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Abstract: This study presents a mathematical model of recombinant protein expression, including
its development, selection, and fitting results based on seventy fed-batch cultivation experiments
from two independent biopharmaceutical sites. To resolve the overfitting feature of the Akaike
information criterion, we proposed an entropic extension, which behaves asymptotically like the
classical criteria. Estimation of recombinant protein concentration was performed with pseudo-
global optimization processes while processing offline recombinant protein concentration samples.
We show that functional models including the average age of the cells and the specific growth at
induction or the start of product biosynthesis are the best descriptors for datasets. We also proposed
introducing a tuning coefficient that would force the modified Akaike information criterion to avoid
overfitting when the designer requires fewer model parameters. We expect that a lower number
of coefficients would allow the efficient maximization of target microbial products in the upstream
section of contract development and manufacturing organization services in the future. Experimental
model fitting was accomplished simultaneously for 46 experiments at the first site and 24 fed-batch
experiments at the second site. Both locations contained 196 and 131 protein samples, thus giving a
total of 327 target product concentration samples derived from the bioreactor medium.

Keywords: microbial cultivation; specific growth rate; oxygen uptake rate; functional model; model
selection; recombinant protein concentration; target product

1. Introduction

Controlling and observing industrial biotechnology processes is a challenging task
for bioengineers. The main problems are collecting accurate information regarding the
state of the process and its quality. The industry demands the process be as productive
as possible, which also contributes to the task’s difficulty. Overcoming these challenges
requires high-quality and reliable process data. With concrete and quality data, easier
process controllability and higher result repeatability are attainable. Unfortunately, the
industry still lacks accurate and real-time measurements, especially for the main focus of
almost all industrial cell cultivation processes—synthesized target product concentration.
Sampled, time-delayed measurements with additional instruments and time-consuming
analyses remain the most common way to determine the product concentration throughout
cultivations. In large-scale processes, this problem becomes more acute, with additional
hardware costs and the increased possibility of errors. Therefore, the realization and
implementation of software sensors that can measure and predict indirect quantities using
information collected throughout the process has become more prominent [1–5].

Target product concentration estimation in specific cultivations uses soft sensors that
consist of various mathematical models [6]. These range from traditional mechanistic and
empirical models to hybrid models, which have become increasingly prevalent for solving
the estimation task. The conventional model’s classical shape requires elaboration and
the tuning of its parameters to achieve satisfactory results [7]. Nevertheless, traditional
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mathematical models remain the fundamental basis of the software sensor, and in some
instances, they are the most appropriate way to estimate process variables [8].

The use of traditional models for product estimation is seen in cultivations of
P. chrysogenum for penicillin concentration [9], recombinant E. coli for protein concentra-
tion [10–12], and yeast fermentations for ethanol concentration [13]. Among the mechanistic
unstructured models, the most popular approach is the extended Kalman filter [14,15].
However, the accuracy of the EKF and its results are closely related to the accuracy of the
mathematical model, and may also suffer from convergence problems [16]. Nonetheless,
EKF has considerable robustness to changes of initial process conditions, and has proven
successful when applied in S. cerevisiae cultivations [6,17].

Applying traditional mathematical models to nonlinear and multidimensional sys-
tems may result in numerous errors due to the low flexibility of simple-structure differential
equations. Therefore, researchers frequently choose an empirical model as an alternative
approach that does not require detailed description of the process, but rather quantitative
and qualitative data of the bioprocess. Among these data-driven models, the most success-
ful and commonly applied are ANN (artificial neural networks), PLS (partial least squares),
and PCA (principal component analysis)-based soft sensors. The latter, combined with
spectroscopy, has been proven to provide satisfactory results in product estimation [18,19].
Meanwhile, ANNs have become crucial to hybrid models for product and state estima-
tion [10,20]. The use of ANN is prominent not only as an alternative to describing complex
parts of the processes, but also as a combination with additional off-gas analysis or spec-
troscopy data [21,22]. However, using such supplementary equipment for data gathering
increases the process cost while also requiring added algorithms to compensate for the
possible drifts in the gas sensors or data filtering from spectroscopy. Additionally, the
estimation becomes time-delayed when taking samples periodically. Generally speaking,
ANN-based software sensors, compared with traditional mathematical models, achieve
more satisfactory results and require less development time [10,23].

A quick overview of the different techniques employed for specific product estimation
can be seen in Table 1.

