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Multistable coordination dynamics exists at many levels, from multifunctional neural circuits in
vertebrates and invertebrates to large-scale neural circuitry in humans. Moreover, multistability
spans (at least) the domains of action and perception, and has been found to place constraints
upon, even dictating the nature of, intentional change and the skill-learning process. This paper
reviews some of the key evidence for multistability in the aforementioned areas, and illustrates how
it has been measured, modelled and theoretically understood. It then suggests how multistability—
when combined with essential aspects of coordination dynamics such as instability, transitions and
(especially) metastability—provides a platform for understanding coupling and the creative dynamics
of complex goal-directed systems, including the brain and the brain–behaviour relation.
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1. INTRODUCTION
In addressing the subject of multistability, we are
advised to follow Socrates: first ask what? Then ask
why? So, what is multistability and how do we under-
stand it? In previous work, my colleagues and I have
considered multistability and its cognate aspects
(fluctuations, instability, transitions, metastability, hys-
teresis, adaptation, etc.) in vision, speech, language,
motor and neural dynamics ([1]; see also earlier studies
[2–4] for related approaches). In the last 15 years, many
empirical generalizations and modelling developments
have taken place on the subject, at least in part owing
to the advent of structural and functional neuroimaging
and increasingly sophisticated analysis and compu-
tational modelling tools. Here, however, after a few
general words on what multistability is, I wish to focus
on the question of why multistability occurs in the
first place. For that one has to go beyond traditional
disciplinary boundaries and fully embrace the science
of complex systems tailored to the goal-directed
and functional aspects of living things—coordination
dynamics—where multistability is not some freak
phenomenon [5], but rather is close to the very core
of the way things are. The hope is that asking the why
question may reshape our perspective by providing not
only a language for understanding multistability but
also a rationale for its occurrence, indeed its ubiquity.
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2. WHAT IS MULTISTABILITY?
Multistability is a universal, essentially nonlinear
aspect of matter and its organization—from molecular
arrangements and chemical reactions to multistability
in the meaning of words and actions and beyond [6].
When we talk of multistability, we are usually talking
about stable states or attractors; the stability of a
state depends on how quickly the system returns to a
state following a perturbation.1 In the brain, attractors
correspond to stable patterns of reverberating activity
in neural populations that support and sustain them-
selves. The image is one of a changing dynamic
landscape where population activity shifts from one
attractive state to another. Fluctuations in the nervous
system occur on many levels, from channel noise in
synaptic transmission to neural populations and neural
networks ([7] for review), destabilizing self-sustaining
patterns and causing switching from one attractor
state to another. A specific example comes from recent
biophysical modelling [8] in which multistability and
scale-invariant fluctuations arise in resting state cortical
activity as a result of noisy input into thalamic neurons
modulated by cortical feedback. In short, if a system
has multiple coexisting attractors and noise is suffi-
ciently strong to cause switching among stable states,
it may be said to be multistable.

Understanding multistability may proceed in (at
least) two ways. In the first, one may seek specific
mechanisms for a given instance of multistable phenom-
ena. The search for specific mechanism proceeds by
identifying the physico-chemico-bio-psycho- basis of a
chosen exemplar of interest. A second way is to seek
dynamic laws and principles of multistability. In this
This journal is q 2012 The Royal Society
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approach, the same dynamic laws of multistability are
expected to exist across multiple scales of observation
regardless of their specific mechanistic realization.
Such a ‘law-based’ perspective leads us to notice paral-
lels between different expressions of multistability
across a wide range of systems, functions and timescales,
seeing the connections between them and trying to
uncover the functional roles that multistability may
play [9,10]. As we shall see, multistability appears in
unexpected guises, playing a central role where we
might not even expect it to such as in skill learning
and intentional change.

Universal dynamics springs from inferred prin-
ciples, specific mechanisms from close examination
of particular cases. Dynamical laws and specific mech-
anisms can thus be seen as complementary [11]: both
are needed for a comprehensive understanding of mul-
tistability and cognate phenomena. This apparent
tension between dynamics and mechanism may be
seen as an advantage: universal dynamics allows us
to see the connections across manifold expressions of
multistability in a level- and mechanism-independent
way. At the same time, we need particular realizations
if we are ever to extract general laws and principles
[12], thereby focusing our attention on mechanisms.
It should be noted that many physicists take the
word mechanism to mean that dynamical laws at one
level are connected to, if not to be eventually replaced
by, dynamical laws at lower levels (as in the case of
quantum mechanics). Whether one accepts it or
not, such a perspective does not deny the possibility
of eventually identifying universal (dynamical) mech-
anisms for multistability and related phenomena
across scales and levels of observation. The present
contribution may be seen as a move in that direction.
3. WHY MULTISTABILITY?
Why are systems, particularly complex biological
systems (including, but not necessarily restricted to
the brain) composed of very many interacting parts
and processes and capable of producing a large
repertoire of coordinated patterns of behaviour,
multistable in the first place? Any answer to the question
‘why multistability?’ is likely to be complicated and have
many layers, yet—viewed from the perspective of
coordination dynamics—appears to involve a sequence
of steps. In what follows, degeneracy and multifunction-
ality are proposed as fundamental aspects of living
things (step 1) inextricably tied to the emergence of
synergies (step 2) which are shown to be formed by
self-organizing processes (step 3). The basic mechanism
of self-organization is the non-equilibrium phase tran-
sition, the resulting dynamics of which gives rise to
multistability (step 4). In step 5, some useful modelling
tools are used to illustrate multistability and switching in
behaviour and the brain, including learning (step 6).
Step 7 goes beyond multistability and discusses why
metastability is crucial to understanding brain and cog-
nitive function. In this light, multistability appears as
just one ingredient of a series of phenomena in which
progressive coupling and broken symmetry between
individual heterogeneous components enable switching
from constant ‘invariant’ behaviour to creative
Phil. Trans. R. Soc. B (2012)
dynamics. Metastability thus plays the role of a pivot
towards the emergence of stable collective states,
whether monostable or multistable. Finally, we propose
that the weak coupling and broken symmetry that give
rise to metastability are both the basis of and based
upon the principle of complementarity [9,11].
(a) Step 1: degeneracy

