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Whole exome sequencing 
and homozygosity mapping reveals 
genetic defects in consanguineous 
Iranian families with inherited 
retinal dystrophies
Arash Salmaninejad1,2,9, Nicola Bedoni3,9, Zeinab Ravesh4, Mathieu Quinodoz4,6,7, 
Nasser Shoeibi8, Majid Mojarrad1,2, Alireza Pasdar1,2,5* & Carlo Rivolta4,6,7*

Inherited retinal dystrophies (IRDs), displaying pronounced genetic and clinical heterogeneity, 
comprise of a broad range of diseases characterized by progressive retinal cell death and gradual 
loss of vision. By the combined use of whole exome sequencing (WES), SNP-array and WES-
based homozygosity mapping, as well as directed DNA sequencing (Sanger), we have identified 
nine pathogenic variants in six genes (ABCA4, RPE65, MERTK, USH2A, SPATA7, TULP1) in 10 
consanguineous Iranian families. Six of the nine identified variants were novel, including a putative 
founder mutation in ABCA4 (c.3260A>G, p.Glu1087Gly), detected in two families from Northeastern 
Iran. Our findings provide additional information to the molecular pathology of IRDs in Iran, hopefully 
contributing to better genetic counselling and patient management in the respective families from 
this country.

Inherited Retinal Dystrophies (IRDs) are a genetically and clinically heterogeneous group of diseases character-
ized by the progressive loss of retinal photoreceptor cells. This neurodegenerative process leads in turn to increas-
ing visual deficit, and over the years to very poor vision and blindness1. With an incidence of approximately 
2.5 in 10,000, IRDs are among the most frequently observed hereditary eye diseases2–4. Due to their complex 
genetic and clinical nature, IRDs can be divided into a wide range of clinical subtypes, including: Leber congenital 
amaurosis (LCA; OMIM #204000), cone-rod dystrophy (CORD; #120970), Stargardt disease (STGD; #248200), 
retinitis pigmentosa (RP; #268000) and others. They can also manifest as individual eye disorders or involve 
other organs, as part of various syndromes5.

Thus far, mutations in over 270 genes have been associated with IRDs (RetNet. https​://sph.uth.edu/retne​
t/). Recent advances in massively parallel next-generation sequencing (NGS) and genetic testing approaches 
have substantially improved the identification of mutations, as well as the diagnostic yield of such a genetically 
heterogeneous condition6. Given the intricate nature of IRDs, molecular testing in clinical settings may lead to 
a more accurate diagnosis of patients with ambiguous ophthalmologic evaluations7.

Consanguineous marriages have been globally practiced as a social norm for thousands of years, leading to a 
high degree of inbreeding in some populations, including Iranians8. As a consequence of inter-family marriages, 
autozygous regions are created through the inheritance of identical-by-descent haplotypes, resulting in turn in 
a very high prevalence of recessive conditions9.

This study aimed at integrating NGS and homozygosity mapping, a technique that identifies long stretches 
of homozygous haplotypes, for the genetic characterization of IRDs in 10 consanguineous Iranian families.
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Results
Following WES analysis in the probands from the 10 families ascertained in this study (Fig. 1), we identified nine 
pathogenic variants in six IRD-associated genes (ABCA4, MERTK, RPE65, SPATA7, TULP1, and USH2A). Of 
these variants, six were novel, and none of them was previously reported in the Iranian population (Table 1). All 

Figure 1.   Overview of the pedigrees of the 10 families presented in this study and segregation analysis of the 
pathogenic variants identified. Probands who underwent WES analysis are indicated with an arrow. Genotypes 
are also indicated, whenever available.
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of the identified variants were homozygous and resided in autozygous regions of a genomic size of at least 6 Mb, 
hence reflecting recent endogamy in the population (Table 1, Fig. 2). Autozygome analysis using data from SNP 
arrays and WES revealed a relatively high number of runs of homozygosity (ROH) (Fig. 2), consistent with the 
high degree of consanguinity observed in these families (The ROH details for each family containing RetNet 
genes has been provided in Supplementary Table 1). Autozygome analysis and variant filtering on the WES data 
was sufficient to identify putative causative variants. SNP data confirmed that the candidate variant located to a 
homozygous interval in another affected family member. Additional (homozygous) candidate variants filtered for 
frequency, impact on protein and known to be causative of relevant diseases have been shown in Supplementary 
Table 2. All findings were validated by Sanger sequencing and, when DNA was available, variant segregation was 
confirmed within healthy and affected family members, as illustrated in Fig. 1.