Our study aims to employ and expand the Luedeking–Piret model [25], and present an
extension of the protein product estimation model based on gathered offline data. This pa-
per improves the previous functional model by adding cell age and extensive model fitting
analysis. The purpose of the proposed mathematical model is not to descriptively define
the bioprocess, but instead to identify the correct state variables and their interrelationships
that maximize synthesized product content.

Section 2: Materials and Methods describes the test object, processes, and operating
conditions. Section 3: Proposed Extension of Akaike Information Criterion presents the
modified Akaike criterion for model fitting with the addition of a tuning coefficient. Sec-
tion 4: Combined Model Representing Multiple Hypothesis overviews previous similar
maximal production rate expressions and proposes an improved model for target protein
fitting. Section 5: System Identification and Parameter Estimation presents the model’s pa-
rameter identification methods and the use of cells ages. Section 6: Model Selection Based
on Experimental Model Calibration compares the different models presented. Section 7:
Discussion and Conclusions presents final remarks about the results and model fitting.
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Table 1. Examples of different modeling techniques for product estimation.

Model Type Model Structure Comment
Product

ReferenceSoluble Insoluble

Conventional (based on
balance equations)

Balance of production rate

Assessment of dilution and product
concentration, hard to distinguish

between estimation and
prognostication

Penicillin V - [9]

Balances of specific substrate uptake
and growth rate

A hybrid model provides better
results than a traditional one

Recombinant
protein - [10]

Balances of biomass, specific growth
rate, production rates - - Recombinant

protein [11]

Balance of biomass, specific growth
rate, and protein activity

Optimization for maximal protein
using induction time and feed

profiles

Recombinant
protein [12]

Balance of biomass, pH, added
ammonia - Ethanol - [13]

Spectroscopy data analysis with EKF - Ethanol - [17]

Empirical (data driven)

Spectroscopy data analysis with PLS - Penicillin V [18]

Spectroscopy data analysis with PCA - -
Recombinant

antibodies from
mammalian cells

[19]

Off-gas analysis with ANN
Gas sensors suffer from signal drift

which requires additional
compensation

-

Recombinant
human blood
coagulation
factor VIII

[21]

Hybrid

ANNs for product formation rate and
specific growth rate - Recombinant

protein [10]

ANN for dissolved oxygen
assessment

The assumption is valid only when
the PID parameters for controlling

the DO circuit are unchanged
Penicillin [20]

ANN with inputs of biomass, dilution
rate, etc. - Ethanol [23]

Support vector regression for
observations of oxygen undertake,

carbon production, and base
consumption rates

The presented model is for
prediction, not for pseudo-global

estimation
- Recombinant

protein [24]

2. Materials and Methods
2.1. Cell Strains

The experimental object of this work was recombinant E. coli cells tested at two
independent biopharmaceutical sites. The experimental data originate from cultivations of
two different cell strains. The first cell strain was E. coli (BL21(DE3) pLysS (Site 1), and the
second was E. coli BL21 (DE3) pET21-IFN-alfa-5 (Site 2). The synthesized product appeared
in soluble and insoluble forms at both sites. The E. coli BL21 (DE3) target product was
insoluble protein and inclusion bodies. The product’s expression was dependent on the T7
promoter, with one millimole of isopropyl-D-1-thiogalactopyranoside (IPTG).

2.2. Medium

For Site 1, the cultivation medium throughout the experiments consisted of Na2SO4,
2.0 g/L; (NH4)2SO4, 2.46 g/L; NH4Cl, 0.5 g/L; K2HPO4, 14.6 g/L; NaH2PO4 × H2O,
3.6 g/L; (NH4)2-H–citrate, 1.0 g/L; MgSO4 × 7H2O, 1.2 g/L; trace element solution,
2 mL/L [26].

For Site 2, the cultivations were based on a minimal mineral medium, consisting of
46.55 g KH2PO4, 14 g (NH4)2HPO4, 5.6 g C6H8O7.H2O, 3 mL of concentrated antifoam,
35 g H14MgO11S, and 105 g D (+) glucose monohydrate.

2.3. Cultivation Conditions

Table 2 presents the different cell cultivation conditions for both of the cell strains at
both sites.
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Table 2. The cultivation conditions of Site 1 and Site 2 cell strains.

