table 1, our approach outperforms

ODH Monomer, especially in terms of the average ROC50 score.

Robustness of the physicochemical distance
transformation approach

In order to investigate the robustness of the proposed

physicochemical distance transformation method, a controlled

experiment was conducted. In this experiment, a few amino acids

within the beginning 20 amino acids from the N-terminus of the

target proteins were randomly chopped. The influence of the

number of randomly chopped amino acids on the performance is

shown in Figure 2. The predictive performance slightly decreases

(from 0.906 to 0.893 in terms of ROC) when the number of

chopped amino acids increases. Chopping amino acids from the

N-terminus of the proteins results in missing part of the local

sequence-order information, which is the reason for the perfor-

mance decrease. Because the physicochemical distance transfor-

mation approach is able to capture all the local sequence-order

information (up to the distance of b) along a whole protein

sequence, missing part of the local sequence-order information

only has minor influence on the performance.

Figure 1. The average ROC scores of the sequence-based PDT
approach with different b values on SCOP 1.53 dataset.
doi:10.1371/journal.pone.0046633.g001

Table 1. Comparison against the methods based on
sequence composition information.

Average ROC and ROC50 scores

Methods ROC ROC50 Source

SVM-PDT (b = 8) 0.916 0.626 This study

SVM-RQA 0.912 0.441 [37]

SVM-PCD 0.906 NA [44]

SVM-WCM 0.904 0.445 [10]

SVM-LA(b = 0.5) 0.925 0.649 [8]

Mismatch 0.872 0.400 [14]

SVM-Pairwise 0.901 0.399 [1]

ODH Monomer 0.914 0.455 [10]

NA refers to the unreported result.
doi:10.1371/journal.pone.0046633.t001

Figure 2. The influence of the number of randomly chopped
amino acids within the beginning 20 amino acids from the N-
terminus of the target proteins on the performance.
doi:10.1371/journal.pone.0046633.g002
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Correlations between discriminative features and protein
families

The sequence-specific weight learnt from the SVM training

process can be used to calculate the discriminant weight for each

feature for the interpretation of the importance of the features.

Following the study [10], given the weight vector of a set of N

sequences obtained from the kernel-based training a= [a1, a2, a3,

…, aN], the discriminant weight vector w in the feature space can

be calculated by the following equation:

w~M � a ð1Þ

Where M is the matrix of sequence representatives. The

magnitude of the element in w represents the discriminative power

of the corresponding feature.

Ten most discriminative features of SVM-PDT were selected

from each of the four target SCOP 1.53 families and the results are

shown in Table 2. We observed a few family-specific l variables

and indices, majority of which are highly consistent with current

understanding of the structure of the protein families. For

example, not surprisingly, indices 130 (Surface and inside volumes

in globular proteins) and 480 (Physicochemical basis of amino acid

hydrophobicity scales) are discriminative features of one of these

four families, family 7.3.5.2 (Spider toxins). Hydrophobicity of the

protein amino acid composition is critical for the three dimen-

sional structure of the protein. Small molecular like spider toxins

may consist of more hydrophilic amino acid for the high ratio of

the surface and buried amino acid. Interestingly, all the top ten

most discriminative features of family 2.1.1.2 (Immunoglobin C1

set domain) have the same l value of 2, indicating the importance

of such l value for this protein family. It indeed reflects the

structure property of the C1 set domain, which is formed by beta

sheets. The hydrogen bonds within the beta sheets are formed in a

periodic pattern with one bond per every two amino acid in the

protein sequence, supporting the correlation of amino acid with a

distance 2 as a feature of this group of protein. Another example is

that protein family 1.41.1.5 (calmodulin) is best described with

index 453 (Averaged turn propensities in a transmembrane helix)

and l values of 3, which are associated with the helix dominated

structure of this family of protein. Some indices with different l
values all show strong discriminative power for specific families, for

example, the index 453 (Averaged turn propensities in a

transmembrane helix) with l values of 1, 3, 5, 6 and 7 are all

among the top ten most discriminative features for family 1.41.1.2

(S100 proteins). The same pattern is also observed for other

protein families listed in Table 2. Another important observation is

that indices 453 (Averaged turn propensities in a transmembrane

helix) and 92 (Helix initiation parameter at posision i-1) show

strong discriminative power for both families 1.41.1.2 and

1.41.1.5. The two families belong to the same superfamily EF-

hand, indicating the importance of these two indices for the two

biologically relevant families.

