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Triple-negative breast cancer (TNBC) is typically aggressive,
difficult to treat, and commonly metastasizes to the visceral
organs and soft tissues, including the lungs and the brain.
Taxanes represent the most effective and widely used
therapeutic class in metastatic TNBC but possess limiting
adverse effects that often result in a delay, reduction, or
cessation of their use. DZ-2384 is a candidate microtubule-
targeting agent with a distinct mechanism of action and
strong activity in several preclinical cancer models, with
reduced toxicities. DZ-2384 is highly effective in patient-
derived taxane-sensitive and taxane-resistant xenograft
models of TNBC at lower doses and over a wider range
relative to paclitaxel. When comparing compound exposure
at minimum effective doses relative to safe exposure levels,
the therapeutic window for DZ-2384 is 14–32 compared
with 2.0 and less than 2.8 for paclitaxel and docetaxel,
respectively. DZ-2384 is effective at reducing brain
metastatic lesions when used at maximum tolerated doses
and is equivalent to paclitaxel. Drug distribution
experiments indicate that DZ-2384 is taken up more
efficiently by tumor tissue but at equivalent levels in the
brain compared with paclitaxel. Selective DZ-2384 uptake
by tumor tissue may in part account for its wider therapeutic

window compared with taxanes. In view of the current
clinical efforts to combine chemotherapy with immune
checkpoint inhibitors, we demonstrate that DZ-2384 acts
synergistically with anti-CTLA-4 immunotherapy in a
syngeneic murine model. These results demonstrate that
DZ-2384 has a superior pharmacologic profile over currently
used taxanes and is a promising therapeutic agent for the
treatment of metastatic TNBC. Anti-Cancer Drugs
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Introduction
Triple-negative breast cancer (TNBC) is characterized

by the absence of estrogen, progesterone, and HER2

receptors and represents 10–14% of breast cancers [1].

TNBCs lack effective targeted therapies and are gen-

erally more aggressive than non-TNBC breast tumors,

with higher rates of distant recurrence and decreased

overall survival [2]. Owing to the lack of targeted ther-

apeutics for TNBC, the neoadjuvant standard of care

includes anthracyclines, cyclophosphamide, and taxanes,

and although patients initially respond well to these

treatments [3], metastatic relapse occurs typically within

the first 3–5 years after diagnosis [4]. Common sites of

metastases for TNBC are the lung and the brain [5].

Treatments for metastatic disease include additional

chemotherapies such as antimetabolites, DNA damaging

agents, and additional microtubule-targeting agents (e.g.

vinorelbine, eribulin, or ixabepilone) [3]. Neurological and

hematological toxicities are the principal and dose-limiting

adverse effects encountered with microtubule-targeting

agents. Peripheral neuropathy is the most frequently

experienced adverse neurological effect followed by

cranial neuropathy and other neuropathies that can affect

the digestive system and lead to cognitive issues and

depression [6]. Thus, there is a need for improved che-

motherapies, including microtubule-targeting agents with

lower toxicity profiles and improved efficacy.

There is a promising opportunity for microtubule-

targeting agents in combination with checkpoint
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inhibitor immunotherapies for multiple cancer indica-

tions. Accumulating evidence now suggests that che-

motherapeutics such as paclitaxel and vinblastine can, in

part, mediate anticancer activity through either direct or

indirect activation of cytotoxic immune responses [7].

There is a clear correlation in TNBC between intratu-

moral immune responses and prognosis [8,9]. Recent

phase I clinical trials in heavily pretreated patients with

TNBC have shown encouraging results with anti-PD-1

[10] and anti-PD-L1 antibodies [11], the latter showing a

positive correlation with CTLA-4 and T-helper type 1

gene expression [12]. Data from a recent phase II trial in

patients with TNBC have demonstrated that adding

pembrolizumab (anti-PD-1) to standard neoadjuvant

therapy (paclitaxel followed by doxorubicin and cyclo-

phosphamide) boosts the estimated pathological com-

plete response rate from 20 to 60% [13], illustrating the

potential of combining microtubule-targeting agents with

immune checkpoint therapies.

DZ-2384 is a novel synthetic derivative of diazonamide A, a

compound isolated from the marine organism Diazona
angulata [14,15]. Early synthetic analogs of diazonamide A

such as AB-5 had highly potent antitumor activity with

minimal toxicity [16]. DZ-2384 is a refined and more potent

preclinical candidate that has shown efficacy in models of

colon, breast, and pancreatic cancers as well as in models of

aggressive acute lymphocytic leukemia [17]. DZ-2384

functions by binding directly to tubulin dimers near the

vinca alkaloid-binding site of tubulin. It has a distinct

mechanism of action from other vinca-binding compounds

in that it straightens the curvature of polymerizing

microtubules and increases the frequency of microtubule

rescue [17]. The result is strong inhibition of mitotic spindle

formation but a less destabilizing effect on microtubules in

nondividing cells including neurons, which may account in

part for its enhanced safety margin. Retention of the

microtubule network in cortical neurons at therapeutic

doses of DZ-2384 may explain the lack of peripheral neu-

ropathy at effective doses in preclinical models [17].