First and foremost is the need to recognize that complex
biological systems at all relevant scales are degenerate.
Degeneracy means that at every conceivable level of
description, the same outcome or function can be
achieved in many ways using different components.
Edelman & Gally [13] provide evidence of degeneracy
from the level of the genetic code (where multiple
gene products contribute to almost any behaviour or
function and every gene has the potential for pleiotropy)
to social communication (where there are a near infinite
number of ways to communicate the same message).
In perception, many different stimulus configurations
can give rise to the same percept (‘invariance’). In move-
ment, many different muscle configurations can
produce the same outcome. The same network activity
in central pattern-generating circuits can be produced
using many different combinations of synaptic strengths
and neuron properties ([14]; see also Cymbalyuk et al.
[15]). I have called this ‘The principle of functional
equivalence’ [16] because the principle appears to
operate at every level of biological organization. The
complement of degeneracy or functional equivalence
is multifunctionality: the same anatomical structures
can play multiple functional roles. For example,
fronto-parietal regions of the brain are involved in
many other executive functions beyond their ‘top-
down’ influences in multistable perception [17]. The
same neural circuitry even in lowly creatures such as
Caenorhabditis elegans [18] or the stomatogastric
ganglion of the lobster [19] participates in multiple
functions. Degeneracy and multifunctionality imply
that there is no one-to-one mapping between structure
and function. On the contrary, from gene networks to
neural networks to social networks, degeneracy and
multifunctionality rule: multifunctional circuit mechan-
isms are conserved across vertebrate and invertebrate
species [19]. From the perspective of coordination
dynamics, multifunctionality and degeneracy/func-
tional equivalence can be understood in terms of
multistability [20,21].
(b) Step 2: synergies

Edelman & Gally [13] provide compelling evidence and
argument that degeneracy is both a prerequisite for
and an inescapable product of natural selection. But
Nature has another mechanism to generate degeneracy
not considered by Edelman: it synergizes. Synergies
are exquisitely context-sensitive functional groupings of
elements that are temporarily assembled to act as a
single coherent unit [22,23]. Depending on context,
synergies may accomplish different functions using
some of the same components (e.g. the jaw, tongue
and teeth to speak and chew) and the same function
using different components (e.g. ‘hand’ writing with a
pen attached to the big toe). Operationally, the hallmark
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of a synergy is that during the course of ordinary func-
tion a perturbation to any part of the synergy is
immediately compensated for by remotely linked parts
in such a way as to preserve functional integrity. As a
complex system composed of billions of cells and
synapses which in turn is capable of displaying a com-
plex repertoire of coordinated behaviours, the brain is
likely to be highly synergized. To identify brain syner-
gies, it would be necessary to perturb one member of
the synergy (e.g. a piece of cortical tissue known to be
engaged for a given task or function) and observe
remote and near-immediate compensation by other
putatively linked brain areas. A modern tool such as
transcranial magnetic stimulation (TMS) [24] when
combined with sophisticated imaging technologies
to record remote effects may be a way to discover syner-
gies in the human brain. There are probably other
techniques such as microstimulation (L. Ungerleider
2010, personal communication).
(c) Step 3: self-organization and dynamic

instability

The basic mechanism for the formation and change of
synergies—complementing natural selection—is self-
organization [9,10,23], a mechanism (not known to
Darwin) that Nature uses to form spatial and temporal
patterns in non-equilibrium systems that are open to
exchange of energy, matter and information with their
environments [25–28]. The most primitive form of
self-organization is the non-equilibrium phase tran-
sition, which appears near the so-called critical
‘tipping’ points or instabilities when a control parameter
crosses a threshold. Close to instability, the individual
elements, in order to accommodate current conditions,
order themselves in new or different ways: the faster
(typically microscopic) individual elements or variables
in the system become ‘enslaved’ to the slower (typically
macroscopic) collective variables [25]. The macro-
scopic patterns that emerge may be defined as stable
attractive states of the collective variable dynamics.
Fluctuations are always present, testing whether a
given pattern is stable and allowing the system to dis-
cover new, more adaptive patterns (for a related view
called self-organized criticality see Chialvo [29] and
Plenz & Thiagarian [30] for reviews). Why is the non-
equilibrium phase transition—which can take many
forms in nature—so important for our present con-
cerns? The answer is that (i) it is a fundamental
mechanism for pattern formation in open systems;
(ii) used as a methodology, it enables the identification
of relevant (collective) variables and their dynamics in
complex systems—which in neuroscience are often not
known a priori; and (iii) the non-equilibrium phase tran-
sition qua dynamic instability (whether a switch from
randomness to order and vice versa or from one ordered
state to another) implicates multistability as an inherent
aspect of nature and of tremendous selective value [31].
(d) Step 4: multistable coordination dynamics

Non-equilibrium phase transitions have been demon-
strated to be the basic self-organizing mechanism for
the assembly and formation of functional synergies
[20,21]. Consider some basic forms of coordination
Phil. Trans. R. Soc. B (2012)
from a variety of complex systems studied in laboratory
settings. Whether coordinating the movements of the
limbs, whether coordinating individual body parts
with tactile, visual or auditory stimuli, whether two
people are coordinating together, spontaneously or
intentionally, whether a human is coordinating with
an avatar [32] or even riding a horse [33], just two
stable patterns among the interacting components
and processes predominate: in-phase and anti-phase
(see earlier studies [10,34–36] for reviews). Despite
(or perhaps because of) the numerous neurons,
muscles, joints and metabolic processes involved in
these coordinations, despite the numerous differences
between the parts and processes that are doing the
coordinating and the multitude of ways the parts can
be coupled with each other and with the environment,
all these different systems have been demonstrated to
exhibit bistability, the simplest form of multistability.