Hydrophobicity related indices are the most important

discriminative features, which is consistent with previous study

[37]. It is because hydrophobicity has been shown to significantly

correlate with protein’s structure [45]. Structure related indices are

also abundant in the most discriminative features, because their

distinctive periodicities in amino acid ordering could discrimina-

tive protein families. Based on the above analysis, some most

discriminative indices indeed reflect the properties of the target

protein families, which could explain the reason why the proposed

PDT works for the protein remote homology detection.

Incorporating evolutionary information into
physicochemical distance transformation

Previous studies demonstrated that evolutionary information

can improve the performance of remote homology detection. In

this study, the evolutionary information imbedded in the

frequency profiles is extracted and incorporated into the proposed

physicochemical distance transformation approach. Each protein

sequence is represented by the combination of the n-th most

frequent amino acids in the frequency profile, and then the

physicochemical distance transformation is performed on the new

protein sequence to convert it into fixed length vector. In such a

way, the evolutionary information is taken into the prediction. In

this study, the first and second most frequent amino acids in the

frequency profiles are studied, because these amino acids show

better discriminative power than the others in our previous study

[23]. The average ROC scores for different values of b are shown

in Figure 3. As can be seen, the value of b has minor influence on

the average ROC scores. The optimal value is 8 for both the

profile-based PDT methods with n = 1 and 2. Table 3 summarizes

the performance of various homology detection methods, which

are all profile-based methods. As expected, compared with the

sequence-based PDT method (SVM-PDT), the profile-based PDT

method (SVM-PDT-Profile) can improve the performance by

3.4% and 11.4% in terms of ROC score and ROC50 score

respectively, indicating the evolutionary information extracted

from the frequency profiles is critical for discrimination. SVM-

PDT-Profile outperforms SVM-Top-n-gram, which is another

profile-based approach extracting the evolutionary information

from the frequency profiles in a different way. HHearch is one of

the best protein remote detection methods. It employs a novel

profile based on hidden Markov models. SVM-PDT-Profile

outperforms HHsearch in terms of ROC score, but HHsearch

shows better ROC50 score. The main difference between

HHsearch and other profile-based methods is that HHsearch

employs the HMM-based profile, which is able to increase the

alignment quality. ROC50 score is more sensitive to the alignment

quality. This can explain the reason why HHsearch shows higher

ROC50 score. For the more general performance measure ROC

score, it can measure the overall performance of a method. The

proposed profile-based PDT method shows the highest ROC

score, reflecting combing the evolutionary information extracted

from the frequency profiles and the physicochemical property

scores in the amino acid index is a suitable approach to improve

the performance of remote homology detection.

Computational efficiency
In order to detect the protein remote homology for a large-scale

database, methods with low computational cost are required.

Currently, the top-performing methods are mainly based on SVM.

The computational cost of the vectorization step of these methods,

that is to convert the proteins into fixed length vectors, is a main

bottleneck preventing the widespread application of these methods

to large databases, for example the SVM-LA [8] requires a time

consuming local alignment step and the profile-based method SW-

PSSM [21] needs to search the query sequence against a non-

redundant database to get the sequence profiles for measuring the

similarity between two protein sequences. By contrast, our

sequence-based PDT method (SVM-PDT) and other string-

kernel-based methods such as Mismatch [14] do not require any

computational expensive step to generate the feature vectors, so

they need less running time for the prediction. As reported by

Hochreiter et al. [46], the running time of SVM-LA [8] and SW-

PSSM [21] on a dataset of 20000 sequences is 550 hours and

620 hours, respectively, while Mismatch method [14] only needs

Protein Remote Homology Detection
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380 seconds on the same dataset, which is four orders of

magnitude faster than SVM-LA and SW-PSSM.