Condition Site 1 Site 2 Note

Bioreactor Volume 15 L 7 L -
Cultivation Type Fed-batch Fed-batch -

Temperature Setpoint 30 ◦C 37 ◦C Both measured with a PT100 temperature
sensor

DO Setpoint 30% 20% Both measured with an Ingold DO probe
(Mettler Toledo)

pH Setpoint 7 6.8 Both kept constant using a PID controller with
the addition of NaOH

Stirrer Setpoint Range 100–1400 RPM 800–1200 RPM -

Airflow 0.3–15 L/min 1.75–3.75 L/min
Pure oxygen flow was provided to bioreactors
at a range from 0 to 7.5 L/min to increase the

oxygen transfer rate
Maximum average cell age at induction, hours 3.105 2.985 -
Minimum average cell age at induction, hours 1.14 1.237 -

Off-gas Tracking Concentrations of O2 and CO2 Concentration of O2

Measured with a paramagnetic oxygen sensor
(Maihak Oxor 610) during Site 1 cultivations
and with BlueSens gas analyzer (BCpreFerm,

BlueSens, Herten, Germany) during Site 2
cultivations.

2.4. Target Protein Analysis

The analytical method of determining the amount of target protein was SDS-PAGE
(sodium dodecyl sulfate–polyacrylamide gel) electrophoresis. The final measurement of
the target protein consists of a sequence of the following actions. Firstly, 200 g of wet
biomass was dissolved in 1 mL of solution and mixed for 30 min. Then, to measure the
total protein concentration, SDS-PAGE electrophoresis was performed on 200 µL of the
suspension sample. The remainder of the suspension was mixed with SDS (sodium dodecyl
sulfate) buffer to dissolve all proteins and centrifuged for 15 min at 4 ◦C with 20,000 G force.
Determining the soluble protein concentration required another SDS-PAGE electrophoresis
with a sample of 200 µL. The leftover supernatant was discarded and replaced with 1
mL of water, then mixed and centrifuged. Finally, decanting the supernatant and mixing
it for approximately 12 h with the addition of 1 mL of solubilization buffer (8 M urea;
50 mM, pH 8.0 Tris base) allowed for measurements of insoluble protein (inclusion bodies)
concentration via SDS-PAGE electrophoresis.

3. Proposed Extension of Akaike Information Criterion

The classical form of the Akaike information criterion allows for selecting an in-
formative set of parameters with an inevitable trade-off concerning the model’s fitting
uncertainty [27]. Let n be the number of observation samples, k the number of model
parameters, and MSE the mean squared error of the residuals. Then, the Akaike measure is

AIC(k, n) = n ln(MSE) + 2·k. (1)

An alternative is the Bayesian information criterion, or BIC, which contains variance
σ2 of errors instead

BIC(k, n) = n ln
(

σ2
)
+ 2·k. (2)

One of the drawbacks of both BIC and AIC is that these criteria are designed to not
have a tuning coefficient for minimizing the number of parameters to be used without
changing the shape of the likelihood distributions. Another consideration is a tuning
coefficient that would involve some theoretic asymptotic maximum number of parameters.
In reality, the log-likelihood part of the criterion might not necessarily be related to the
average characteristics, but they may also be cumulative characteristics based on the sum
of squared residuals, RSS. This amount divided by the degree of freedom n recovers MSE
and presents the average discrepancy between the readings y(ti) observed at time ti and
the value estimated by the model f (ti, k). Such cumulative discrepancy depends on the
number of observations ni, and has the form of

RSS(k, ni) = ∑ni
i=1(y(ti)− f (ti, k))2 = ∑ni

i=1(yi − fi(k))
2. (3)
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Therefore, we suggest two entropic criteria for prospective model selection, which
have a tuning coefficient kmax, a likelihood RSS ≡ RSS(k, ni), and a maximum likelihood
RSSmax ≡ RSSmax(ni) = lim

k→0
RSS(k, ni), yielding

SA ≡ SA(kmax, k, ni) =
(kmax − k)·RSS ln RSS + k·(RSSmax − RSS) ln(RSSmax − RSS).

(4)

The other information measure, S, in the entropic representation, which can serve
equally well, is

SB ≡ SB(kmax, k, ni) = (kmax − k)·RSS· ln RSS + k·RSSmax· ln
RSSmax

RSS
. (5)

Then, one can determine kAIC and kBIC, with which

RSS ≡ RSS(k, ni) = ∑ni
i=1(y(ti)− f (ti, k))2 = ∑ni

i=1(yi − fi(k))
2. (6)

This links to Equations (1) and (2). In other words,

AIC(k, ni) ∼ lim
kmax→kAIC

ln(S(k, ni)), (7)

and
BIC(k, ni) ∼ lim

kmax→kBIC
ln(S(k, ni)). (8)