To better understand how bistability originates at
phase transitions requires one to use some concepts,
methods and formal tools that we can only mention
briefly here [20,21,37,38]. Key ones concern the
identification of collective variables, the control para-
meters that move the system through its collective
states and the minimum form taken by the dynamics.
Many variables are changing in the experimental cir-
cumstances described above, but one that captures
the essence of the coordination patterns under scrutiny
here and changes abruptly at transitions is the relative
phase, f. Notice that this quantity ‘enfolds’ different
domains: much evidence shows that relative phase
characterizes the synergic interaction between parts
that range from neurons to body parts to people and
machines. As a key coordination variable, f spans
the processes that couple stimuli and responses, per-
ception and action, organism and environment, brain
and body, and even brains acting together [39,40].

A general form of the coordination dynamics
referred to as the Schöner–Kelso conjecture in
Turvey [41] is:

_f ¼ Lðf; ciÞ ð3:1Þ

where the temporal change of the coordination
variable f (phi dot or _f) is a function of the varia-
ble itself subject to both specific and non-specific
parametric influences, ci.

A particular elementary form of the coordination
dynamics called the extended HKB model (after
Haken, Kelso and Bunz [42]) is

_f ¼ dv� a sinðfÞ � 2b sinð2fÞ þ
ffiffiffiffi
Q

p
jt ð3:2Þ

where f is the relative phase, _f is the derivative of f
with respect to time, a and b are coupling parameters
the ratio of which (k ¼ b/a) is a non-specific control
parameter in experiments, dv ¼ v12 v2 reflects intrin-
sic differences between the components and jt is a
stochastic noise term of strength Q reflecting the fact
that fluctuations are present in all real systems. We
say b/a is a non-specific control parameter because it
simply moves the system through its coordinative
states but does not specify or ‘encode’ them.
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Figure 1. (a,b) Hallmarks of non-equilibrium phase transitions illustrated in the extended HKB model of coordination
dynamics, i.e. the potential, V, in equation (3.4) with dv ¼ 0 (solid curves in (a)). Enhancement of fluctuations is indicated
by the widening of the probability distribution, p, of relative phase around f ¼ p (dashed and dotted lines in (a) respectively)
as the control parameter k ¼ b/a decreases. Critical slowing down is revealed by an increase in the time it takes for the system to
recover from a small perturbation (b). Note how this relaxation time increases as the system approaches instability. At the critical

point (k ¼ 0.25) and beyond, the system does not return to its former (non-equilibrium) state.
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An equivalent form of the extended HKB equation
is

_f ¼ �@V ðfÞ
@f

þ
ffiffiffiffiffi
Q

p
zt: ð3:3Þ

With the potential

V ðfÞ ¼ �dvf� a cosf� b cos 2f: ð3:4Þ

The coordination dynamics can be visualized as a par-
ticle moving in a potential function, V(f). The
minima of the potential are points of vanishing force,
giving rise to stable solutions of the coordination
dynamics. For dv ¼ v12 v2 ¼ 0 and for low values
of the control parameter (b/a), the system has
two stable attractive coordination states at f ¼ 0 and
f ¼+prad. Thus, two coordination states coexist for
exactly the same parameter values, the essentially
nonlinear feature of bistability.

As the ratio b/a is decreased, the formerly stable
fixed point at f¼+prad becomes unstable and turns
into a repellor. Any small transient perturbation or fluc-
tuation will now kick the system into the basin of
attraction of the stable fixed point at f¼ 0. Notice
also that once there, the system’s behaviour will stay
in the in-phase attractor, even if the direction of the
control parameter is reversed. Such hysteresis, a
basic form of memory in nonlinear dynamical systems,
is exactly what is observed in experiments.2

The switching from bistability to monostability as
function of a control parameter is called a bifurcation.
However, it is the presence of stochastic fluctuations
that establish the existence of non-equilibrium phase
transitions in biological coordination and that allow
quantitative evaluation of key predictions. Critical
slowing down is easy to understand. As the minima
of the potential at f ¼+prad become shallower and
shallower (figure 1a, solid curve, as k decreases) the
time it takes to adjust to a small perturbation takes
longer and longer. Thus, the local relaxation time
(figure 1b) is predicted to increase as the instability is
approached because the restoring force (given as the
gradient in the potential, V(f)) becomes smaller.
Likewise, enhancement of fluctuations predicts that
the variability of f should increase owing to the
Phil. Trans. R. Soc. B (2012)
flattening of the potential and broadening of the prob-
ability distribution, p, near the transition point. Both
predictions have been confirmed in a wide variety of
experimental systems, including magnetoencephalogra-
phy and electroencephalography recordings of the
human brain [44,45]. Indeed, a remarkable study by
Meyer-Lindenberg et al. [46] demonstrated that a tran-
sition between bistable coordination patterns can be
elicited in the human brain by transient TMS. As pre-
dicted by the HKB model of coordination dynamics,
TMS perturbations of relevant brain regions such as
premotor and supplementary motor cortices caused a
behavioural transition from the less stable anti-phase
state to the more stable in-phase state, but not vice versa.