In order to further illustrate the efficiency of the proposed

method, the time complexity of the proposed sequence-based

physicochemical distance transformation (PDT) is given. In this

approach, each sequence-order information variable L of a query

sequence can be calculated by equation (5) and (6) with a time

complexity of O(l), where l is the length of the sequence. The total

number of L variables is Nb, where N is the total number of the

indices in the AAIndex, here the number is 531 (see method

section). The optimal value of b is 8 as illustrated above.

Therefore, the time complexity of physicochemical distance

transformation is O(Nbl). All the 4352 protein sequences in the

SCOP 1.53 dataset can be converted into fixed length vectors via

using PDT with b value of 8 in 200 seconds. This test was

performed on a personal computer with CPU of 2.8 GHz and

memory of 4GB.

Sequence-based PDT method is an efficient approach for large

scale dataset prediction with low computational cost. In contrast,

the profile-based PDT method is suitable for small dataset and it

can achieve higher accuracy. Compared with the sequence-based

PDT method, the profile-based PDT approach requires an

additional step to generate the frequency profiles. The running

time for this step is dependent on the database size and number of

samples.

Discussion

Protein remote homology detection is to detect the structure

homology in evolutionarily related protein with low sequence

similarity. Discriminative methods based on support vector

machine (SVM) are the most effective and accurate methods for

protein remote homology detection. The performance of the

SVM-based methods depends on the representation of protein

sequences. The most straightforward approach to convert the

sequences into fixed-length vectors is to use the amino acid

composition, such as Mismatch [14], N-gram [17], motif [13] and

so on. However, these methods often fail to accurately predict the

proteins sharing low sequence similarity. Other methods improved

the predictive performance by using the evolutional information

extracted from the profiles, such as Profile [22], SW-PSSM [21],

SVM-Top-N-gram [23], ACC [25]. Although these methods show

the state-of-the-art performance, the profile-based methods are

Table 2. Ordered list of discriminative features of SVM-PDT.

Family 7.3.5.2 Family 2.1.1.2 Family 1.41.1.2 Family 1.41.1.5

# l AAIndex Weight l AAIndex Weight l AAIndex Weight l AAIndex Weight

1 6 404 15.3 2 248 296.6 1 453 180.6 7 453 16.7

2 6 130 15.0 2 210 295.7 7 453 166.2 3 453 15.9

3 6 480 13.7 2 531 294.6 3 453 162.1 3 92 13.5

4 2 480 13.0 2 147 292.7 5 453 131.7 2 326 212.5

5 2 404 13.0 2 516 290.3 3 92 128.6 3 146 11.9

6 6 147 12.8 2 321 290.0 7 92 127.6 1 453 11.8

7 1 155 12.7 2 130 288.5 6 453 123.6 8 387 11.8

8 6 407 12.6 2 242 288.4 5 89 120.1 2 92 211.4

9 2 147 12.5 2 517 287.6 5 92 118.6 2 453 211.3

10 1 70 11.9 2 503 287.5 1 92 112.0 1 293 11.3

List of 10 most discriminative features of four selected families for SVM-PDT. The features are sorted in descending order according to their absolute discriminative
weight. For the detailed information of each index shown in this table, please refer to Text S1.
doi:10.1371/journal.pone.0046633.t002

Figure 3. The average ROC scores of the profile-based PDT
approach with different values of b.
doi:10.1371/journal.pone.0046633.g003

Table 3. Comparison against the profile-based methods.