The motivation for tuning kmax to a certain koptimal is the need to avoid overfitting
with experimental data when a user applies raw AIC or BIC criteria with a likelihood in any
probabilistic form. Furthermore, the practical expectation is that the criterion be as generic
as possible, and the likelihood’s shape should not require modification. Consequently, an
investigator must pick such a set of parameters that mean minimal effort is required to
perform a trial when seeking rational bioprocess optimization. For example, only one or
two cultivation protocol changes should be made to potentially and noticeably increase the
overall total product, i.e., by more than 10 percent or so. It is expected that a biopharmaceu-
tical manufacturer performs as few changes as possible. Simultaneously, the manufacturer
must follow for maximal repeatability and standardization according to EU CE labeling, EU
medical device (MDR), and US Food and Drug Administration (FDA) regulations at good
manufacturing practice (GMP) or GMP-compliant (cGMP) facilities. This is particularly
true when service providers provision a CDMO (contract development and manufacturing
organization) technology transfer. Therefore, the upstream developers have one or two
protocol adaptations or parameters at their disposal for a single experimental iteration
consisting of unique experimental development trials or minor online checks.

In this study, we propose generic forms of Equations (4) and (5) that can be used to
select such a minimal set of parameters that both reach (the principle of parsimony [28])
and match (the principle of convex optimization [29]) the extremum state of the measure.

4. Combined Model Representing Hypothesis with Multiple Elements

The previous study [11] introduced an additional protein P(t) production yield γ
parameter to extend the Luedeking–Piret model for fed-batch cultivations [25,30,31]. The
model relied on the oxygen uptake rate (OUR) for biomass X estimation

OUR(t) = α·X′(t) + β·X(t) + γ(t)·P′(t), (9)

The addition of production yield γ, which represents the oxygen consumption yield for
the protein synthesis rate, supplements the previous cell’s oxygen consumption parameters
for biomass growth α and maintenance β. The expanded model achieved a pseudo-global
estimation of synthesized protein and biomass concentration [29,32,33]. Such a procedure



Entropy 2021, 23, 1057 6 of 14

corresponds to pseudo-global offline model calibration. It was assumed that protein yield
was a function of biomass concentration in a gray box model [34].

As shown in a previous work, protein productivity depends on IPTG (isopropyl-D-
1-thiogalactopyranoside) and biomass concentrations at time of induction [29,35]. The
latter had a significant impact on the model, such that the product formation parameter γ
became a function of biomass concentration at time of induction. Then, the final estimator
form became

OUR(t) = α·X′(t) + kγ·(X(t)− Xind)·
dP(t)

dt
(10)

The expression of the product model is based on the assumption of the linear depen-
dency of product synthesis on the specific growth rate (SGR) of biomass [36]

dPX
dt

= qpx(µ, PX) = Pmax(µ, X)− kt·PX , (11)

where qpx is the specific protein accumulation rate (U/g/h), µ the specific biomass growth
rate (1/h), and PX ≡ P(t)/X(t) the specific protein activity (U/g), where the protein
concentration is normalized by biomass concentration. Even though the previous study
assumed that the maximum target protein formation rate was linked to the specific substrate
consumption rate, the underlying idea is still the same in this study. Finally, the time
constant kt was assumed to have a self-inhibiting effect [37].

Over the years, multiple researchers have studied how different process variables
and parameters affect the model of Pmax. Table 3 presents significant historic parametric
developments.

Table 3. Hypothetical dependencies of the maximum specific product formation rate.

Pmax Arguments State Variables Reference(s) Equation

a1, a2, a3, a4 µ(t), X(t) or Age(t) 1999, [38,39] (14)
Xind, km0, km1 µ(t), X(t) 2019, [11] (15)

km0, kµ, kiµ µ(t) 2003, [12] (16)

D. Levisauskas and others expressed the maximal production rate (Pmax) via the
concept of active biomass [38,39]. This latter is assumed to be the part of the biomass
that is responsible for specific product production. The average cell age identifies the
active biomass Agei ≡ Age(ti) at any time ti throughout the bioprocess. The expression of
average cell age, including the initial biomass boundary condition, is

Agei =
X0·ti +

∫ ti
0

(
ti − tj

)
·X′
(
tj
)
dtj

Xi
, (12)

where X0 is initial biomass at time of inoculation to a bioreactor. If the latter is assumed to
be negligible, Agei takes the following form

Agei =
∫ ti

0 (ti−tj)·X′(tj)dtj
Xi

∼=
∑i

j=0(ti−tj)
∆X(tj)

∆tj
·∆tj

Xi
=

=
∑i

j=0(ti−tj)∆X(tj)
Xi

.