That the stability of coordination states is a govern-
ing factor in how the brain works is further illustrated
in a recent functional magnetic resonance imaging
(fMRI) study by Jantzen et al. [47]. In a sensorimotor
coordination paradigm, Jantzen et al. [47] demonstrated
a clear dissociation between those neural regions that are
activated when a control parameter changes and those
connected to a pattern’s stability. A key result was that
the activation of cortical regions supporting coordi-
nation (e.g. left and right ventral premotor cortex,
insula, pre-supplementary motor area and cerebellum)
scaled directly with the stability of the coordination
pattern. As the anti-phase pattern became increasingly
less stable and more variable, so too did activation of
these areas: thus it is that these parts of the brain—
which form a functional circuit—have to work harder
to hold coordination together. And thus it is that the
difficulty of a task, often described in terms of ‘infor-
mation processing load’, is captured by a dynamic
measure of stability that is directly and lawfully related
to the amount of energy used by the brain. Importantly,
for identical control parameter values, the same
brain regions do not change their activation at all
for the more stable (less variable) in-phase pattern.
Given the constraints, a path is chosen that tends to
favour the most stable state, here the potential minimum
of a collective variable, the relative phase.

The Jantzen et al. paper shows how multistability is
realized by the same cortical circuitry which itself is
exquisitely sensitive to the (in)stability of behaviour.
Together with the Meyer-Lindenberg et al. study this
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work illustrates the power of coordination dynamics
to predict the dynamical behaviour of the brain at the
level of cortical circuitry. Dynamic stability and instabil-
ity appear to be major determinants of the recruitment
and dissolution of brain networks, providing both flexi-
bility and stability in response to control parameter
changes. Multistability confers a tremendous selective
advantage to the brain and to nervous systems in general
(cf. [18,48]): it means that the brain has multiple pat-
terns at its disposal and can switch among them to
meet environmental or internal demands. Shifting equi-
libria among coexisting functional states on exposure to
a new set of conditions is potentially more efficient than
having to create states de novo. This hypothesis can be
examined further by studying how different combi-
nations of sound, touch, vision and movement come
together and spontaneously split apart in time as
parameters are varied [12,49,50].
(e) Step 5: specific parametric influences on

multistable systems

Standard theories of self-organization do not incorporate
goal-directedness; for that one needs to consider the
interplay between multistability and specific parametric
influences, the second cornerstone of coordination
dynamics [9,10]. In the perceptual multistability litera-
ture, the latter are variously categorized in terms of
top-down effects; it is well-known, for example, that
perceivers can consciously switch from one inter-
pretation of a stimulus pattern to another, and that
attention and emotion can affect which alterna-
tive is selected. In coordination dynamics, intentional
processes parametrize the dynamics, that is, they can
stabilize or destabilize the coordination states of a multi-
stable dynamical system. In turn, the relative stability of
the coordination states dictates the nature of the inten-
tional switching process. Both theory and data afford
insight into this interplay of forces [51–54]. Experimen-
tal observations show (i) that intention can stabilize
coordination states even under conditions where they
would otherwise become unstable and spontaneously
switch; (ii) the relative stability of the states—the intrinsic
dynamics—determines how fast one state can switch to
another: intentionally switching from a more stable to a
less stable state takes longer than the reverse; and (iii)
much greater blood oxygen level-dependent (BOLD)
activity is observed in bilateral putamen when human
subjects are required to switch from a more stable to a
less stable state than vice versa, indicating that the basal
ganglia (BG) are highly sensitive to pattern stability.

In the potential function of the coordination
dynamics (equation (3.4)), the specific influence of
intention may be represented as

Vint ¼ �cint cosðw� uÞ ð3:5Þ

where cint is a parameter proportional to the strength
of intention and u is the intended relative phase.
The modified dynamics resulting from the summation
of these two functions (equations (3.4) and (3.5)) is
illustrated by the black and grey curves in figure 2.

The theoretical model illustrated in figure 2 oper-
ates under two assumptions. First, the level of
activity in the BG represents the level of intentional
Phil. Trans. R. Soc. B (2012)
‘forcing’ or parametrization of the dynamics. This
allows the BOLD estimates of putamen activity in
the DeLuca et al. [51] experiment to be used to scale
the variable cint in equation (3.5).3 Second, the
intended relative phase (u) is assumed to follow task
instructions: when participants start out in-phase
(figure 2a), the intended pre-switch pattern (black) is
in-phase and the intended post-switch pattern (grey)
is anti-phase—and inversely when participants start
out anti-phase (figure 2b). The result shows how the
process of intention, stemming from the BG, is gov-
erned by the intrinsically multistable dynamics. Prior
to the switch, the BG is active in both in-phase
and anti-phase states. The result seen in black in
figure 2a,b is to increase the stability of the required
pattern. During the switch (when the intended pattern
switches and u goes from 08 to 1808 or vice versa),
activity in the BG remains high when switching from
an in-phase pattern. The result is to allow for a
stable anti-phase pattern as shown (in grey) across
the top row. However, when switching from anti-
phase to in-phase, the DeLuca et al. [51] experiment
shows that BOLD activity in the BG dramatically
decreases. The result is to release the dynamics from
intentional control and thereby allow the intrinsic
dynamics to accomplish the switch from the less
stable (anti-phase) to the always more stable in-phase
pattern. From these data we can conclude that multi-
stable coordination dynamics places lawful constraints
on what is possible to realize and what is not. It is the
joint forces of intention (equation (3.5)) and the gradi-
ents defining the relative stability of the coordination
states (equation (3.4)) that dictate the switching time
between them—implemented in this specific example
by the BG and related cortical circuitry.
(f ) Step 6: multistability in learning

