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Abstract

Glioma is the most common brain tumor with high mortality. However, there are still challenges for the timely and 
accurate diagnosis and effective treatment of the tumor. One hundred and twenty-one samples with grades II, III and IV 
from the Gene Expression Omnibus database were used to construct gene co-expression networks to identify hub modules 
closely related to glioma grade, and performed pathway enrichment analysis on genes from significant modules. In gene 
co-expression network constructed by 2345 differentially expressed genes from 121 gene expression profiles for glioma, 
we identified the black and blue modules that associated with grading. The module preservation analysis based on 118 
samples indicates that the two modules were replicable. Enrichment analysis showed that the extracellular matrix genes 
were enriched for blue module, while cell division genes were enriched for black module. According to survival analysis, 
21 hub genes were significantly up-regulated and one gene was significantly down-regulated. What’s more, IKBIP, SEC24D, 
and FAM46A are the genes with little attention among the 22 hub genes. In this study, IKBIP, SEC24D, and FAM46A related 
to glioma were mentioned for the first time to the current knowledge, which might provide a new idea for us to study the 
disease in the future. IKBIP, SEC24D and FAM46A among the 22 hub genes identified that are related to the malignancy 
degree of glioma might be used as new biomarkers to improve the diagnosis, treatment and prognosis of glioma.

Introduction
Glioma is the most common tumor in the nervous system, and 
it is also the most harmful (1). It accounts for 26.5% of all cen-
tral nervous system tumors and 80.7% of malignant tumors, 
with seven out of every 100,000 people suffer from this disease 
in the United States each year (2). According to the histological 
classification, it can be divided into diffuse and non-diffuse. 
Most gliomas are diffuse and extensive infiltration in the cen-
tral nervous system. Diffuse gliomas tend to be high-grade 
malignant, including grade III (Anaplastic astrocytoma), grade 
IV (Glioblastoma), etc (1,3). High-grade gliomas with a median 
overall survival of about 16–18  months can occur at any age. 

More importantly, there are challenges in distinguishing Grades 
II, III, and IV (4), and accurate grading is very important for the 
decision of patients’ treatment plan, which is related to the 
prognosis of patients (5). Although gliomas have made progress 
in diagnosis and treatment, but the survival rates of them in 
general is not optimistic, thus, the painstaking search for new 
treatments continues. Currently, the research on glioma focuses 
on biological molecules, such as DNA, RNA and protein, and so 
on. Glial cell line-derived neurotrophic factor is a highly con-
served neurotrophic factor, and its high expression is of great 
significance for the development and formation of glioma. Many 
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studies have been conducted on Isocitrate dehydrogenase (IDH) 
(6) and the long noncoding RNAs (lncRNAs): IDH1 mutations 
are common in glioma, and lncRNAs (AC064875.2, HOTAIRM1, 
LINC00908, RP11-84A19.3, and LINC00319) has been reported to 
be closely related to the prognosis of glioma (7,8). In addition, 
miRNA have also been shown to be associated with glioma pro-
gression (9,10). However, the poor prognosis suggests that it is 
necessary to search for new biomarkers to evaluate the malig-
nant degree and long-term prognosis of glioma.

Research methods based on biomolecular network are widely 
used, especially those based on gene co-expression network and 
protein–protein interaction (PPI) network are very important. 
In 2005, the Zhang and Horvath first systematically proposed 
weighted gene co-expression analysis (WGCNA) (11), which has 
since been used as a powerful data-driven tool in the study of many 
diseases. Gene co-expression networks and PPI networks were 
included in the WGCNA. The WGCNA method identified genes 
closely related to disease by constructing gene co-expression net-
works, and the PPI network provided scoring of candidate bio-
markers from the protein level (12). Achievements in identifying 
potential biomarkers by constructing gene co-expression net-
works encourage researchers to study the direct possible relation-
ship between modules and disease. The identification of modules 
related to grading is helpful to infer the mechanism of tumor, pre-
dict prognosis and establish new therapeutic ideas.

The purpose of this study is based on four separate micro-
array data set to build gene expression in the network to iden-
tify biomarkers are closely associated with glioma grading. The 
biological markers might provide new insights for the prognosis 
and treatment for patients, and the co-expression network con-
structed at the same time might provide novel ideas for the oc-
currence and progression mechanism of glioma.