Here, we demonstrate the superior activity and ther-

apeutic window of DZ-2384 compared with paclitaxel

and docetaxel in several orthotopic patient-derived

xenograft (PDX) and metastatic models of TNBC. DZ-

2384 has superior activity over a wider dose range com-

pared with paclitaxel in two PDX models from heavily

pretreated patients with TNBC. To gauge DZ-2384

efficacy relative to toxicity, we measured compound

exposure (area under the concentration time curve, AUC)

at minimum effective doses to obtain a therapeutic

window. The therapeutic window of DZ-2384 in the

orthotopic PDX model and lung metastases model is 14

and 18.6, respectively. This compares favorably to the

therapeutic windows of approximately two-fold for the

taxanes paclitaxel and docetaxel. As promising results are

emerging from clinical trials combining microtubule-

targeting agents with immune checkpoint therapies, we

demonstrate here that DZ-2384 synergizes with an anti-

CTLA-4 therapy in a syngeneic model. The models

selected in this study reflect the most robust and repro-

ducible models in which to test the activity of DZ-2384

and do not necessarily reflect the eventual clinical path

for the compound in humans. These results highlight the

preclinical activity and safety margin of DZ-2384 in

multiple TNBC models and indicate its potential use as a

more efficacious and less toxic alternative to taxanes for

metastatic TNBC.

Materials and methods
Compounds and formulations

DZ-2384 (synthesized as described in Ding et al. [18] by
Paraza Pharma, Montreal, Quebec, Canada), docetaxel,

and paclitaxel (LC Laboratories; Woburn, Massachusetts,

USA) were prepared in DMSO and then diluted in cell

culture media (DMSO 0.2% final) for evaluation in vitro.
All three compounds were formulated in cremophor

EL : ethanol : saline (5 : 5 : 90) (vehicle) for intravenous

administration into animals.

Cell lines and viability

MDA-MB-231, BT-549, MDA-MB-436, HCC1937, and

RenCa cells are from ATCC (Manassas, Virginia, USA) and

cultured according to the supplier’s instructions. MDA-MB-

231-LM2 [19] and MDA-MB-231-BrM2 [20] cells, selected

for their ability to form lung and brain metastases,

respectively, were obtained from Dr. Joan Massagué and

cultured in Roswell Park Memorial Institute 1640 media

supplemented with 10% fetal bovine serum, 2-mmol/l

L-glutamine, 100 μg/ml streptomycin, and 10U/ml peni-

cillin. Cell lines were used within 10–15 passages of the vial

of origin but were not further authenticated. Primary

TNBC cells GCRC-1915 and GCRC-1735 were generated

from dissociated patient-derived xenografts and were grown

in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum, 2-mmol/l

L-glutamine, 100 μg/ml streptomycin, and 10U/ml peni-

cillin. All cell lines were grown at 37°C in a humidified

environment with 5% CO2, with the exception of MDA-

MB-436, which was grown without CO2. Cell viability was

determined in multiwell assay plates after 72 h of drug

treatment using the CellTiter-Glo Luminescent Cell

Viability Assay (Promega; Fitchburg, Wisconsin, USA)

according to manufacturer’s instructions. Sigmoidal dose–

response curves were generated to calculate the con-

centration of drug resulting in 50% (IC50) growth inhibition

(Prism v6; GraphPad, La Jolla, California, USA). A cell

line expressing Zs-Green-luciferase was derived from the

GCRC-1945 PDX by infecting short-term (<48 h) mam-

mosphere cultures (DMEM/F12, 1× B27, 20 ng/ml human

epidermal growth factor, 10 μg/ml insulin, 0.5mg/ml

hydrocortisone, 20 ng/ml basic fibroblast growth factor,

10 μg/ml heparin, 50 μg/ml gentamicin on ultra-low attach-

ment plates) with pHIV-Luc-ZsGreen (Addgene; Cambridge,

Massachusetts, USA) lentiviral particles.
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Animal studies

All animal experiments were performed in strict accor-

dance with the Canadian Council on Animal Care and

McGill University Animal Care committee guidelines. The

maximum tolerated doses of DZ-2384, paclitaxel, and

docetaxel were determined in four mice of the appropriate

strain, which were administered compounds in four

biweekly intravenous injections. For all experiments,

monitoring of animal general condition was performed at

least three times a week. Experimental end points were

determined to be body weight lost higher than 20% for

more than three consecutive days, mouse survival, or

severe signs of distress. Animal weights, clinical signs, and

survival were recorded until 1 week after the last dose of

compound. Primary PDXs were established from primary

tumor tissue obtained at the time of surgery from patients

as part of the McGill University Hospital Centre Breast

Cancer Functional Genomics Initiative. Tumor fragments

(1–1.5mm3 cubes) from GCRC-1945 and GCRC-2076

were implanted and expanded into the left fat pad of

female NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice (6–8

weeks old; Jackson Laboratories) and were propagated for

not more than eight passages. Tumor diameters were

measured with digital calipers, and the tumor volume was

estimated using the following: volume (mm3)= 4/3π
[(a/2)× (b/2)2], where ‘a’ and ‘b’ are the largest and smallest