Multistability plays an unforeseen but central role in
learning: theoretically, it corresponds to pre-existing
dispositions in an attractor landscape (intrinsic
dynamics) that is shaped by learning and dictates the
very nature of change. Although the hypothesis is
intuitive that learning and development involve a
modification of the individual’s current behavioural
repertoire [55], identifying and tapping into the
latter has proved difficult in the extreme. To address
changes owing to learning, it is necessary to devise
an operational means to probe the individual learner’s
repertoire before, during and after the learning pro-
cess. Because much is known about them, bimanual
rhythmic coordination patterns in response to visual
input have proved to be a useful window into skill
learning [56–59]. These patterns can be changed by
gradually manipulating the relevant coordination vari-
able (here, relative phase) over its full range, thereby
allowing the experimenter to probe the entire reper-
toire of possible patterns that subjects can produce
before a learning task is introduced. This experimental
procedure is called a ‘scanning probe’: in a typical
experiment, two light-emitting diodes display 13
relative phases ranging from 08 to 1808 in steps of
158. Participants are required to move each index
finger in coincidence with each visual stimulus.
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The significance of such scanning probes is that they
reveal the presence of preferred behaviours—a pre-
existing repertoire that constrains what can be learned
and thus the very nature of the learning process.

What does the pre-existing repertoire look like
in naı̈ve participants before learning and how is this
related to multistability? In the normal adult population,
scanning probes reveal two sets of results. In one sub-
population, the behavioural repertoire prior to learning
is composed of just two stable or preferred coordina-
tion patterns corresponding to minimum root-mean-
squared error (RMSE) and illustrated by wells in a
potential function shown in figure 3a. The attractor
landscape pre-learning is thus bistable with attractive
states located at 08 and 1808. In the other, a smaller
number of individuals exhibit an additional minimum
RMSE at 908 indicating that this attractive state is also
part of their pre-existing repertoire (figure 3c). Thus,
their initial dynamics is multistable before learning,
with three potential minima.

Learning means the acquisition and persistence
over time of a new pattern of behaviour. Knowledge
of the pre-existing repertoire is thus instrumental in
defining what a new pattern is, that is, one not already
in the learner’s repertoire and, therefore, likely to con-
flict with the existing intrinsic dynamics. Given the two
types of repertoire that exist before learning, the
required relative phase is set to 908 for initially bistable
Phil. Trans. R. Soc. B (2012)
people and to 1358 for those with tristable dynamics.
Performance feedback is provided during the learning
phase, but not in the scans. How do learners handle
the new learning tasks? Regardless of whether one is
initially bistable or tristable before learning, the mis-
match between the produced and required relative
phasing pattern diminishes, giving rise to an increase
in accuracy of the produced pattern [59]. Stability, not
just error, is also a key factor. Whereas learning 908 is
accompanied by a significant increase followed by a sig-
nificant decrease in the variability of performed relative
phase, no such changes occur when learning 1358 [60].

Scanning probes of the behavioural repertoire after
learning reveal what is going on. Initially, bistable lear-
ners now exhibit three wells: a new well at the learned
pattern (908) now appearing along with the two that
existed prior to learning (figure 3b). Learning has re-
organized the entire landscape, the initially bistable
coordination dynamics becoming tristable. Because
the transition from bistable to tristable dynamics is
accompanied by changes in stability, we refer to this
mechanism of change as the bifurcation route to learning
[58,61]. In the case of initially tristable learners con-
fronted with the novel task of learning a bimanual
phasing pattern of 1358, all that happens is that the orig-
inal well at 908 shifts towards the just-learned pattern.
As a result, learning takes the form of gradual change:
the learner’s attractor landscape is altered not in terms
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of number of attractive states (which does not change),
only in terms of its layout (figure 3d). The overall attrac-
tor landscape is not altered qualitatively, a mechanism
we refer to as the shift route to learning.

On the one hand, the bifurcation route generates
qualitative change in an initially bistable behavioural
repertoire by adding new stable patterns. Bifurcation
is thus a dynamical mechanism for novelty. The
sudden creation of a new attractive state in the land-
scape of the coordination dynamics is a reflection of
the principle of selection via instability [62]. On the
other hand, the shift mechanism generates smooth
adaptive change. The initial behavioural repertoire is
already multi- (here tri-) stable and learning takes
the form of gradual change: the learner’s dynamic
landscape is altered not in terms of the number of
attractive states but only in terms of its layout. As a
result, behaviour shifts gradually in the direction of
the to-be-learned pattern without any instability or
gain in stability. Selection of a new behavioural pattern
occurs in this case through an effort to match new
environmental requirements according to a principle
of selection via matching.

How humans learn is contingent: depending on the
individual’s initial repertoire, adaptive changes are
governed by a shift mechanism or a bifurcation mechan-
ism. Results show that the bifurcation route leads to
greater persistence of a learned behaviour in memory,
whereas the shift route, though more flexible, is prone
to forgetting [63]. Far from being separate, the two
routes depend on each other and may be said to
Phil. Trans. R. Soc. B (2012)
constitute two successive phases of the learning process.
The bifurcation mechanism is nevertheless primary.
A possible reason is that a minimum level of multistability
(attained through the bifurcation mechanism) is needed
for learning to evolve gradually through the shift route.