Materials and methods

Data collection and data preprocessing
Four raw public microarray datasets were downloaded from Gene 
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). 
Data sets GSE43378 (13), GSE51395 (14), GSE4290 (15), and GSE43289 (16) 
all come from the same platform: GPL570 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array. Four data sets were divided into two, 
121 samples with grades II, III, and IV were used to construct co-expression 
networks to identify biomarkers closely related to glioma grading, and 118 

samples with grades II, III, and IV were used for module preservation ana-
lysis and gene validation.

Gene co-expression network construction
A WGCNA R software package summarized and standardized its methods 
including network construction, module detection, gene identification, 
topological property calculation, and visualization (17). After data nor-
malization of 121 glioma gene expression profiles by using robust multi-
array averaging (RMA) (18) algorithm, outliers was excluded by filtering 
the samples with reference to Z.K value (Z.K value < −2.5). Moreover, the 
differentially expressed genes (DEGs) identified by “limma” (19) were used 
to construct co-expression networks, and |log2 (fold change)| ≥ 0.5 and 
P < 0.01 were the cut-off thresholds for DEGs. The specific steps are as fol-
lows: the correlation matrix (Sij) was transformed into an adjacency ma-
trix (Aij) based on soft threshold β: Aij= |Sij|

β. The soft threshold β is also 
known as the weighting coefficient, which is selected according to the 
scale-free topological criterion, and it can make the network meet the 
scale-free approximately (R2 > 0.8), thus leading to the network with higher 
biological signals. In order to visualize the network, the adjacency ma-
trix was transformed into a topological overlap matrix (TOM) that allows 
visualization and identification of network modules. Dynamic tree cutting 
was used to identify modules in dendrogram (20,21), which is based on 
average linkage hierarchical clustering coupled with the TOM-based dis-
similarity dω ij. Module is also known as sets of highly co-expressed genes, 
and the number of members in module is usually more than 30. Normally 
not all genes used in the study are co-expressed with other genes, all 
uncharacterized genes were assigned to the gray module according to the 
authors (11).

Module preservation
To verify the existence of the module, we need to demonstrate that the 
module is replicable or preserved in gene co-expression network based 
on other independent microarray data sets. We use ““modulePreservation” 
to calculate the preservation statistics of modules and determine 
whether the modules are preserved according to Z summary score and 
medianRank. Z summary score usually depends on the size of the module, 
while the medianRank has a relatively small dependence on the module 
(22), so whether a module is preserved or not depends on the Z summary 
score and the medianRank. It should be made clear that the modules with 
a higher Z summary score are more firmly preserved than those with a 
lower Z summary score, while the modules with a lower medianRank 
have stronger module preservation statistics than those with a higher 
medianRank.

Identification of modules associated with different 
grade of glioma and functional annotations
The selection of hub modules requires reference to the Module–trait rela-
tionships diagram. Module eigengene (ME) is the first principal component 
of a module and the representative of gene expression profile in a module 
(17). Therefore, we analyzed the relationship between MEs and clinical 
traits to select interest modules for subsequent analysis. Furthermore, 
the three important parameters, including gene significance (GS), module 
membership (MM), and module significance (MS) were used for identifying 
hub modules. GS was defined as transform of the P-value from the linear 
regression between gene expression and clinical stage, and average GS in 
a module was defined as MS. MM was defined as the correlation between 
the expression of genes and the ME.

Moreover, genes in interest module were uploaded to the Database for 
Annotation, Visualization, and Integrated Discovery (DAVID) (23) for gene 
ontology (GO) functional annotation and Kyoto encyclopedia of genes and 
genomes (KEGG) pathway enrichment analysis for funding the underlying 
mechanism and biological pathways.

Hub genes identification, validation and Kaplan–
Meier survival analysis
The hub genes are those with high connectivity in the module. The first 
condition for the hub genes in this study is that the connectivity ranking 
is in the top 10 percent among genes in the module, and second cut-off 
criteria is the absolute value of geneModuleMembership > 0.8 and 
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geneTraitSignificance > 0.4. Furthermore, PPI network was constructed 
based on Search Tool for the retrieval of interacting genes (24) and visu-
alized by Cytoscape (25). Genes in hub modules were projected into a PPI 
to further clarify the interaction between genes, which was one of the 
evidence supporting the status of hub genes. One hundred and eighteen 
samples was used for gene verification based on one-way analysis of vari-
ance (one-way ANOVA), which could make the selection of hub genes 
more convincing. If the P-value < 0.01, the selection of the gene is con-
sidered statistically significant and it is considered to be validated.