diameters, respectively, of the tumor. Animals were ran-

domized when tumors reached 100–250mm3. PDX mod-

els were treated with vehicle, DZ-2384, or paclitaxel

intravenously once weekly for 4 weeks. In the lung

metastases model, female CB17.Cg-PrkdcscidLystbg-J/Crl

(SCID-beige) (6–8 weeks old; Charles River, Wilmington,

Massachusetts, USA) mice were injected with 2.5× 105

MDA-MB-231-LM2 cells into the lateral tail vein. Lung

metastases were monitored by bioluminescent imaging,

and mice were randomized into treatment groups accord-

ing to tumor burden before receiving four biweekly intra-

venous injections of vehicle, DZ-2384, or docetaxel. In the

brain metastatic tumor model, either MDA-MB-231-BrM2

(7.5× 104 cells) or GCRC-1945 expressing luciferase

pHIV-Zs-Green-Luciferase (1× 105 cells) was implanted

intracranially into the right frontal lobe of NSG mice

(female, 6–8 weeks, NSG; Jackson Laboratories, Bra

Harbor, Maine, USA) under sterile surgical conditions as

described in the study by Donoghue et al. [21]. Mice were

randomized according to tumor burden derived from bio-

luminescent imaging values and then treated with vehicle,

DZ-2384, or paclitaxel (intravenously; biweekly for

2 weeks). The efficacy of the DZ-2384 and CTLA-4

combination was evaluated in the RenCa mouse renal

carcinoma model by injecting cells (2.5× 105) into the left

lower flank of Balb/c mice (6–8 weeks; Charles River).

Mice were randomized into groups when the average

tumor size reached 100–150mm3. Animals received a sin-

gle intravenous injection of vehicle or DZ-2384 (14mg/kg)

on day 1 and were subsequently treated with four biweekly

intraperitoneal injections of CTLA-4 antibody (Clone:

9H10; Bio X Cell Inc., Lebanon, New Hampshire, USA) or

Rat IgG2a isotype control (Clone: 2A3; Bio X Cell Inc.). In

all efficacy experiments, body weight and tumor sizes were

measured two-three times a week, whereas tumor imaging

was performed once weekly.

In-vivo bioluminescent imaging and analysis

Bioluminescence imaging was carried out using the IVIS

animal imaging system (Caliper Life Biosciences,

Hopkinton, Massachusetts, USA) and analyzed using

Living Image software. Ten minutes before imaging,

mice were injected intraperitoneally with XenoLight

D-Luciferin-K+ Salt Substrate (Perkin Elmer; Waltham,

Massachusetts, USA) at 150 mg/kg. Mice were then

anesthetized and imaged over a 1-min interval for

7–8 min. Using the Living Image software (Perkin

Elmer), signal intensity was quantified within a defined

region of the mouse and then the flux of photon counts

quantified.

Pharmacokinetics

To measure compound exposure levels to DZ-2384 and

docetaxel in female SCID-beige mice (AUC0–∞), com-

pounds were administered intravenously as a single dose

(n= 4) at the minimum effective doses of 0.5 and 4mg/kg,

respectively. Blood samples were microsampled at 0, 0.08,

0.25, 0.5, 1, 2, 4, 8, and 24 h for each mouse, and then the

plasma was isolated and snap frozen on dry ice before

quantification by liquid chromatography–mass spectro-

metry (LC–MS/MS) (see below). To measure the tissue

distribution of DZ-2384 and paclitaxel at the maximum

tolerated dose in plasma, brain, heart, lung, and tumor

tissue in female NSGmice (AUC0–∞), DZ-2384 (10mg/kg)

and paclitaxel (40mg/kg) were administered intravenously

as a single dose (n= 4) per time point, and plasma was

collected at 0, 0.5, 1, 2, 4, 8, and 24 h. At the indicated time

points, the animals were rapidly perfused with a 20-ml

injection of saline into the left cardiac ventricle before

tissue harvest to remove blood from the tissue. To measure

compound exposure levels to DZ-2384 and paclitaxel in

female NSG mice (AUC0–∞), compounds were adminis-

tered intravenously as a single dose (n= 4) at the minimum

effective doses of 1.25 and 10mg/kg, respectively. Blood

samples were microsampled at 0, 0.08, 0.25, 0.5, 1, 2, 4, 8,

and 24 h for each mouse and plasma isolated. All plasma

and tissue samples were snap frozen on dry ice before

quantification by LC–MS/MS. PK parameters were

calculated using Kinetica Software (ThermoFisher

Scientific; Waltham, Massachusetts, USA) for pharmaco-

kinetic/pharmacodynamic data analysis. Results represent

the mean values for four mice per dose group.