(13)

Equation (13) is the recovery of a particular case, shown in Equation (12), taken from D.
Levisauskas and others’ research [38,39]. Assuming that tj ∼ j∆t, the maximal production
rate Pmax at time ti is

Pmax,1999(ti) =
1

X(ti)

i

∑
j=1

∆Xj·m(ti − j∆t), (14)
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where ∆Xj is the growth of biomass throughout the j-th time interval, and m (0 < m < 1) is
the relative activity ratio that introduces the linearly increasing and decreasing transient
effect of the age. The parameter m is described by a trapezoid time function, which consists
of four model parameters presumably related to each culture.

The most recent functional protein model [11] relies on the assumption that the maxi-
mal specific product concentration value is asymptotically dependent on SGR. However,
the authors identified an apparent effect of IPTG injection on product synthesis through
data analysis. Therefore, the functional model was expanded with the addition of biomass
at induction time Xind

Pmax,2019(µ, X) = µ(t)·(km0 + km1·(X(t)− Xind)) (15)

where km0 and km1 are tuning parameters.
Other researchers [12] tried one more variation of the maximal product formation model

Pmax,2003(µ) =
µ(t)·km

kµ + µ(t) + µ2(t)
kiµ

. (16)

Such an approach was based on a rational assumption of what inhibits the maximal
product formation rate. As far as we know, no efforts were made to test the different
hypotheses of various methods with the same datasets originating from different sources.
We propose a method of model selection using the principles of parsimony and convex
optimization in this study. This is based on Equations (7) and (8).

With the combined approach of both product synthesis models, we include an ex-
panded protein function model, where Pmax ≡ Pmax(t) is the hypothesis of a mixture of
linearly dependent competing models

Pmax,2013 = ∑nl=24
l=1 Pmax,l , (17)

where 24 model coefficients represent the parametric set of kt, k0 · · · k22, as defined in

Pmax,2021 = k0 · µind + µ(k1(X(t)− Xind) + k3) + k2 · µ · Ageind + k4
·µ(k13 + µind) + Xind

(
k6 + k7 · Age

)
+ k8 · Age

+Ageind(k10 + k11 · µind) + k12 · µ2
ind+

k16·µind ·Age
k20+Age

+ k17·µ
k19+µ + k18·µ·Age

k21+Age
+

k22·µ·Ageind
k5+Ageind

+ k9·µ
k14+µ+

µ2
k15

.

(18)

Here, kt, k0 · · · k22 are the optimization parameters of the model to be established. All
of them contain zero values at the start of the convex search. The subset of linear terms
represents the linear term of Equation (18), and some of them are the basis of Monod’s
formulation theories [40,41]. The matches are depicted in Table 4.

Table 4. Product formation rate dependencies that are part of Equation (18).

Pmax Arguments State Variables
Model Selection

Arguments in
This Study

Reference(s)

a1, a2, a3, a4 Age(t) k8 1999, [38,39]
Xind, km0, km1 µ(t), X(t) k1, k3 2019, [11]

km0, kµ, kiµ µ(t), k9, k14, k15 2003, [12]
Ageind, µind, etc. µ(t), X(t), Age(t) kt, k0 · · · k22 2021/this study

The novelty of this study is the proposed average cell age at induction time Ageind. As
the researchers [38,39] did not study the recombinant bioprocess in their work, so far, the
effect of IPTG injection has not been assessed. Based on the experimental data, we deduced
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that the average cell age and specific growth rate during the induction time are the most
significant parameters to consider when creating a protein formation model.

5. System Identification and Parameter Estimation
5.1. Average Cell Age at the Induction

Historically, mathematical bioprocess models have considered only external state
variables that affect product biosynthesis. For this reason, traditional models show frequent
inconsistency when validating theoretical knowledge with empirical data. To improve the
accuracy and applicability of the model, we considered variations in the physiological state
of the microorganisms, including, but not limited to, their physical age, similarly to the
developments made in the 1970s [42]. Consequently, we express the average cell age at
induction time (tind) as

Ageind ≡ Age(tind) ∼=
X0·tind +

∫ tind
0

(
tind − tj

)
·X′
(
tj
)
dtj

Xind
. (19)

The use of cell age relies on two main assumptions. The first is that the total biomass
does not produce the specific product, only its physiologically active part. The second
is that the activity of the biomass depends on its age. Therefore, through our modeling,
we can predict that the cells produce the specific product throughout a particular period,
during which there is an average cell age that would lead to maximal production. This also
relates to induction, at which point the cells have already reached a certain age.