Kaplan–Meier survival analysis is a common non-parametric survival 
analysis method, which can intuitively show the relationship between one 
or more gene expression profiles and survival time by drawing survival 
curve (26). Glioma patients in GSE43378 were divided into high expression 
group and low expression group according to median expression value of 
each hub genes. After relevant calculation, survival curves were drawn for 
subsequent analysis. The survival curve is a step function, and the steeper 
the curve, the lower the survival rate. As a common way to compare sur-
vival curves, log-rank test can draw a conclusion that there is statistical 
significance between groups or not by analyzing the significance of differ-
ences between actual and theoretical values. A log-rank P-value < 0.01was 
considered to indicate a statistically significant difference. We conducted 
the Kaplan–Meier survival analysis and log-rank test using the “survival” 
package of R software to assess the relationship between hub genes and 
glioma patients.

Results

Weighted co-expression network construction

After gene expression profiles of 121 samples were used for 
RMA algorithm normalization, GSM61679 samples with Z.K 
value < −2.5 were excluded as outliers and did not participate 
in subsequent analysis (Supplemental Figure 1). A total of 2345 
DEGs with |log2 (fold change)| ≥ 0.5 and P < 0.01 including 1644 
up-regulation and 701 down-regulation were selected (Figure 1). 
The correlation matrix composed of 2345 DEGs is transformed 
into an adjacency matrix based on soft threshold β = 10 (scale 
free R2 =0.82) (Supplemental Figure 2). We identified 10 gene 
modules based on average hierarchical clustering coupled with 
dissimilarity dω ij.

Module preservation

Since the gray module is a non-functional module that does not 
participate in subsequent analysis, nine gene modules partici-
pate in the module preservation analysis. For Z summary score, 
Z summary score < 5 is considered not to be preserved, and the 
value between 5 and 10 is considered to be moderately pre-
served, while the Z summary score > 10 module is considered 
to be highly preserved, and the higher the Z summary score is, 
the more stable the module is preserved. We could maintain 
that 7/9 modules were highly preserved: turquoise (34.2), blue 
(16.4) yellow (15.8), red (13.9), pink (11.2), black (13.3), and brown 
module (10.2). For the medianRank, the lower the medianRank 
is, the higher the score of module preservation is. As shown 
in Supplemental Figure 3, both the black module (Z summary 
score = 13.3; medianRank = 1) and the blue module (Z summary 
score = 16.4; medianRank = 5) showed good results.

Identification of modules associated with different 
grade of glioma and functional annotations

The ME of each gene module represents the gene expression 
of the entire module, so the correlation between each module 
and clinical characteristics such as type and grade is measured 
by the correlation between each ME and clinical characteristics 
such as type and grade. We note that black (r = 0.51 P = 2e−09), 
blue (r = 0.62, P = 4e−14), and magenta (r = 0.64, P = 4e−15) all 
have high correlation with glioma clinical grade (Figure 2). 
However, magenta and brown modules were excluded from 
the subsequent analysis for their performance was not out-
standing in the module preservation analysis. Incidentally, the 
correlation between the turquoise module and clinical charac-
teristics was not significant, although the turquoise modules 
were well preserved in the module preservation analysis (Z 
summary score = 34.2; medianRank = 4). Additionally, the black 
module (cor = 0.57, P = 1.2e−08) and the blue module (cor = 0.76, 
P = 5.2e−50) showed high genetic significance and module mem-
bership (Supplemental Figure 4). In short, black and blue module 

Figure 1. Volcano figure. Note: DEGs were defined as the genes with |log2 (fold change)| ≥ 0.5 and P < 0.01. Green dots represent up-regulated genes, and red dot repre-

sent down-regulated genes.
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as grade-associated gene modules were identified in glioma 
based on WGCNA.

To explore the biological functions of the black and blue 
modules, the genes in the modules were uploaded to DAVID 
for GO functional annotation and KEGG enrichment analysis. 
GO and KEGG indicated that black module was mainly en-
riched to cell division, mitotic nuclear division and nucleo-
plasm (Supplemental Figure 5), while blue module was mainly 
enriched to extracellular matrix organization and extracellular 
matrix, ECM−receptor interaction (Supplemental Figure 6).