Compound extraction and quantification by LC–MS/MS

DZ-2384 and paclitaxel were extracted from plasma with

2.5 volumes of acetonitrile : methanol (80 : 20) containing

the internal standard DZ-2362. To extract drugs from

tissues, a volume of 25% acetonitrile in water equal to
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five times the weight of each tissue was added before

homogenization in two volumes of acetonitrile : methanol

(80 : 20). After vortexing, and centrifugation for 15 min at

3500 rpm, 4°C, supernatant from both plasma and tissue

extracts were transferred into an HPLC plate, and two

volumes of water+ 0.1% formic acid were added. DZ-

2384-containing samples were analyzed in MRM mode

by LC–MS/MS (AB/SCIEX 4000 QTRAP, Agilent

1100 series high-performance liquid chromatography

system, Santa Clara, California, USA) using a Luna

C8(2), 30×2mm, 5 μmol/l column, and a flow rate of

0.70ml/min. Mobile phase was A: H2O+0.1% formic acid

and B: 20/80 isopropanol/acetonitrile+0.1% formic acid,

with a gradient of 10–98% B in 1.5min, plateau at 98%

B for 1.9min; docetaxel-containing and paclitaxel-containing

samples were analyzed in the same way but with mobile

phase A: H2O+0.1% formic acid and 5mmol/l NH4 for-

mate, pH 4.5, and B: 95/5 methanol /H2O+5mmol/l NH4

formate+0.5mmol/l Na formate with a gradient of 20–100%

B in 1.5min, plateau at 100% B for 1.4min; paclitaxel was

quantified relative to standard curves.

Results
TNBC cell line sensitivity to DZ-2384

To investigate the potential activity of DZ-2384 in the

TNBC setting, we initially evaluated the potency of the

compound in a panel of TNBC cell lines including two

recently derived from primary TNBC tumor explants.

DZ-2384 was as potent as paclitaxel and docetaxel (IC50s

at low nmol/l levels) in all cell lines tested with the

exception of HCC1937, which was cross-resistant to DZ-

2384, paclitaxel, and docetaxel (Table 1). Given that

HCC1937 overexpresses the ABCG2 multidrug resistant

pump [22] and is also resistant to doxorubicin [23] and

olaparib [24], it is possible that DZ-2384 is also suscep-

tible to multidrug resistant mechanisms. These data

demonstrate that DZ-2384 is highly potent across a range

of TNBC cell lines with varied genetic aberrations and

molecular classifications.

Efficacy of DZ-2384 in PDX and metastatic models of

TNBC

PDX models more closely recapitulate human tumor

characteristics than cell line-derived models with respect

to tissue histology, tumor heterogeneity, mRNA or

protein expression profiles, and metastatic behavior [25].

To investigate the efficacy of DZ-2384 in vivo, we

selected two PDX models: GCRC-1945 and GCRC-

2076. The tumor tissue from both PDXs was derived

from metastases of patients previously treated with dox-

orubicin, cyclophosphamide, carboplatin, and paclitaxel.

In addition, patient GCRC-1945 received capecitabine

and is taxane sensitive as a PDX model, whereas patient

GCRC-2076 received methotrexate and 5-fluorouracil

and is more taxane resistant. To equilibrate the experi-

mental doses relative to toxicity, DZ-2384 and paclitaxel

dose levels were selected as a function of their respective

maximum tolerated doses (MTD) in nontumor bearing

NSG mice (10 and 40 mg/kg, respectively). The MTD

was defined as the maximum dose (administered

biweekly for 2 weeks) that does not cause any lethality,

leads to less than 20% body weight loss, and causes no

unacceptable clinical effects (Supplementary Fig. 1,

Supplemental digital content 1, http://links.lww.com/ACD/
A262). The PDX tumor tissue was implanted into the

mammary fat pad of NSG mice and antitumor activity

monitored by measuring tumor volume and survival

(Fig. 1). The results demonstrate that at 0.125× and

0.25× MTD, DZ-2384 is more effective than paclitaxel

in the GCRC-1945 model resulting in tumor regression

and increased median survival. However, at 0.5× MTD,

DZ-2384 and paclitaxel were equally effective (Fig. 1a

and b). We define the minimum effective dose (MED) as

the minimum dose required to cause a statistically sig-

nificant tumor regression. In the GCRC-1945 model, the

MED for DZ-2384 was 1.25 mg/kg (0.125× MTD) and

increased median survival from 36 to 71 days, whereas

the MED for paclitaxel was 10 mg/kg (0.25× MTD) and

increased median survival up to 53 days. In the GCRC-

2076 paclitaxel-resistant model, the DZ-2384 was more

effective than paclitaxel at 0.25× and 0.5× MTD,

and paclitaxel was not effective at 0.25× MTD (Fig. 1c

and d). In this model at 0.5× MTD doses for DZ-2384

and paclitaxel, the median survival was increased from

30 days to 88 and 69 days, respectively. These data

suggest that at lower doses, DZ-2384 has superior effi-

cacy than paclitaxel and is effective over a wider dose

range. Treatment with DZ-2384 could therefore be

highly effective in paclitaxel-resistant tumors.