In proband V.4 of family F010 (Fig. 1) we identified a novel homozygous missense variant in the RPE65 
gene (NM_000329.3:c.1088C>G, p.Pro363Arg). In this same gene, another novel missense variant was found in 
proband IV.6 of family F031 (NM_000329.3:c.104C>T, p.Pro35Leu). Both variants are predicted to be patho-
genic or likely pathogenic by different prediction tools (Table 2). In family F011, patient V.1 resulted in har-
boring a homozygous premature stop codon in the MERTK gene (NM_006343.3:c.392G>A, p.Trp131Ter), 
never published before. Family F019 was found to carry a homozygous missense variant in the USH2A gene 
(NM_206933.3:c.14926G>A, p.Gly4976Ser), affecting an evolutionarily conserved amino acid. Similarly, this 
novel variant was predicted to be pathogenic or likely pathogenic by all tested tools (Table 2).

Our NGS analyses revealed pathogenic variants in the LCA-associated genes SPATA7 and TULP1. Proband 
IV.5 of family F028 had a homozygous premature stop codon in SPATA7 (NM_018418.5:c.253C>T, p.Arg85Ter), 
previously described to cause LCA in three consanguineous families of Pakistani and Bangladeshi origins13. 
Segregation was confirmed in the other affected sibling and in the healthy father, who was heterozygous. Simi-
larly, affected members of family F030 carried another homozygous premature stop codon in the same gene 
(NM_018418.5:c.250C>T, p.Gln84Ter). Sanger sequencing with available DNA samples confirmed that the par-
ents and the healthy sister were both heterozygous carriers (Fig. 1). Moreover, in proband IV.3 of family F032 we 
identified a known pathogenic missense variant in the TULP1 gene (NM_003322.6:c.1047T>G, p.Asn349Lys). 
Again, segregation analysis was consistent with the recessive mode of inheritance of this disease (Fig. 1).

WES analysis of patient III.7 of family F004 identified a homozygous missense variant 
(NM_000350.3:c.1819G>A, p.Gly607Arg) in exon 13 of the ABCA4 gene. This same variant was previously 
found in patients with STGD10,15. Segregation was confirmed, as shown in Fig. 1. Lastly, in families F026 and 
F035 we identified a previously-unreported missense variant (NM_000350.3:c.3260A>G, p.Glu1087Gly) in exon 
22 of the ABCA4 gene. Interestingly, this same codon was found to carry two missense variants in patients with 
this condition in previous publications10,16–19 as well as a nonsense variant in patients with cone-rod dystrophy20.

Discussion
Consanguineous marriages have been traditionally practiced in Iran as a consequence of socio-cultural fac-
tors. It is estimated that nearly 40% of Iranian marriages are between related individuals, of which ~ 21% are 
first cousins and ~ 19% are second cousins21,22. Endogamy, consanguinity or geographic isolation may rise the 
occurrence of specific mutations in selected populations, which can be isolated by homozygosity mapping. The 
rationale for this method is that unaffected parents who have some degree of kinship, belong to an ethnic group 
with high endogamy or are from a geographical isolate, could be heterozygotes for the same recessive mutation 
from a common ancestor. This mutation, which at the population level possibly will even be infrequent, can be 
brought to homozygosity since consanguinity can cause disease in these parents’ children23,24. This feature makes 
the Iranian gene pool one of the richest resources for genetic investigations. Several studies have so far been 
published concerning the genetic basis of IRDs in Iran25–30. In this study, we further refined the genetic landscape 
of IRDs by identifying nine pathogenic variants in genes that were previously associated with these conditions.

Table 1.   Pathogenic variants identified by WES in probands from 10 Iranian consanguineous families with 
AR IRD.

Family ID
Mutation 
number Gene RefSeq Exon

Transcript 
variant Protein variant Zygosity ROH size [Mb] Method References

F004 M1 ABCA4 NM_000350.3 13 c.1819G>A p.Gly607Arg Hom 35.0 WES + SNP array 6,10–12

F010 M2 RPE65 NM_000329.3 10 c.1088C>G p.Pro363Arg Hom 22.2 WES + SNP array Novel

F011 M3 MERTK NM_006343.3 2 c.392G>A p.Trp131Ter Hom 7.2 WES + SNP array Novel

F019 M4 USH2A NM_206933.3 68 c.14926G>A p.Gly4976Ser Hom 10.9 WES + SNP array Novel

F026
M5 ABCA4 NM_000350.3 22 c.3260A>G p.Glu1087Gly Hom

41.2 WES
Novel

F035 27.3 WES

F028 M6 SPATA7 NM_018418.5 5 c.253C>T p.Arg85Ter Hom 20.7 WES 13,14

F030 M7 SPATA7 NM_018418.5 5 c.250C>T p.Gln84Ter Hom 74.7 WES + SNP array Novel

F031 M8 RPE65 NM_000329.3 3 c.104C>T p.Pro35Leu Hom 30.4 WES + 2SNP 
array Novel

F032 M9 TULP1 NM_003322.6 11 c.1047T>G p.Asn349Lys Hom 6.1 WES + SNP array
ClinVar