Hub genes identification, validation and Kaplan–
Meier survival analysis

There were 85 genes in the black module and 259 genes in 
the blue module, and 34 genes were screened due to the con-
nectivity ranking of the top 10 percent and those gene with 
geneModuleMembership > 0.8 and geneTraitSignificance > 0.4. 
According to the cut-off threshold of gene survival analysis, 
seven genes in the black module were identified as hub genes 
(Table 1). The PPI network of black module showed significant 
connectivity, and the overall effect of the network graph was 
good (Supplemental Figure 7). For the selection of hub genes in 
the blue module, PPI network (Supplemental Figure 8) and sur-
vival analysis are important screening references in addition to 
the restriction on the ranking of connectedness. Overall, 15 hub 
genes were identified in the blue module (Table 2). Finally, 22 
hub genes related to clinical grade of glioma were identified in 
this study, and these hub genes showed significant statistical 
significance in survival analysis. Figure 3 intuitively shows the 
verification results, the P values of 22 hub genes are significant 
(P < 0.01), which indicates that the selection of our 22 hub genes 
is statistically significant, scientific and convincing.

As shown in Figure 4, the survival curve generally shows 
a downward trend with the increase of time, and the slope is 
larger, which means lower survival rate. The image of the high-
expression group of 21 genes was steeper than that of the low-
expression group, indicating that the high expression of these 
hub genes was closely related to the poor prognosis of pa-
tients. However, we found that the low expression group based 
on KCNB1 showed a stronger association with poor prognosis, 
and this gene attracted our attention for further analysis and 
discussion.

Discussion
Glioma is a fatal brain tumor, which is the fourth leading cause 
of tumor-related death due to its invasive nature, molecular 
signals and the location of the central nervous system (27). In 
addition to causing death, seizures are common symptoms that 
seriously affect the lives of patients and their families (28). The 
researchers’ exploration of the mechanism of progression, diag-
nosis and treatment, and prognosis prediction are positively cor-
related with its harm to humans. Although important changes 
have been found in the glioma genome, there is still a big gap 
in understanding the mechanism of the disease based on the 
current survival status of patients. Although some studies have 
used the WGCNA method to construct a co-expression network 
to identify potential biomarkers associated with glioma, our 
study might contribute to the establishment of a more complete 
set of molecular markers for the pathological grade of glioma.

In the study, 121 samples without stage I were used to con-
struct the co-expression network. After dynamic tree cutting, 
we identified 10 modules, among which the black module and 
blue module showed the strongest correlation with pathological 

Table 1. Seven hub genes in black module related with pathological grade glioma

Gene symbol Gene Module Membership Gene Trait Significance PPI connectivity degree Up/down

BUB1 0.935022695 0.47172381 55 Up
CCNB2 0.949060871 0.448905865 55 Up
KIF20A 0.942235258 0.496177154 52 Up
NUSAP1 0.946448433 0.492814704 51 Up
PTTG1 0.953153568 0.505052177 50 Up
RRM2 0.935055347 0.512808509 54 Up
TOP2A 0.95505808 0.505171661 54 Up

Figure 2. Heatmap of the correlation between ME and clinical traits of glioma.
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grade. At the same time, the Z summery score and medianRank 
indicate that the two modules have good stability based on 118 
samples. Moreover, in order to better illustrate how genes work, 
we also carried out GO functional annotation and KEGG enrich-
ment analysis for black and blue module. Extracellular matrix 
organization genes were enriched for blue module, while cell 
division genes were enriched for black module. A total of 22 hub 
genes were finally identified in two hub modules based on the 
setting of cut-off thresholds for GS, MM, and PPI network con-
nectivity. The PPI chart of 22 hub genes showed the ideal de-
gree of connectivity, and we could intuitively see the hub genes 
interacting with each other. Both survival analysis and gene val-
idation yielded satisfactory results.