Table 1 The in-vitro sensitivity of triple-negative breast cancer cell lines to DZ-2384, paclitaxel, and docetaxel

IC50 (nmol)

Cell lines Pathology Molecular classification Genetic aberrations DZ-2384 Paclitaxel Docetaxel

MDA-MB-231 AC Basal B P53 (mt), KRas (mt) 7.7 6.0 2.2
MDA-MB-436 IDC Basal B P53 (mt), BRCA1 (homo mt) 2.8 9.9 3.7
BT-549 IDC Basal B P53 (mt), PTEN homo deletion 0.66 3.1 1.0
HCC1937 IDC Basal A P53 (mt), BRCA1 (homo mt), PTEN homo deletion >2500 >2500 >2500
GCRC-1915 IDC Basal unknown 17 5.0 3.7
GCRC-1735 IDC Basal BRCA1 (mt) P53 (mt) 7.0 1.9 3.7

AC, adenocarcinoma; IDC, invasive ductal carcinoma.
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The major sites of metastases for TNBC are the lung/

pleura followed by bone, liver, and brain [26–28]. As a

representative model of visceral metastases, we selected

the MDA-MB-231-LM2 lung metastatic model. This

TNBC xenograft model selectively develops lung

metastases and stably expresses luciferase such that

tumor growth can be monitored by bioluminescent ima-

ging [19]. In this model, the efficacy of DZ-2384 was

compared with docetaxel, a newer taxane used com-

monly in (first, second, and third lines) the treatment

of metastatic TNBC. MDA-MB-231-LM2 cells were

injected by tail vein into SCID-beige mice, and

~ 2 weeks later, animals with confirmed lung metastases

were randomized into treatment groups. DZ-2384 treat-

ment resulted in a profound antitumor effect at all doses

tested, and at 4.5 mg/kg, the median survival increased

from 37 to more than 150 days (Fig. 2a and b), and at

5 months after treatment initiation, four of nine mice

were tumor free (determined by bioimaging). Docetaxel

was effective at only the 4 mg/kg dose and did not result

in the survival of any mice beyond 3 months following

treatment initiation (Fig. 2c and d). The MED for DZ-

2384, as demonstrated by a reduction in tumor volume

and by increased survival, was 0.5 mg/kg, whereas the

MED for docetaxel was 4 mg/kg. At these doses, more

than 10% weight loss is observed only for 4 mg/kg doc-

etaxel (Supplementary Fig. 2, Supplemental digital

content 1, http://links.lww.com/ACD/A262). The MTDs of

DZ-2384 and docetaxel are 12 and 4mg/kg, respectively.

This, in contrast to docetaxel, highlights the efficacy of

DZ-2384 at doses well below the MTD. These results for

DZ-2384, in a difficult-to-treat lung metastatic model, are

consistent with its improved efficacy in PDX models,

demonstrating that it is effective over a wider dose range

compared with docetaxel.

Metastases to the brain occur more frequently in TNBC

than in luminal-type breast cancers [26] and are difficult to

treat, as many chemotherapeutics do not cross the

blood–brain barrier [29]. To compare the efficacy of

DZ-2384 with taxanes in a brain metastastic model, brain

tropic TNBC MDA-MB-231-BrM2 [20] and PDX GCRC-

1945 cells were engineered to stably express luciferase

Fig. 1
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such that the tumor burden could be monitored by lumi-

nescence bioimaging. To simulate brain metastases, while

minimizing disruption to the blood–brain barrier, tumor

cells were injected intracranially in the right frontal lobe

and allowed to grow until a sufficient brain tumor signal

was detected. Animals randomized according to tumor

burden were then treated at doses representing the MTD

of DZ-2384 or paclitaxel. The results demonstrate that

DZ-2384 is efficacious in both MDA-MB-231-BrM2

(Fig. 2e and f) and GCRC-1945 models (Supplementary

Fig. 3A and B, Supplemental digital content 1, http://links.
lww.com/ACD/A262), decreasing tumor burden and

increasing the median survival relative to vehicle control-

treated animals. In comparison with paclitaxel in both

models, there is significant improved efficacy with DZ-

2384 in tumor burden but not survival. The body weight
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Antitumor activity of DZ-2384, docetaxel, and paclitaxel in metastatic lung and brain triple-negative breast cancer (TNBC) models. (a–d) Mice bearing
MDA-MB-231-LM2 lung metastases were treated biweekly for 2 weeks with DZ-2384 (a, b) or docetaxel (c, d) biweekly for 2 weeks (treatment days
indicated by arrows). (e, f) Mice bearing intracranially transplanted MDA-MB-231-BrM2 cells were treated biweekly for 2 weeks with DZ-2384 or
paclitaxel (treatment days indicated by arrows). (a, c, e) Mean bioluminescence signal ±SEM measured weekly. A tumor-free animal was imaged to
represent the background signal. (b, d, f) are Kaplan–Meier curves depicting survival. Statistical differences with vehicle control are indicated to the
left of the legend and were determined by Student’s t-test for bioluminescence and log-rank (Mantel–Cox) test for survival curves. Asterisks on the left
of the legend represent differences with vehicle control, on the right differences between groups. *P<0.05, **P<0.005, ***P<0.0001.
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loss experienced by mice treated with either agent was less

than 10% (Supplementary Fig. 3C and D, Supplemental

digital content 1, http://links.lww.com/ACD/A262).