5.2. Model of Product Model Fitting

Following the presented changes, the previously described relative protein synthesis
Equation (11) has a more general presentation

dPX
dt
≡ qpx(µ, PX) = Pmax(µ, X, t)− kt·PX (20)

Furthermore, its integral form at time t becomes

PX(t) =
∫ t

t0

Pmax(t∗)dt∗ − kt·
∫ t

t0

PX(t∗)dt∗, (21)

where the integrals are the left-hand Riemann sum [11,43]. Finally, the protein model for
pseudo-global offline fitting takes the form

Pi =
(∑i

j=1 Pmax,j·∆tj,j−1 − kt·∑i−1
j=1 PX,j·∆tj,j−1)·Xi

1 + ∆ti,i−1·kt
. (22)

In Equation (22), the discrete protein values define the variable PX,i ≡ PX(ti), where
the sample observed at time t is indexed by i, and i ∈ [1, ni].

5.3. Pseudo-Global Offline Identification of Model Parameters

Before selection, each model requires pseudo-global parameter identification. The
identification process of protein model fitting coefficients consists of the convex optimiza-
tion method and the maximization of entropy [28,44,45]. Based on Bayesian analysis, the
posterior distribution for the i-th offline sample is expressed as

Pposterior(Pi) ∼ N
(

Pi, σ2
P

)
, (23)
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where σ2
P is the constant variance for every sampled prediction i. Similarly, the prior

distribution has the following form

Plikelihood(Pi) ∼ N
(

Py
i , σ2

P,i

)
, (24)

where Py
i is the i-th observed value of product concentration with an individual variance

σ2
P,i. Having both distributions leads to a simplified form of relative entropy, which serves

as a likelihood function for the posterior,

Li ≡ Si
(

Pposterior, Plikelihood
)
= −

(
〈Pi〉 − Py

i

)2

2·σ2
P,i

+ c. (25)

In a previous study, we neglected coefficient c in favor of a separate tuning coefficient
Kexp

(
0 ≤ Kexp ≤ 2

)
[11,29]. The coefficient is implemented to adjust for trade-offs between

the least squares and mean absolute percentage error approaches. Such a combination
takes advantage of both criteria. With the addition of Kexp, the expression of relative
entropy becomes

Li = −

(
〈Pi〉 − Py

i

)2
·
(
1− Kexp

)
2·Py,2

i

−

(
〈Pi〉 − Py

i

)2
·Kexp

2
. (26)

The process of model fitting uses the former equation to identify the product model’s
parameters. The use of convex optimization with parsimony assumptions allows the en-
tropy measure to indicate local extremums and derive a sufficient computational processing
time [28]. For simplicity, and given that the protein content did reach high concentrations,
the Kexp was set to 2 in this study. Therefore, the residual sum of squares denotes the
squared sum, which thus represents the likelihood in the ensuing text.

6. Model Selection Based on Experimental Model Calibration

We analyzed two datasets in this study, derived from different samples from two
independent sites. The first repository consisted of 46 independent experiments and, in
total, ni,I = 196 readings. The other dataset, from the second site, contained 24 unique
biosyntheses and, in total, ni,I I = 131 protein observations. To use a single RSS with
ni = ni,I + ni,I I in the same model selection routine, we picked a normalized form by
reusing two sums of squared residuals (RSSI and RSSI I) for each site

RSS =
ni,I I ·RSSI + ni,I ·RSSI I

ni
. (27)

This allowed for distributing the average variances of the estimates evenly over both
sites’ repositories. After the maximization of Equation (26), a convex search of the data from
previous studies gave the results shown in Table 5. To check for errors at the beginning of
product synthesis, we added to the evaluation the criteria of mean absolute error (MAE).

MAE =
∑n

i=1

∣∣∣Pi − Py
i

∣∣∣
n

. (28)
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Table 5. Product’s AIC, RSS, and MAE statistics in each historical study.