Why is it that some people show up tri- or in general
multistable? If our interpretation is correct, then lear-
ners who exhibit a tristable initial repertoire must
have been bistable at an earlier time: tristability (as we
have shown) springs from a basic bistability in the
coordination dynamics. Bistability and bifurcation
(dynamic instability) may be seen as the primordial cor-
nerstones upon which learning is grounded, the basic
ingredients for the sudden emergence of new patterns.
Only later does the shift mechanism kick in giving rise
to gradual behavioural change. Why the primacy of
bistability and bifurcation? As a precursor to tristability,
bistability sets the limits of what’s possible and what is
prohibited. Bistability is primitive: it establishes the
space within which learning (and perhaps changes on
other timescales as well) can occur. Once established,
the multistable dynamics plays out in this space—the
space of states defined by coordination variables that
capture the interaction or coupling among the parts
and processes of goal-directed complex systems.
(g) Step 7: beyond multistability—bring

on metastability

As we have seen, brain circuits can become unstable
leading to the emergence of novel coordinative states.
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Multistable coordination dynamics confers a capacity
on the brain to lock in to one of several available pat-
terns. Locking in and switching capabilities can be
adaptive and useful, or maladaptive and harmful.

Another kind of mechanism called metastability is
becoming recognized as an important dynamical
mechanism for understanding brain and behavioural
coordination. Etymologically, ‘metastability’ comes
from the latin ‘meta’ (beyond) and ‘stabilis’ (able to
stand). In coordination dynamics, metastability is not
just a word. It is the simultaneous realization of two
competing tendencies: the tendency of the individual
components to couple together and the tendency for
the components to express their independent behaviour.
In coordination dynamics, metastability corresponds to
a regime near a saddle-node or tangent bifurcation in
which stable and unstable coordination states no
longer exist (e.g. in-phase coordination where the rela-
tive phase between interacting components lingers at
zero), but attraction remains to where those fixed
points used to be. This gives rise to a dynamical flow
consisting of phase trapping and phase scattering.
Early on metastability was identified in the extended
HKB model of coordination dynamics at a behavioural
level [64], but was soon seen as an important mechanism
for brain coordination [65–70]. Because many brain
processes are governed by periodic, often oscillatory
Phil. Trans. R. Soc. B (2012)
dynamics [71–73], the coordination variable coupling
the oscillations together is the relative phase, f. A fixed
point of the coordination variable thus represents a
steady-phase and frequency relationship between the
oscillatory components or phase-locking (figure 4).

To illustrate formally the connection between multi-
stability and metastability, the flow of the coordination
dynamics across a range of values of dv is presented in
figure 4a–c for a fixed value of the coupling parameter,
k¼ b/a ¼ 1, where a ¼ 1 and b ¼ 1. Stable fixed points
(attractors) are represented by filled circles and unstable
fixed points (repellors) as unfilled circles. Note these
fixed points refer to specific values of the coordination
variable, w. The flows shown in figure 4 illustrate four
parameter regimes under the influence of the symmetry
breaking term dv in equation (3.2). In figure 4a, the
system is multistable, here bistable. For the system to
settle in, two stable fixed points (filled circles) constitute
the alternatives. Of the two, which one is observed
depends on the initial conditions and the size of the
basin of attraction. In figure 4b, the intrinsically less
stable anti-phase state disappears but the stronger
attractor near in-phase is still present as well as its repel-
lor partner (open circle). Figure 4c shows the metastable
regime. The flow no longer intersects the x-axis where
the fixed points are located: all the fixed points have dis-
appeared. For the sake of completeness, figure 4d shows
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the flow where the components are uncoupled, behav-
ing independently according to their intrinsic dynamics.

What does coordination behaviour look like in the
metastable regime? Although all the fixed points have
vanished, a key aspect is that there are still some traces
of coordination, ‘ghosts’ or ‘remnants’ of where the
fixed points once were. Despite the complete absence
of phase-locked attractors, the behaviour of the com-
ponent parts in the metastable regime is not totally
independent. Rather, coordination takes the form of
dwellings (phase gathering) near the remnants of the
fixed points and phase scattering, where the individual
components act quasi-independently, expressing their
autonomy. In the metastable regime, successive visits
to the remnants of the fixed points are intrinsic to the
time course of the network, and do not require any
additional sources of input. The time the system
dwells in each remnant depends on two factors: the
degree of asymmetry among the components (longer
dwelling for smaller asymmetry) and the strength of
the coupling (longer dwelling for larger values of a or
b). Although discovered in a simple system,4 such a
basic mechanism provides a powerful means to instanti-
ate the flow of thinking and perceiving and moving as
‘stationary transients’ of coordination in neurocognitive
networks [9,65–70,75].

The flows shown in figure 4a–d are just singular
examples of coordination patterns that arise in a
much bigger space. The corresponding parameter
space or phase diagram is shown in figure 4e illustrat-
ing: (i) similar behaviour—such as multistability—for a
range of parameter values (hearkening back to our
earlier discussion of degeneracy and functional equiv-
alence) and (ii) qualitatively different behavioural
patterns as parameters cross critical parameter values
that lie along boundaries, e.g. separating multistability
and monostability. The system affords many paths in
many directions. If you are coordinating your body,
then you make the path by walking. If you are coordinat-
ing your brain, then you make the path by thinking. The
rich variety of coordinations possible—whether you are
monostable, multistable, metastable or even not coordi-
nated at all—depends on where the system (on all levels)
lives in the parameter space of its coordination dynamics
and how it moves in it. This message is beginning to be
appreciated in neuroscience [14,19,21].