The therapeutic window of DZ-2384 compared with

taxanes

DZ-2384 is more effective at lower doses in xenograft

models compared with paclitaxel and docetaxel; how-

ever, the true therapeutic window relates compound

exposure at effective levels (the MED) to exposure at

safe and tolerated levels. The exposure levels of com-

pound at minimum effective levels were compared with

those in patients receiving paclitaxel and docetaxel at

clinical doses for TNBC (Table 2). Typically, the dose

established in clinical trials represents the maximum

tolerated dose in humans. Paclitaxel exposure at the

MED in the GCRC-1945 PDX model is only two-fold

lower than exposure in patients (15 797 ng h/ml) at

clinically approved doses (175 mg/m2) for TNBC [30].

Similarly, docetaxel exposure at MED in the MDA-MB-

231-LM2 model is 1.7-fold lower than exposure

(4810–5200 ng h/ml) in patients receiving a 100 mg/m2

dose for TNBC [31,32].

The most significant dose-limiting toxicities of the tax-

anes are neutropenia and peripheral neuropathy, which

often leads to treatment discontinuation or dose reduc-

tion, resulting in a less effective treatment course for

patients. Previously, the effects of DZ-2384 and doc-

etaxel were evaluated in a rat model of peripheral neu-

ropathy [17]. DZ-2384 had no detrimental effects on

peripheral nerves at effective levels. To determine the

therapeutic window relative to peripheral neuropathy,

DZ-2384 and docetaxel exposures at the MED in the

MDA-MB-231-LM2 lung metastases model were related

to the exposure at the maximum non-neurotoxic dose in

the rat neuropathy study (Table 2). The lowest dose of

docetaxel tested (10 mg/kg) in the rat peripheral neuro-

pathy study resulted in mild neuropathy characterized by

a 12–23% loss in digital and caudal nerve conduction

velocity [17]. We therefore assume that this value is

above the maximum non-neurotoxic dose and leads to an

overestimation of therapeutic window for docetaxel. The

therapeutic window of DZ-2384 relative to neurotoxicity

is 18.6 compared with less than 2.8 for docetaxel in the

MDA-MB-231-LM2 model. Importantly, a DZ-2384

plasma exposure of 8398 ng h/ml in mice represents a

level at which no adverse effects on blood cell counts,

biochemistry, and bone marrow occurred [17]. Relating

this level to effective levels for DZ-2384 in the GCRC-

1945 and MDA-MB-231-LM2 models represents a ther-

apeutic window of 26.9- and 32.3-fold, respectively.

These results illustrate that DZ-2384 has substantially

wider safety margin than both paclitaxel and docetaxel.

DZ-2384 distribution to brain and tumor tissue

The mechanistic principle behind the high therapeutic

window of DZ-2384 is its distinct effect on microtubule

dynamics and its unique ability to preserve the micro-

tubule infrastructure in nondividing cells including

neurons [17]. To further understand the distribution of

DZ-2384 and its concentration within tissues at its site

of action, we explored the tumor, brain, and tissue dis-

tribution in comparison with paclitaxel. Animals bearing

MDA-MB-231-BrM2 tumors implanted into the mam-

mary fat pad were used for these experiments. The ani-

mals did not have any brain metastases at the time of the

experiment, as verified by bioluminescent imaging,

indicating that the blood–brain barrier was likely not

compromised. DZ-2384 and paclitaxel were administered

to animals, and then plasma and tumor, lung, brain and

heart tissues were sampled over time up to 24 h. The

proportions of DZ-2384 and paclitaxel that accumulate in

the brain relative to plasma exposure are 15 and 12%,

respectively (Fig. 3a and b). These results are consistent

with previously published brain/plasma paclitaxel pro-

portions [33,34]. The DZ-2384 and paclitaxel distribu-

tions in the lung and heart are very close to levels in the

plasma; furthermore, the distribution in these tissues is

also equivalent between DZ-2384 and paclitaxel.