(SCV001161320.1)
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In particular, we identified a putative novel founder missense mutation (p.Glu1087Gly) in the ABCA4 gene, 
within individuals from the Northeastern region (Khorasan province) of Iran. They had a similar ethnic origin 
and shared an identical homozygous haplotype around ABCA4 (chr1:85′647′942–97′544′759 of size 11.9 Mb). 
The phenotypic features of the probands and their affected relatives were associated with those of classical STGD. 
According to data extracted from the database of protein families (Pfam), amino acids 946–1090 encode the 
ABC Transporter wherein based on the arrangement of the Pfam domains, the 1087 position is conserved and 
predicted to be an active site (https​://pfam.xfam.org/prote​in/ABCA4​_HUMAN​). Two missenses affecting the 
same amino acid were already found to be pathogenic: p.Glu1087Asp and p.Glu1087Lys31,32. In addition to the 
increasing number of reports on pronounced clinical and genetic variability of genes that cause IRDs, mutations 
in three different genes, RPE65, MERTK and USH2A were ascertained in four unrelated families with members 
showing symptoms of RP. Fortunately, recent advances in gene therapy trials on patients with RPE65 and MERTK 
mutations have shown promising results, reflecting hope for a potentially revolutionary form of therapy in a 
subset of patients33–36. Our study stipulates the role of these variants in the pathogenesis of RP in Iranian patients, 
who could potentially be candidates for future therapeutic interventions. Furthermore, genetic alterations in 
SPATA7 and TULP1 are known to manifest with overlapping clinical symptoms of LCA and RP37,38. Evaluating 
the current status of detected variants and also checking them against other Iranian databases which showed 
nil frequencies provides supporting evidence that these variants can be classed as potential causative variants.

The advent of gene-directed interventions has enabled bridging of molecular genetics with genetic counseling 
and possible therapeutic interventions in ophthalmology. Specifically, since targeted gene therapy is constantly 

Figure 2.   Homozygosity mapping for the 10 probands of this study, generated using the AutoMap tool 
(Quinodoz et al., manuscript under review). Autozygous regions for autosomes are depicted in blue. Intervals 
containing the identified pathogenic variants are highlighted in red.

Table 2.   Prediction of pathogenicity for all novel variants. Dam damaging; DC disease causing; Del 
deleterious; LP likely pathogenic; P pathogenic; PD probably damaging; NA not applicable.

Gene DNA change Protein change Mutation taster Poly Phen SIFT Varsome CADD score PhyloP score Provean

Allele frequency in databases

Iranome (N = 800) EVS (N = 6515) gnomAD(N = 141,456) 1,000Genomes

ABCA4 c.3260A>G p.Glu1087Gly DC PD Dam P 32 6.22 Del Not found Not found 0.00003 Not found

RPE65
c.1088C>G p.Pro363Arg DC PD Dam P 28.0 5.76 Del Not found Not found Not found Not found

c.104 C>T p.Pro35Leu DC PD Dam LP 30 5.77 Del Not found Not found Not found Not found

SPATA7 c.250 C>T p.Gln84Ter DC NA NA P 37 2.51 NA Not found Not found Not found Not found

MERTK c.392G>A p.Trp131Ter DC NA NA P 37 3.01 NA Not found Not found 0.000003 Not Found

USH2A c.14926G>A p.Gly4976Ser DC PD Dam LP 25.4 5.8 Del Not found Not found 0.00008 Not Found

https://pfam.xfam.org/protein/ABCA4_HUMAN
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advancing, detection of genetic mutations may soon be a routine procedure to allow patients to access suitable 
therapies.

In this context, our study expands the current understanding of the molecular basis of IRDs in Iran, while 
providing at the same time elements of information for genetic and prenatal counselling as well as possible 
indications for future therapy.

Materials and methods
Ethics statement.  This study was designed in compliance with the tenets of the Declaration of Helsinki. 
Written informed consent was obtained from each participant or legal guardian prior to their participation. This 
study was approved by the Institutional Review Boards of our respective Universities: Mashhad University of 
Medical Sciences (MUMS), and University of Lausanne.