Does the brain make use of such a principle? The
classical view of phase-locked synchronization pre-
scribes that each recruited element loses its intrinsic
behaviour and obeys the dictates of the assembly. In the-
ories that propose large-scale integration through phase
synchronization, for example, the expression of local
activity can exist only when a given area is not enslaved
into an assembly [76,77]. In the metastable brain, the
activity of individual elements obeys neither the intrinsic
dynamics of the elements nor the dynamics dictated
by the assembly. A delicate balance between the two
poles of integration (coordination between individual
elements in transiently synchronized ensembles) and
segregation (expression of individual behaviour in diver-
ging neural ensembles) is thus achieved [65–69,78,79].
This design plays out in space and time, with ensembles
of various sizes coming together and disbanding
incessantly [29,30].
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4. WHY METASTABILITY?
At the beginning we asked ‘why multistability’? From
figure 4e, multistability corresponds to a regime where
the components are not too different and the coupling is
strong relative to metastability which can be seen even
for very weak coupling. It is tempting to see metastabil-
ity as a necessary step towards mono- and multistability.
There are several reasons why metastability may be pro-
posed as a candidate principle of coordination for brains
and cognitive systems:

— metastability accommodates the coordination of
heterogeneous elements (e.g. brain areas having
disparate intrinsic dynamics; brain areas whose
activity is associated with the movement of body
parts or events in the environment),

— although reminiscent of a multistable regime with
attractors, a key difference with metastability
is that transitions are not actively induced. No
disengagement mechanism is required. Neither
stochastic noise nor energy inputs in the form of
parameter changes are needed in order to switch
from one state to the other. Metastability allows
even the lowliest of nervous systems to flexibly
browse through a set of possibilities (tendencies
of the system) thereby avoiding getting stuck in
stationary states,

— metastable brain theory favours no extremes, e.g.
reflexive versus intrinsic, integrated versus segre-
gated, local versus global. Rather, it reconciles
them, and

— metastability is an expression of the full complexity
of the brain. Measures of complexity reach a maxi-
mum when the balance between segregative and
integrative forces is achieved [79]. Note, however,
that such measures are based upon stationarity
assumptions whereas metastability in coordination
dynamics is literally a ‘stationary transient’.

In short, metastability guarantees that the living brain
(and complex, goal-directed systems in general) never
finds itself frozen for any length of time in a particular
coordination state: no energy barriers need to be
crossed to visit self-organized metastable tendencies.
For this reason, it seems likely that natural selection
has latched on to this aspect of self-organization,
favouring metastability as necessary for adaptive be-
haviour [9,10,23].
5. THE ORIGINS OF METASTABILITY: COUPLING
AND COMPLEMENTARITY
Multistability is said to offer a powerful and coherent
framework for addressing the issue of binding or coup-
ling. In metastability, the strong hierarchical coupling
between parts and processes is reduced leading to a
looser, more flexible form of function. Figure 4
allows us to see how both views may be reconciled
within the framework of coordination dynamics.
What remains to be addressed is the origin of metast-
ability. Consider figure 4 in reverse, from panel (d) to
(a), and ask a simple question. If the components are
uncoupled, how do they get coupled? Where does the
coupling come from?
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The word ‘coupling’ is used in many scientific con-
texts: What do we mean by it? Although the sources of
coupling may be manifold and ‘coupling’ often appears
in explanations (usually of complicated interactions),
the word itself is seldom defined. Here, we define
coupling after Root-Bernstein & Dillon [80] as ‘the
non-random linking between two or more processes’.

Notice that the parts and processes that are coupled
according to the governing dynamics of, for example,
equation (3.2) are substitutable. The law is universal
though its mechanistic manifestations are specific. In
our example, the elements correspond to oscillators
and the processes concern oscillations: this is convenient
because oscillations, which occur on many levels, appear
to be the natural language of the brain and cognition
[9,71,81]—and according to some, nature too [82].

To cut to the chase, Root-Bernstein proposes that
complementarity creates the coupling necessary for
non-equilibrium systems to form providing a mechan-
ism for the appearance of novel emergent properties,
as in self-organization. Remarkably, as in the foregoing
discussion of metastability, complementarity—through
the eyes of Root-Bernstein & Dillon [80]—sees evol-
ution as a network composed of alternating periods of
integration (as molecules and molecular aggregates
merge) and divergence (as molecules and aggregates
undergo variations). Just as the Weiss criteria (variance
of the whole is less than the sum of the variances
expressed by the individual parts) have been used
to describe the properties of synergies [23], so Root-
Bernstein & Dillon use it to describe the formation of
sub-assemblies or aggregates. If complementarity pro-
vides a generalized mechanism for coupling, then how
does this play out here? Concretely, how does the
‘uncoupled dynamics’ of figure 4d transform into
the metastable tendencies of figure 4c and beyond?
Logically—after Aristotle’s metaphysics [83] and the
philosophy of the complementary nature—one has to
inquire what the complement of total independence
is, as in independent, uncoupled parts. The parts
cannot exist in a vacuum. The answer, surely, is
integration and the integrated whole: segregation
and integration, individuals and collective, parts and
wholes are complementary pairs—considered the basis
of reality [11,84,85]. Notice that complementarity
cannot realize integration and segregation as pure
(idealized) states: metastable tendencies require
component differences (dv= 0; therefore, broken
symmetry) and the weakest of coupling (figure 4c,e).
Individualist tendencies for the diverse parts to express
themselves coexist with coordinative tendencies to
couple and cooperate as a whole.