Interestingly, DZ-2384 has an 18-fold accumulation in

tumor tissue relative to plasma, a level that is six times

Table 2 The therapeutic window of DZ-2384 relative to paclitaxel and docetaxel

Compounds
MED in PDX GCRC-

1945 (mg/kg)
MED in MDA-MB-
231-LM2 (mg/kg)

Minimum effective exposure
level AUC0–∞ (ng h/ml)

Safe exposure level
AUC (ng h/ml)

Therapeutic window (minimum
effective vs. safe exposure levels)

Paclitaxel 10 – 7830 15 797a 2.0
Docetaxel – 4 2896 5005b 1.7

8113c <2.8
DZ-2384 1.25 – 312 4371d 14.0

– 0.5 235 18.6
1.25 – 312 8398e 26.9
– 0.5 235 32.3

AUC, area under the curve; MED, minimum effective dose.
aHuman exposure: paclitaxel AUC at clinical dose of 175 mg/m2 [26].
bHuman exposure: mean docetaxel AUC at clinical dose of 100 mg/m2 [27,28].
cLowest dose tested in rat neurotoxicology study. Dose at which there is ~20% body weight loss, 12–23% loss in digital and caudal nerve conduction velocity suggesting

some peripheral neuropathy [17].
dMaximum non-neurotoxic dose determined in a rat neurotoxicology study [17].
eNo observable adverse effect level. Dose at which no clinical signs or adverse effects on blood biochemistry, hematology, and bone marrow were observed [17].
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higher than for paclitaxel (Fig. 3c). The pharmacokinetic

profile of DZ-2384 in the tumor compared with plasma

suggests that there is both increased uptake and reten-

tion of drug in the tumor tissue (Supplementary Table 1,

Supplemental digital content 1, http://links.lww.com/ACD/
A262). The uptake is represented by a maximum con-

centration (Cmax) ratio in tumor relative to plasma of 1.3

for DZ-2384 compared with 0.47 for paclitaxel. Retention

is represented by the t1/2 and is 29.3 h for DZ-2384

compared with 19.1 h for paclitaxel. These results

demonstrate the selective accumulation of DZ-2384 in

tumor tissue and provide an additional pharmacokinetic

explanation for the higher therapeutic window of DZ-

2384 relative to paclitaxel.

The efficacy of DZ-2384 in combination with immune

checkpoint inhibitors

Accumulating evidence now suggests that chemother-

apeutics such as paclitaxel and vinblastine can in part

mediate anticancer activity through either direct or

indirect modulation of cytotoxic immune responses [7]

and a clear correlation exists in TNBC and in other tumor

types between intratumoral immune responses and

prognosis [8,9]. In this context, we sought to evaluate the

possibility that DZ-2384 would enhance the activity of

immune checkpoint inhibitor therapy. We selected the

RenCa renal syngeneic model in which to test this

hypothesis, as it is a reliable and sensitive model in which

to test murine surrogate anti-CTLA-4 antibody therapy

[35]. Previous experimental results obtained in animal

models and humans suggest that optimum synergy

between two treatments is obtained when the immu-

notherapy is administered shortly after chemotherapy

[36]. Animals bearing RenCa tumors were treated with a

single dose of DZ-2384 followed 4 days later by biweekly

treatments with anti-murine CTLA-4 antibody for

2 weeks (Fig. 4). Although DZ-2384 (single dose) and

anti-CTLA-4 treatments alone had modest effects on

tumor volume relative to vehicle control within the first

18 days of treatment, the combination of DZ-2384 and

anti-CTLA-4 synergistically enhanced the antitumor

effect and resulted in complete tumor regression in six of

seven mice (Fig. 4a–d). Anti-CTLA-4 as a single agent

enhanced the median survival of treated animals from 21

to 43 days, and the combination of DZ-2384 before anti-

CTLA-4 resulted in the long-term survival of six of seven
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animals (82 days after treatment completion) (Fig. 4e).

This demonstrates that DZ-2384 has the potential to

significantly boost immune checkpoint inhibitor thera-

pies, a strategy that could be widely applicable to many

tumor types where immunotherapies are used. Together,

these results support further development of DZ-2384

for the treatment of metastatic TNBC as a single agent or

in addition to immune checkpoint inhibitors.

Discussion
Despite the clinical success of microtubule-targeting

agents such as taxanes in metastatic TNBC, a substantial

proportion of patients experience unacceptable toxicities

without the benefit of long-term survival. Here, we high-

light the superior therapeutic window of DZ-2384 relative

to two taxanes by establishing the minimum effective

exposure level in TNBC PDX and lung metastases

Fig. 4
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models. Taxane exposure at minimum effective doses

compared with exposure at a safely established clinical

dose represents an approximate two-fold therapeutic win-

dow for paclitaxel and docetaxel. This is similar to the

therapeutic window estimated for docetaxel (< 2.8) based

on MDA-MB-231-LM2 model efficacy compared with

peripheral neuropathy in the rat model. However, using

the same comparison, we find that DZ-2384 is effective at

exposure levels of 14.0- and 18.6-fold below the maximum

non-neurotoxic level. Similarly, the DZ-2384 minimum

effective levels are 26.9- and 32.3-fold below levels that

show no adverse effects on blood biochemistry, hematol-

ogy, and bone marrow toxicity. This indicates a substantial

therapeutic window for DZ-2384 in contrast to the taxanes,

with the potential to support dose reductions from MTD

while retaining therapeutic activity. This important char-

acteristic may prove particularly relevant to combinations of

the agent with a variety of therapeutics, including immune-

mediated therapies.