AIC RSS MAE k Model Selection
Arguments Reference(s)

−967.01 16.79 0.393 2 kt ∼= 2.06,
k8 ∼= 0.01176; 1999 [38,39]

−1005.6 14.83 0.424 3
kt ∼= −0.112,

k1 ∼= −0.00243,
k3 ∼= 0.074;

2019 [11]

−977.17 16.07 0.442 4

kt ∼= 0.321,
k9 ∼= 0.01193,

k14 ∼= −0.000473,
k15 ∼= 0.1677;

2003 [12]

−1488.16 3.15 0.249 24 kt ∼= 0.209, k0 · · · k22; Full overfit with Equation (18)

At first glance, according to the AIC in Table 5, the investigation from 2019 [11]
improved on the studies from 1999 [38,39] and 2003 [12]. Then, the study of 2003 [12]
improved upon the AIC of 1999 [11]. However, according to the MAE criterion, which is
more relevant to product formation, the oldest assumption in the literature [38,39] is more
powerful than the newer findings derived over 20 years later. Moreover, if the AIC were to
be followed literally, the overfitting of the overall model would have been favored, as the
last row of Table 5 demonstrates. Such an elaboration led us to further study the product
formation model, and search for better ways of selecting a model with fewer parameters
and which avoids overfitting by design.

First of all, there is a possible value for the maximum number of coefficients (kmax)
that asymptotically makes the entropic criteria work the same way as the original AIC and
BIC measures. The maximization of correlation between AIC and SA (Equation (4)), and
then SB (Equation (5)), generates corresponding kmax values kAIC,A and kAIC,B, which are
shown in Table 6.

Table 6. Product’s AIC as an asymptotic assessment of entropic measures SA and SB.

AIC lnSA
kAIC,A→830

lnSB
kAIC,B→450 Reference(s)

−967.01 10.583 9.968 1999 [38,39]
−1005.6 10.419 9.802 2019 [11]
−977.17 10.53 9.9117 2003 [12]

Similarly, maximizing the linear relationship between BIC and SA, and then SB, pro-
vides the data for Table 7. We asymptotically tuned both AIC and BIC on the sum of
correlations of 33 models, which together comprised a specific subset of Equation (18).
We tried more reproductions with different assumptions in this study. However, those 33
representations comprising Equation (18) are the best set, according to our investigation
experience. The maximal parametric complexity we tried was k ≤ 6 in this study.

Table 7. Product’s BIC as an asymptotic assessment of entropic measures SA and SB.

BIC lnSA
kBIC,A→300

lnSB
kBIC,B→172 Reference(s)

−959.430 9.573 9.008 1999 [38,39]
−994.228 9.417 8.848 2019 [11]
−962.013 9.529 8.956 2003 [12]

Tables 6 and 7 both show that each entropic measure of S is a more generic quantity
that can help restrict the number of expected state variables, thus helping with upstream
CDMO development in the biopharmaceutical industry. Typically, two to four coefficients
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are preferred in optimal control routines, because the degree of freedom in Hamiltoni-
ans intensifies computational requirements. The main reason for this is that, frequently,
Hamiltonians are solved numerically or using hybrid approaches, of which arithmetic
processing still represents an extensive part. As such, we present experimental findings for
a maximal number of model parameters of kmax = kAIC = kBIC = 450, unless specifically
stated otherwise.

Before proceeding with model selection, we must check the significance of the tuned
model parameters individually. We select kt and two other coefficients with state variables
and a significant history [11,12,38,39], which we found to be the best descriptors.

The specific growth rate at time of induction is the most significant parameter from a
singleton analysis perspective, as Table 8 shows. This table offers two insights:

(a) There is significant doubt that kt belongs to the descriptor set;
(b) Even if the specific growth rate surpasses the average cell age, the significance of

either is still relatively similar. Therefore, there is a high chance that both of them
combine in a single nonlinear relationship that is proportional to the maximum
product formation rate.

Table 8. Significance test for single parameters.

Parameter and Its
Value

State Variable or
Argument AIC BIC lnSAIC,A lnSAIC,B

kt ∼= 53.9 PX(t) −591.28 −587.49 - 10.5
k0 ∼= 0.0159 µind −936.78 −932.99 9.145 9.138

k8 ∼= 0.001384 Age(t) −905.04 −901.25 9.273 9.267

Such thinking led us to construct maximum product expression, as in Equation (18).
We will use the maximum number of models assessed during our criterion asymptotic anal-
ysis, and set kmax = 33. The five best model equations that derive from Equation (18) are

Pmax = k0·
(

µind − µ2
ind

)
+

k16·µind·Age
k20 + Age

+ k16 − k16·µ and kt = 0, (29)

Pmax = k0·µind +
k16·µind·Age

k20 + Age
+ k16 − k16·µ and kt = 0, (30)

Pmax = k0·µind +
k16·µind·Age

k20 + Age
+ k16 and kt = 0, (31)

Pmax =
k16·µind·Age

k20 + Age
+ k16 and kt = 0. (32)

Table 9 depicts the parameter values of the models in Equations (29)–(32).