Average ROC and ROC50 scores

Methods ROC ROC50 Source

SVM-PDT (b = 8) 0.916 0.626 This study

SVM-PDT-Profile (b = 8, n = 1) 0.946 0.715 This study

SVM-PDT-Profile (b = 8, n = 2) 0.950 0.740 This study

SVM-Top-n-gram (n = 2) 0.923 0.713 [23]

HHSearch 0.915 0.990 *

*The results of HHsearch are obtained by in-house implementation of the
hhsuite package.
doi:10.1371/journal.pone.0046633.t003
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computational expensive preventing the application to large-scale

databases. Amino acid index (AAIndex) [43] contains the

physicochemical properties of the 20 standard amino acids, which

is a suitable source for improving the predictive performance. Two

kinds of PDT-based approaches are proposed. One is the

sequence-based PDT method, which only uses the sequence

information. Another one is the profile-based PDT method, which

incorporates the evolutionary information extracted from the

frequency profiles. Both of the two approaches extract the

physicochemical properties from the AAIndex and take the local

sequence-order information of the proteins into consideration.

The performance of sequence-based PDT method is comparable

with other methods, and its computational cost is significantly less

than that of the local alignment method SVM-LA [8] and the

profile-based method SW-PSSM [21]. By employing the evolu-

tionary information, the performance of profile-based PDT

method can be further improved, but as other profile-based

methods it requires an additional step to generate the profiles.

These two methods are complementary. The sequence-based

PDT method is suitable for large scale prediction with low

computational cost. The profile-based PDT method can achieve

higher precision, but higher computational cost is required. The

main contribution of this study is to propose two PDT-based

protein representations. By measuring the correlation between any

two amino acids for a given distance l along a protein sequence

(for the profile-based PDT, the protein sequence is derived from

the frequency profile), the local sequence-order information can be

imbedded into the final feature vector. Some other methods have

used the amino acid position information in different approaches

and demonstrated that it can improve the predictive performance.

However, most of these methods suffer from certain shortcomings.

The feature vectors of ODH Monomer [34] are derived from the

distance histograms for any possible pair of K-mer, and this leads

to a extremely large feature space, especially when multi-oligomer

is used. A recently proposed method SVM-ACC [25] treats the

protein sequences as time sequences. The auto-cross covariance

transformation (ACC) is performed on the numerical sequences

derived from the PSSM. Compared with the methods without

using the sequence-order information, the performance improve-

ment is significant. However, this profile-based method only

incorporates the information extracted from the PSSMs without

using any amino acid physicochemical properties. The proposed

method PDT approach uses both the sequence-order information

and the physicochemical properties derived from AAIndex.

Another advantage of our approach arises from the explicit

feature space representation: the possibility to measure the

correlations between the discriminative features and protein

families. By analyzing these correlations, some family-specific l
variables and indices are observed, which would be useful for the

researchers who are interested in finding the characteristic features

of protein families. By contrast, another AAIndex-based method

SVM-RQA [37] uses the nonlinear recurrence quantification

analysis (RQA) to measure the similarity between two protein

sequences, which makes it difficult to explore the importance of

the features for the protein families and therefore it cannot give

any additional useful information. The proposed physicochemical

distance transformation provides a general framework that can

convert the proteins into fixed length vectors. It takes both the

sequence-order information and the amino acid physicochemical

properties extracted from the AAIndex into consideration. Further

studies will focus on applying the PDT to other tasks in

bioinformatics, such as protein-protein interaction prediction,

and other protein-level classification tasks.

Methods

Dataset description
A common benchmark [1] was used to evaluate the perfor-

mance of our method for protein remote homology detection,

which is available at http://noble.gs.washington.edu/proj/svm-

pairwise/. This benchmark has been used by many studies of

remote homology detection methods [8,20,34], which can provide

good comparability with previous methods. The benchmark

contains 54 families and 4352 proteins selected from SCOP

version 1.53. These proteins are extracted from the Astral

database [47] and include no pair with a sequence similarity

higher than an E-value of 10225. For each family, the proteins

within the family are taken as positive test samples, and the

proteins outside the family but within the same superfamily are

taken as positive training samples. Negative samples are selected

from outside of the superfamily and are separated into training

and test sets.