Glioma is a brain tumor with a high degree of infiltration 
of surrounding tissue, and its ability to infiltrate normal brain 
tissue is a marker of poor prognosis (29). Because the brain lacks 
the special structure of the true lymphatic system, gliomas 

migrate along blood vessels and invade surrounding normal 
brain tissues (30). These physiological activities are based on 
the tumor cells expressing different programming genes, which 
affect the cell cycle, modify the surrounding environment, and 
change the extracellular matrix (31). Changes in extracellular 
matrix are common in cancer, and there are numerous reports 
that its changes may promote cancer invasion (32). Hub genes 
COL4A2, COL4A1, COL5A2, LAMC1, and LAMB1 in blue module 
were enriched into extracellular matrix. COL4A1/2 encodes type 
IV collagen, which is an important part of basement membrane. 
If mutated, it can damage the secretion of extracellular matrix 
collagen and thus lead to weak blood vessels (33). Therefore, it is 
not difficult to understand that the mutation of these two genes 
might help tumor invasion. COL5A2 codes for type V collagen, 
which is mutated in most patients with classical Ehlers-Danlos 
syndrome (34). COL5A2 is considered as one of the effective bio-
markers for the diagnosis and prognosis of bladder cancer (35), 

Table 2. Fifteen hub genes in blue module related with pathological grade glioma

Gene symbol Gene Module Membership Gene Trait Significance PPI Connectivity Degree Up/down

ANXA1 0.827343404 0.561923969 / Up
ANXA2 0.875803843 0.548157845 / Up
CLIC1 0.888418433 0.566527724 / Up
COL4A1 0.866139195 0.54930032 25 Up
COL4A2 0.804525568 0.52982224 17 Up
COL5A2 0.852490117 0.623360253 15 Up
FAM46A 0.875552138 0.546436775 / Up
IKBIP 0.887210744 0.516772095 / Up
KCNB1 0.886305109 0.572156038 / Down
LAMB1 0.895113867 0.57687226 19 Up
LAMC1 0.925793134 0.618090561 17 Up
SEC24D 0.888379385 0.567315315 / Up
SPPL2A 0.873493419 0.536895048 / Up
TIMP1 0.852549775 0.547783447 27 Up
VEGFA 0.82564312 0.559968118 43 Up

Note: “/” means that the connection degree of this gene in PPI network is < 15 or the gene is not projected into PPI network.

Figure 3. Hub gene validation was based on one-way ANOVA. Note: Grades II, III and IV (x-axis) and relative expression (log2) for each gene (y-axis) were displayed, and 

the P-values of 22 genes were calculated and showed.



748 | Carcinogenesis, 2020, Vol. 41, No. 6

thyroid cancer (36), and gastric cancer (37). In addition to an im-
portant association with cancer, COL5A2 is also associated with 
Alzheimer’s disease (38), a disease of the central nervous system. 
COL4A2, COL4A1, and COL5A2 have been shown to be strongly 
associated with glioma in a study (39). LAMC1 and LAMB1 are 
family members of extracellular matrix glycoproteins, and are 
also the main component of basement membrane, which is in-
volved in cell adhesion differentiation, migration, signal trans-
duction, and so on. The up-regulated expression of LAMB1 in 
glioma was related to the miR-124-5p down-regulation table 
based on quantitative PCR and western blot for samples (40). 
LAMB1 has been identified as a potential biomarker for liver (41), 
colon (42), and stomach cancers (43). The up-regulated expres-
sion of LAMC1 might lead to the down-regulation of miRNA-181a 
(44) and miR-124a (45), which may be associated with tumor in-
vasion and lead to poor prognosis. Although these genes are 
closely related to glioma both individually and through enrich-
ment pathways, we do not know exactly how they play a role 
in tumor progression and infiltration. The gene co-expression 
network and PPI network constructed in our study may provide 
clues for studying the complex regulation between them. The 
up-regulated expression of ANXA1 and ANXA2 in glioma is con-
sidered to be the therapeutic target and prognostic marker of 
the cancer (46). ANXA1is a direct transcription target of FOXM1 
may be involved in cell proliferation, differentiation and apop-
tosis (47). Chloride intracellular channel 1 (CLIC1) has obvious 
overexpression in glioma, which is negatively correlated with 
patient survival, and is a promising potential therapeutic target 
for the tumor (48). CLIC1 might be related to the mechanism 
that the Metformin used to treat diabetes inhibit tumor pro-
liferation (49). KCNB1 is a member of voltage-gated potassium 
channel, which cannot only regulate excitatory cell signals but 
also play a role in the occurrence of brain tumors (50). The mod-
erate oxidation of this channel is thought to affect neurons by 
affecting synapses based on mouse experiments (51). In vitro 
studies have shown that KCNB1 can induce autophagy and in-
crease apoptosis while inhibiting tumor growth, which is related 

to the prognosis of glioma (52). This is consistent with the 
KCNB1 down-regulation obtained in this study. The mechanism 
of formation and development of glioma by KCNB1 has not been 
clearly studied, and the co-expression network we constructed 
may provide some new insights for researchers.