Table 9. Parameter values for the significance test at kmax = 33.

Equation k0 k16 k20 lnSAIC,A RSS MAE k

(29) −0.13 0.0232 −1.066 6.869 7.279 0.399 3
(30) −0.0375 0.01148 −1.244 6.979 8.723 0.432 3
(31) −0.0337 0.0098 −1.261 6.998 8.970 0.462 3
(32) 0 0.00298 −1.302 7.099 11.782 0.579 2

The second additive term, as used in Equations (29)–(32), and the first additive
term, as used in Equation (32), is the Monod term, whose coefficients k16 and k20 carry
a specific physiological meaning: the maximum specific target protein formation rate
is the multiplication k16·µind; the denominator additive coefficient defines the average
age at which the production formation rate (represented by term k16·µind) is halved. The



Entropy 2021, 23, 1057 12 of 14

perfect average age for inoculation is somewhere between 1.066 h and 1.3 h, at which
point product formation has the highest theoretical rate of acceleration. It remains to be
determined whether it is a coincidence that the minimum induction time was 1.14 h for the
first site and 1.237 h for the second site.

As the mean absolute error is the smallest for the model with more variables in
Equation (29), other maximal counts of model parameters remain to be verified. The
asymptotic analysis using kmax = 6, which is the maximum number of tested parameters
per experiment in this study, suggests the following five alternatives:

Pmax = k0·µind and kt = 0, (33)

Pmax = k8·Age and kt = 0, (34)

Pmax =
k16·µind·Age

k20 + Age
+ k16 − k16·µ and kt = 0, (35)

Pmax = k0·µind and kt = 0.447, (36)

Pmax = k8·Age and kt = 2.059. (37)

Table 10 shows another alternative set of coefficients, which verify that the average
age has a more substantial effect at the start of product formation. Thus far, Equation (29)
gives the best estimate of the total product.

Table 10. Parameter values for the significance test with kmax = 6.

Equation k0 k8 k16 k20 lnSAIC,A RSS MAE k

(32) 0.0159 0 0 0 5.976 18.524 0.639 1
(34) 0 0.00138 0 0 6.047 20.412 0.497 1
(35) 0 0 0.00321 −1.298 6.054 11.857 0.577 2
(36) 0.0453 0 0 0 6.109 16.475 0.603 2
(37) 0 0.01176 0 0 6.114 16.785 0.393 2

There is still one model to consider, which can improve MAE to 0.424

Pmax,2021 = µ(k1(X(t)− Xind) + k3) andkt = −0.112, k1 = −0.00243, k3 = 0.074. (38)

However, this model’s RSS is poor, at 14.826. Further increasing the number of
parameters starts to reduce the MAE due to overfitting.

7. Discussion and Conclusions

The results of the model selection and the application of enhanced AIC show two
things:

(a) As regards rational, practical benefits, the proposed entropic measures can help with
tuning the maximum count of the model parameters, thus helping devise standard-
ized CDMO procedures for attaining higher product yields from biopharmaceutical
efforts;

(b) Secondly, both average age and biomass growth values at time of induction, or in other
words, at the very start of product synthesis, are crucial. Therefore, the combined
model employing Monod structures is the best recommendation for maximizing the
total product yield.

Similar to the Akaike information criterion, the Bayesian information criterion can also
be viewed as a particular asymptotic enhancement of the entropic expansion of AIC. Such
an approach avoids altering the likelihood or re-organization the experiments. Instead,
it brings the benefit of adjustability in the maximum number of expected coefficients.
Moreover, two entropic values are available for scientists to exploit: relative entropy
and Shannon entropy. The experimental model fitting was performed simultaneously
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on 46 experiments at the first site and 24 fed-batch experiments at the second site. Both
locations contained 196 and 131 protein samples, thus giving a total of 327 target product
tests using the bioreactor medium.

Regarding the physiological characteristics of any aerobic microbial system, we wit-
nessed that average cell age and the inhibition coefficient are both more relevant, and
describe the model better, at the very beginning of product biosynthesis. At the same
time, the specific growth rate improves upon the latter overall, when considering the total
(recombinant target protein) expression at the end of the experiments.
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