Amino acid indices
The Amino Acid Index (AAIndex) [43] is a database of

numerical indices representing various physicochemical and

biochemical properties of amino acids and pairs of amino acids

(http://www.genome.jp/aaindex/). There are three sections in

the latest version of the database (version 9): AAIndex1, AAIndex2

and AAIndex3. AAIndex1 contains 544 indices; AAIndex2 has 94

amino acid mutation matrices; AAIndex3 has 47 statistical protein

contact potential matrices. Because AAIndex2 and AAIndex3 are

matrices, they are not suitable for the physicochemical distance

transformation. Therefore, the AAIndex1 is selected for protein

transformation step. After removing the incomplete data and the

indices with all zeros in AAIndex1, 531 indices are selected for the

physicochemical property distance transformation. All the 531

indices are available at Text S1.

Generation of frequency profiles
In order to incorporate the evolutionary information into the

prediction, the frequency profiles are calculated. A frequency

profile can be represented as a matrix M, its dimensions are L620,

where L is the length of the protein sequence and 20 is the number

of the standard amino acids. Each element of M is the target

frequency which reflects the probability of an amino acid

occurring at a specific sequence position during evolutionary

processes. The target frequency is calculated from the multiple

sequence alignments generated by running PSI-BLAST [48]

against the NCBI’s NR dataset with parameters (-j 10, -e 0.001).

Only the multiple sequence alignments with sequence identity less

than 98% are used for the calculation. The target frequency is

calculated as:

Qi~(afizbgi)=(azb) ð2Þ

where b is a free parameter set to a constant value of 10 which is

initially used by PSI-BLAST and a is the number of different

amino acids in a given column minus one. gi is the pseudo-count

for amino acid i, which can be calculated as:

gi~
X20

j~1

fi � (qij=pj) ð3Þ

where fi is the observed frequency of amino acid i, pj is the

background frequency of amino acid j, qij is the score of amino acid
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i being aligned to amino acid j in BLOSUM62 substitution matrix,

which is the default score matrix of PSI-BLAST.

Physicochemical distance transformation
In order to incorporate the sequence-order effects into the

prediction, the physicochemical distance transformation (PDT) is

proposed to represent the sequence-order information of the

proteins. There are two kinds of PDTs: one is the sequence-based

PDT, which only uses the protein sequence information; another

one is the profile-based PDT, which uses the evolutionary

information represented in the frequency profiles. The following

details the process of the sequence-based PDT.

Given a protein P with L amino acids:

A1A2A3A4A5A6::::::AL ð4Þ

Where A1 is the amino acid at protein chain position 1, A2 is the

amino acid at protein chain position 2 and so forth. Given an

amino acid index j in AAindex1, each protein sequence is

converted into a series of numbers using the amino acid index j.

The sequence-order information associated with the physico-

chemical properties can be efficiently reflected by the following

equation (Figure 4):

Lj
l~

PL{l

i~1

Dj(Ai,Aizl)

L{l
ð5Þ

Where l is the distance between two amino acids along the

protein chain, Dj(Ai,Ai+l) can be calculated by the following

equation :

Dj(Ai,Aizl)~(Ij(Ai){Ij(Aizl))2 ð6Þ

Where Ij(Ai) and Ij(Ai+l) represent the normalized physicochem-

ical property values of amino acid Ai and Ai+l in index j, which are

calculated by the following equation:

Ij(Ai)~

I^
j(Ai){

P20

m~1

Î
j
(Rm)

20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P20

k~1

(Î
j
(Rk){

P20

m~1

Î
j
(Rm)

20
)2

20

vuut
ð7Þ

Where Iˆ(Ai) represents the raw physicochemical property value

of amino acid Ai in index j, Rm (m = 1, 2, 3, 4, …, 20) represents the

20 standard amino acids.