Families and preparation of samples.  Families were selected according to three main criteria: (i) they 
included two or more individuals with confirmed IRD diagnosis, (ii) showed a likely autosomal recessive (AR) 
pattern of inheritance, and (iii) had a history of consanguinity. Pedigrees were drawn using the Pedigree Chart 
Designer software (CeGaT, Tubingen, Germany). Clinical information and clinical data were extracted from 
patients’ medical records of Mashhad Khatamolanbia Eye Hospital. All patients were evaluated by an ophthal-
mologist and Optical Coherence Tomography (OCT) was performed for individuals who had no recent follow 
up. Six milliliters of peripheral blood from available affected and unaffected members of each family were col-
lected and mixed with EDTA (Merck KGaA, Darmstadt, Germany). A phenol–chloroform method was used to 
extract genomic DNA from peripheral leukocytes. DNA quality and quantity were verified using a Nanodrop 
2000 (Thermo Fisher Scientific, Wilmington, DE, USA). DNA integrity was ascertained by running DNAs on 1% 
agarose gel. Samples were stored at − 20 °C until used.

SNP genotyping.  DNAs of studied individuals were genotyped at the iGE3 Platform of the University 
of Geneva, Switzerland, using an Illumina Infinium array (San Diego, CA, USA; GSAMD-24v2.0). Genotype 
values were obtained with GenomeStudio (Illumina). Homozygosity mapping was obtained by the use of the 
PLINK software. Due to the high degree of consanguinity, SNP genotyping was chosen as a complementary 
analysis to narrow down homozygous regions and reduce the number of candidate variants.

Whole‑exome sequencing.  WES was performed on one designated proband from each of the families 
analyzed. Exome capture and library preparation was performed using the SureSelect Human All Exon v6 kit 
(Agilent, Santa Clara, CA, USA) and the HiSeq Rapid PE Cluster Kit v2 (Illumina, San Diego, CA, USA), from 
2 μg genomic DNA. Libraries were sequenced on a HiSeq 2500 instruments (Illumina). Raw reads were mapped 
to the human genome reference sequence (build hg19) with the Novoalign software (V3.08.00, Novocraft Tech-
nologies, Selangor, Malaysia). Duplicate reads were then removed using Picard (v. 2.14.0-SNAPSHOT). Base 
quality score recalibration was performed with HaplotypeCaller (GATK, v.4.0.3.0). Single nucleotide variants 
(SNVs) and small insertions and deletions were detected using the Genome Analysis Tool Kit (GATK v4.0) soft-
ware package, using the Best Practice Guidelines identified by the developers39. ExomeDepth software was used 
to detect exonic deletions. Homozygous variants in IRD genes (according to RetNet) lying within ROHs were 
processed as follows. Filtration was performed based on quality (DP > 10, GQ > 30, FS < 25 and alternative read 
percentage > 25%) and allelic frequency [below 1% in ExAC, gnomAD, 1000 Genomes, ESP (NHLBI Exome 
Variant Server, https​://evs.gs.washi​ngton​.edu/EVS), GME (GME Variome https​://igm.ucsd.edu/gme/index​
.php), and ABraOM]. The pathogenicity of the genetic variants was assessed after functional annotation through 
ANNOVAR40 and using in-house scripts41, where the predicted impact on protein sequence and messenger 
RNA (mRNA) splicing were also taken into account. Finally, we checked the frequency of variants in the Iranian 
population using the Iranome database (https​://www.irano​me.ir/). ROHs were identified by using the AutoMap 
software (Quinodoz et al., manuscript under review. https​://autom​ap.iob.ch/) on WES data. The number of fil-
tered variants at each step is shown in Supplementary Table 3.

Sanger validation and segregation analysis.  Primers were designed using the Primer3 online 
software42, at least 70 bp upstream and downstream of the variants, and PCR reactions were performed under 
standard conditions (for the list of primers see Supplementary Table 4). PCR products were purified by treatment 
with exonuclease and thermosensitive alkaline phosphatase (Thermo Fisher Scientific, Waltham, MA, USA) and 
analyzed by Sanger sequencing using the Big Dye Terminator v3.1 Cycling Sequencing Kit (Applied Biosystem, 
Foster City, CA, USA) on an ABI 3730XL platform (Applied Biosystems). Sequencing data were analyzed using 
the Sequencher v4.8, SnapGene (https​://www.snapg​ene.com), and Chromas Lite v2.01 software and compared 
with wild-type samples and reference sequences from NCBI and Ensembl databases. Furthermore, frequency 
of all candidate variants was verified in a database of 800 Iranian healthy individuals (https​://www.irano​me.ir/).

https://evs.gs.washington.edu/EVS
https://igm.ucsd.edu/gme/index.php
https://igm.ucsd.edu/gme/index.php
https://www.iranome.ir/
https://automap.iob.ch/
https://www.snapgene.com
https://www.iranome.ir/
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