It is worth mentioning that three hub genes IKBIP, SEC24D, 
and FAM46A in the blue module are special. IKBIP (I kappa B 
kinase interacting protein), also known as IKIP, is on human 
chromosome 12. Researchers have paid little attention to this 
gene. Currently, we know that this gene is a gene that promotes 
the function of apoptosis (53). SEC24D encoded proteins belong 
to the SEC24 family member and SEC24D is an important com-
ponent of coat protein complex type II that mediated trans-
portation of newly synthesized proteins from the endoplasmic 
reticulum to the Golgi (54). Mutations in the gene are associ-
ated with Cole–Carpenter syndrome (55), but the link between 
the gene and cancer has been poorly studied. So far, we know 
that SEC24D may be one of the candidate genes for the treat-
ment of T-cell lymphoma (56), and this gene may activate the 
transformation of hepatic stellate cells into myofibroblasts 
to contribute to cirrhosis (57). FAM46A proteins belong to the 
nucleotidyl transferase fold superfamily. FAM46A plays an im-
portant role in bone development and has been mentioned in 
studies of bone-related diseases. A variable number of tandem 
repeat polymorphism in FAM46A gene is associated with osteo-
arthritis (58) and tuberculosis (59). In addition, there is a link 
between FAM46A and 5-fluorouracil in the treatment of breast 
cancer (60). Simply to say, the understanding of certain genes 
is still incomplete, and our co-expression networks might pro-
vide new clues to the complex regulation of these different mol-
ecules for researchers.

The hub genes in the black module received more atten-
tion from researchers than those in the blue module. Seven 
hub genes in the black module have been further studied. Hub 
genes CCNB2, BUB1, and PTTG1 were enriched into the cell 
cycle. BUB1, a mitotic checkpoint serine kinase, had been re-
ported in many cancers, including glioma, and it is associated 

Figure 4. Survival curves for patients in different groups. Note: Red lines represent high expression of hub genes, while blue lines represent low expression of hub 

genes.



T.-Y.Chen et al. | 749

with tumor proliferation, growth, metastasis, and prognosis 
(61). Cancer genes such as TOP2A, KIF20A, and PTTG1 were also 
identified in this study. Nucleolar and spindle-associated pro-
tein 1 is an important protein involved in mitosis, and its ab-
normal expression is associated with different types of tumors, 
which has been detected to be overexpressed in glioma. In a 
study that also constructed a co-expression network to identify 
glioma-related genes, this gene was suggested to be a poten-
tial gene therapy target for the neoplasm (20). Ribonucleotide 
Reductase Regulatory Subunit M2 (RRM2) expression was sig-
nificantly up-regulated based on TCGA data, western blot and 
immunohistochemistry, which could promote tumor migration 
and proliferation (62). Studies have shown that a RRM2 inhibitor 
triapine can treat some gliomas (63). Recent studies have pro-
vided some new insights into the regulation mechanism of 
RRM2 in glioma. RRM2 may be a potential therapeutic target 
for cancer, and its inhibitor DHS (trans-4,4′-dihydroxystilbene) 
has been shown to be effective in mouse models of tumor xeno-
transplantation (64).

IKBIP, SEC24D, and FAM46A were selected from 22 hub genes 
that related to glioma grading based on a series of related gene 
analysis. These three genes have received less attention than 
other genes and to our knowledge these three genes are the first 
to be shown to be involved in the mechanism of glioma pro-
gression. In addition, due to the small number of samples in-
cluded in this study, there might be bias, and more studies are 
needed to confirm our results. As far as we know, the samples 
of published studies are mainly from TCGA (65–67), while our 
samples are from GEO and these sample sets are rarely or not 
used. Moreover, our study focused on grades II, III, and IV. More 
importantly, our study identified new genes and our study pro-
vides new insights into the biomarkers of glioma, which may 
provide new ideas for the diagnosis, treatment and prognosis 
of patients.

Conclusions
To sum up, we established the co-expression network to iden-
tify the 22 hub genes related to the pathological grade of 
glioma, the 22 genes are closely related to survival time based 
on survival analysis. As potential biomarkers, IKBIP, SEC24D, 
and FAM46A might provide new ideas for more timely and 
accurate diagnosis, more effective treatment and better prog-
nosis prediction of glioma patients. We need more research to 
validate our study.
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