In such a way, the total number of the sequence-order

information variables L can be calculated as 531*b, where 531 is

the total number of indices in the AAIndex1, b is the maximum of

l (l = 1, 2, …, b). Each protein sequence is represented as a vector

with elements of the L variables. Therefore, the length of the

feature vector is equal to the total number of L variables (531*b).

The source code of the physicochemical distance transformation is

available at Text S2.

The process of profile-based PDT is similar as that of the

sequence-based PDT, except that there is an additional step of

extracting the evolutionary information from the frequency

profiles. The target frequencies in the frequency profiles reflect

the probabilities of the corresponding amino acids appearing in

the specific sequence positions. The higher the frequency is, the

more likely the corresponding amino acid occurs. It is reasonable

to use the n-th most frequent amino acids in the frequency profiles

to represent the protein sequences. Each amino acid in a protein

sequence is replaced by its corresponding n-th most frequent

amino acid in the frequency profile. Therefore, the resulting

protein sequence takes the evolutionary information in the

frequency profile into consideration. The flowchart of generating

the profile-based protein sequence is shown in Figure 5. The PDT

performs on the resulting protein sequence. The rest steps are the

same as those of the sequence-based PDT. The length of the

feature vector of the profile-based PDT is 531*b*n. In this study,

the first and second most frequent amino acids are investigated,

since in our previous study we demonstrated that these amino

acids showed strong discriminative power [23].

Support vector machine
Support vector machine (SVM) is a class of supervised learning

algorithms first introduced by Vapnik [7]. Given a set of labelled

training vectors (positive and negative input samples), SVM can

learn a linear decision boundary to discriminate the two classes.

The result is a linear classification rule that can be used to classify

new test samples. When the samples are linearly non-separable,

the kernel function can be used to map the samples to a high-order

feature space in which the optimal decision boundary can be

found. SVM has exhibited excellent performance in practice and

has a strong theoretical foundation of statistical learning.

In this study, the publicly available Gist SVM package (http://

www.chibi.ubc.ca/gist/) is employed. The SVM parameters are

Figure 4. A schematic diagram of physicochemical distance
transformation approach with l values of 1 (subfigure a), 2
(subfigure b) and 3 (subfigure c). A1 is the first amino acid in the
protein sequence; AL is the Lth amino acid in that protein. Dj(Ai,Ai+l) is
calculated by equation (4) based on index j in AAIndex, which measures
the correlation between any two amino acids with a distance l along
the protein sequence. The sequence-order information associated with
the physicochemical properties can be efficiently reflected by equation
(3) and (4)
doi:10.1371/journal.pone.0046633.g004
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Figure 5. The flowchart of generating the profile-based protein sequences. The multiple sequence alignment is obtained by PSI-BLAST. The
frequency profile is calculated from the multiple sequence alignment. For each column in the frequency profile, the amino acids are sorted in descending order
according to their frequencies, and then the profile-based sequences are obtained by combining the n-th most frequent amino acids.
doi:10.1371/journal.pone.0046633.g005
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used by default of the Gist Package except that the kernel function

is set as either a quadratic or a radial basis function.

Evaluation methodology
Because the test sets have many more negative than positive

samples, simply measuring error-rates will not give a good

evaluation of performance. For the cases in which the positive

and negative samples are not evenly distributed, the best way to

evaluate the trade-off between the specificity and sensitivity is to

use a receiver operating characteristics (ROC) score [49]. A ROC

score is the normalized area under a curve that plots true positives

against false positives for different classification thresholds. A score

of 1 denotes perfect separation of positive samples from negative

ones, whereas a score of 0 indicates that none of the sequences

selected by the algorithm is positive. Another performance

measure is ROC50 score, which is the area under the ROC

curve up to the first 50 false positives.

Supporting Information

Text S1 The information of all the 531 indices used for
the experiments.
(TXT)

Text S2 Source code of physicochemical distance trans-
formation.
(RAR)
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