The inefficient brain uptake of the taxanes and the vinca

alkaloids has been a limiting factor in the treatment of

brain metastases from patients with metastatic TNBC

[37]. Here, we find that DZ-2384 has a clear antitumor

effect and increased survival compared with vehicle

control in two different brain metastatic models.

Compared with paclitaxel, there is an enhanced

improvement in tumor burden but not in animal survival.

The uptake of the two compounds is equivalent in ani-

mals without compromise to the blood–brain barrier.

This suggests that the increase in activity for DZ-2384

relative to paclitaxel may result from its preferential

cancer cell uptake. As brain metastases are known to

enhance permeability of the blood–brain barrier [38], the

15% DZ-2384 brain uptake measured here would

represent a minimum level of drug exposure to brain

tumor tissue. DZ-2384 levels in the brain could poten-

tially be enhanced by increased brain permeability in

patients and by selective tumor uptake and therefore

could affect brain metastases.

Tumor distribution experiments show that both pacli-

taxel and in particular DZ-2384 are preferentially taken

up and retained in the tumor tissue. DZ-2384 has prop-

erties that allow for a tumor accumulation six times

greater than for paclitaxel. The reason for the tumor

accumulation of DZ-2384 compared with paclitaxel has

not been investigated. However, the phenomenon of

increased drug uptake and retention in solid tumor tissue

has been attributed to various physical, chemical and

pharmacokinetic properties of anticancer compounds and

of the tumor microenvironment. Because of the

enhanced metabolic activity and glycolysis in the actively

dividing tumor, increased lactic acid is produced and

accumulates in the extracellular matrix. These effects

lead to pH differentials between tumor (including breast

cancer) and normal tissue [39]. Extracellular pH can

influence the cellular uptake and activity of various

chemotherapeutics including anthracyclines, methotrex-

ate, and chlorambucil [40]. Expression of the multidrug

resistant pump, MDR1, can either positively or nega-

tively influence drug uptake into tissue [41] by influen-

cing drug penetration through multiple cellular layers.

Some drugs such as the DNA intercalating anthracyclines

accumulate in tumor tissue by binding to their target [42].

Likewise, DZ-2384 may be more readily bound to

tubulin that is rapidly polymerizing and depolymerizing

in dividing cells or DZ-2384 may have a higher affinity

for human tubulin than for mouse tubulin, which could

account for increased tumor uptake and retention in the

xenograft tumor model.

Although TNBC is not considered a highly immunogenic

tumor type, a clear correlation exists between intratu-

moral immune responses and overall prognosis [8,9,43].

There is evidence that immune evasion plays a role in

TNBC tumor development and growth. TNBC has higher

levels of immune checkpoint ligand and receptor expres-

sion relative to other breast cancer subtypes [44,45];

however, intervention with immune response checkpoints

does not cause complete tumor responses in all patients.

Early clinical trials with single agent immune checkpoint

inhibitors targeting PD-1 and PD-L1 have indicated

overall response rates of up to 19% in metastatic breast

cancer despite the selection of patients whose tumors were

PD-L1 positive [10,46].

Accumulating evidence indicates that many chemotherapies

including microtubule-targeting agents have immune mod-

ulatory as well as direct cytotoxic effects on tumors [43,47].

One study in tumors from patients with TNBC showed that

previous taxane therapy correlated with high mRNA

expression of immune checkpoint genes including PD-1,
PD-L1, and CTLA-4 [48], providing a clear rationale for

combining microtubule-targeting agents and immune

checkpoint inhibitor therapies. Our results demonstrate a

clear synergy between DZ-2384 and a murine anti-CTLA-4

checkpoint inhibitor that results in tumor size reduction and

increased survival over administration of each alone. This

occurs with a treatment schedule that includes an initial dose

of DZ-2384 followed 4 days by biweekly doses of an anti-

CTLA-4 checkpoint inhibitor for 2 weeks. Initial treatment

with chemotherapy could provide a stimulatory effect on the

immune system that boosts tumor antigen presentation and

intratumoral inflammation. For example, paclitaxel causes

macrophages to secrete inflammatory cytokines such as

tumor necrosis factor-α, interleukins, and nitric oxide

synthases in the tumor microenvironment that stimulate

other immune and antigen-presenting cells such dendritic

cells, natural killer cells, and cytotoxic T lymphocytes

(reviewed in [47]). Paclitaxel and vinblastine at low doses

can increase immune priming by stimulating the maturation

and activation of dendritic antigen-presenting cells [49,50].

Microtubule-targeting agents also stimulate the T-cell

response against tumors. For example, docetaxel treatment

increases the Teff/Treg ratio [51] and neoadjuvant paclitaxel
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treatment increases tumor-infiltrating lymphocytes in

patients with breast cancer [52]. Together, this evidence

provides strong support for further development of DZ-2384

for the treatment of metastatic TNBC as a single agent or in

addition to immune checkpoint inhibitors.
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