And now what happens? If the parts are sufficiently
different and the coupling is strong enough, then a
transition occurs: equilibria emerge spontaneously.
Metastability crosses the boundary into monostability
(figure 4c to b). On the basis of evidence and argument,
Root-Bernstein & Dillon [80] propose that homeostasis
emerges from complementarity. Coordination dynamics
shows that it cannot be otherwise. Given a system of het-
erogeneously connected, heterogeneous elements, i.e.
where symmetry is broken, coupled by virtue of comple-
mentarity, even multiple equilibria can arise if the
coupling is strong enough (figure 4a). Through coupling
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and broken symmetry metastability forms leading on to
multistability. If you follow the self-organizing route
(§3d) metastability arises from multistability. If coupling
is based on complementarity (which reaches all the way
down to the complementary pairs of quantum mech-
anics), then metastability arises from complementarity
and multistability arises from metastability.
6. POSTSCRIPT
It is not unusual for scientists and artists to draw a
dichotomy between brain and mind. For example,
Henry Miller (1891–1988), the American writer and
painter, remarks that ‘nothing happens in the brain
except the gradual rust and detrition of cells’. ‘In the
mind’, however, ‘worlds unclassified, undenominated,
unassimilated, form, break, unite, dissolve and harmonize
ceaselessly’ (emphasis mine). ‘In the mind-world’,
Miller continues, ‘ideas are the indestructible elements
which form the jewelled constellations of the interior
life. We move within their orbits, freely if we follow
their intricate patterns, enslaved or possessed if we
try to subjugate them. Everything external is but a
reflection projected by the mind-machine’ [86 p. 29].
The parallel between Miller’s mind and the multi-
and metastable coordination dynamics of the brain
described here is obvious. Mind and brain are comp-
lementary: they share a common underlying dynamics.

In testimony to the US Congress in October 2010,
Huda Akil, former President of the Society for Neuro-
science, poses what she calls the ‘grand challenge of
elucidating neural choreography’. No single focused
level of analysis will suffice to understand the brain
and its disorders (see also Akil et al. [87]) ‘We need
to identify the dancers, identify the nature of the
dance and uncover how disease disrupts it’. Here,
the dancers are (cognitively, behaviourally and neurally
relevant) nonlinear oscillations, and the dance is the
functional patterns of interaction between them:
multi- and metastable coordination dynamics.
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ENDNOTES
1Key questions seldom addressed in the multistability literature con-

cern the identification of relevant ‘state’ variables, control

parameters, etc. Stability and multistability are common words. But,

stability of what? The list can range from ‘stimulus interpretations’

to ‘percepts’ to ‘perceptual states’ to ‘perceptual decisions’ to ‘mean-

ings’ and so forth. On any level of description, the issue concerns

what the attractor states are of. This is important because a first step

in modelling means mapping relevant variables onto the states of a

dynamical system.
2A significant aspect of the HKB model is that equations (3.2)–(3.4)

can be derived from ‘lower levels’: the individual components and their

nonlinear interaction [42]. Thus, though the whole is greater than the

sum of the parts, HKB showed that the parts (nonlinear oscillations)

can be assembled by virtue of a fundamental, nonlinear coupling of

biophysical origin [43] to create the behaviour of the whole.
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3I am indebted to K.J. Jantzen for carrying out this analysis and for

kindly providing figure 3.
4In Einstein’s famous aphorism, simple but not too simple. For

example, equation (3.2) has rather richer dynamics than typical

models of frequency-dependent selection in models of evolutionary

dynamics (compare e.g. Nowak [74] p. 48 with figure 4).
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54 Schöner, G. & Kelso, J. A. S. 1988 A dynamic pattern
theory of behavioral change. J. Theor. Biol. 135, 501–

524. (doi:10.1016/S0022-5193(88)80273-X)
55 Sporns, O. & Edelman, G. M. 1993 Solving Bernstein’s

problem: a proposal for the development of coordinated
movement by selection. Child Dev. 64, 960–981. (doi:10.
2307/1131321)
Phil. Trans. R. Soc. B (2012)
56 Zanone, P. G. & Kelso, J. A. S. 1992 The evolution of
behavioral attractors with learning: nonequilibrium
phase transitions. J. Exp. Psychol. Hum. Percept. Perform.
18, 403–421. (doi:10.1037/0096-1523.18.2.403)

57 Kelso, J. A. S. & Zanone, P. G. 2002 Coordination
dynamics of learning and transfer across different effector
systems. J. Exp. Psychol. Hum. Percept. Perform. 28, 776–
797. (doi:10.1037/0096-1523.28.4.776)

58 Zanone, P. G. & Kelso, J. A. S. 1994 The coordination
dynamics of learning: theoretical structure and exper-
imental agenda. In Interlimb coordination: neural,
dynamical and cognitive constraints (eds S. Swinnen,

H. Heuer, J. Massion & P. Casaer), pp. 461–490. San
Diego, CA: Academic Press.

59 Zanone, P. G. & Kelso, J. A. S. 1997 The coordination
dynamics of learning and transfer: collective and com-
ponent levels. J. Exp. Psychol. Hum Percept. Perform. 23,

1454–1480. (doi:10.1037/0096-1523.23.5.1454)
60 Zanone, P. G., Kostrubiec, V., Albaret, J. M. &

Temprado, J. J. 2010 Covariation of attentional cost
and stability provides further evidence for two routes to
learning new coordination patterns. Acta Psychol. 133,

107–118. (doi:10.1016/j.actpsy.2009.10.006)
61 Zanone, P. G. & Kostrubiec, V. 2004 Searching for

(dynamic) principles of learning. In Coordination
dynamics: issues and trends (eds V. K. Jirsa & J. A. S.
Kelso), pp. 57–89. Berlin, Germany: Springer.

62 Kelso, J. A. S. 2000 Principles of dynamic pattern for-
mation and change for a science of human behavior. In
Developmental science and the holistic approach (eds L. R.
Bergman, R. B. Cairns, L.-G. Nilsson & Nystedt), pp.

63–83. Mahwah, NJ: Erlbaum.
63 Kostrubiec, V., Tallet, J. & Zanone, P. G. 2006 How a

new behavioral pattern is stabilized with learning deter-
mines its persistence and flexibility in memory. Exp.
Brain Res. 170, 238–244. (doi:10.1007/s00221-005-

0208-6)
64 Kelso, J. A. S., DelColle, J. & Schöner, G. 1990
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