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Abstract

Recently, we described that ATP induces changes in YFP/CFP fluorescence intensities of Fluorescence Resonance Energy
Transfer (FRET) sensors based on CFP-YFP. To get insight into this phenomenon, we employed fluorescence lifetime
spectroscopy to analyze the influence of ATP on these fluorescent proteins in more detail. Using different donor and
acceptor pairs we found that ATP only affected the CFP-YFP based versions. Subsequent analysis of purified monomers of
the used proteins showed that ATP has a direct effect on the fluorescence lifetime properties of CFP. Since the fluorescence
lifetime analysis of CFP is rather complicated by the existence of different lifetimes, we tested a variant of CFP, i.e. Cerulean,
as a monomer and in our FRET constructs. Surprisingly, this CFP variant shows no ATP concentration dependent changes in
the fluorescence lifetime. The most important difference between CFP and Cerulean is a histidine residue at position 148.
Indeed, changing this histidine in CFP into an aspartic acid results in identical fluorescence properties as observed for the
Cerulean fluorescent based FRET sensor. We therefore conclude that the changes in fluorescence lifetime of CFP are affected
specifically by possible electrostatic interactions of the negative charge of ATP with the positively charged histidine at
position 148. Clearly, further physicochemical characterization is needed to explain the sensitivity of CFP fluorescence
properties to changes in environmental (i.e. ATP concentrations) conditions.
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Introduction

In a recent paper [1] we described that ATP induces changes

in YFP/CFP fluorescence intensities in YFP/CFP based

Fluorescence Resonance Energy Transfer (FRET) sensors.

Although we presented this finding as a cautionary note, we also

pointed out that this ability can possibly serve as basis for

development of a new range of genetically encoded biosensors for

monitoring ATP concentrations. ATP is the primary energy

source in every living cell and knowledge about its temporal and

spatial behavior is of great importance. Based on early

observations [2,3,4] and recent own work [5,6] a model of

compartmentalized production and consumption of ATP is now

emerging. Therefore, tools to monitor dynamic changes in the

intracellular distribution of ATP at near physiological concen-

trations in living cells are now urgently needed. Recently, the

development of Perceval, a new reporter for ATP:ADP ratios in

cells was described [7]. Perceval is a circular permuted GFP

variant, which upon binding of ATP to a domain derived from

bacterial regulatory protein GlnK1, changes its fluorescence

intensity. As the authors of this work point out, this sensor has its

limitations and a ratiometric sensor based on FRET would still be

welcome.

In our previous work we postulated that the ATP effect on CFP-

YFP based FRET sensors occurred most likely via a direct

quenching of the energy transfer step, possibly coupled to energy-

induced charge displacement in the phosphate groups. We have

applied fluorescence lifetime spectroscopy, which is generally

accepted as one of the most reliable quantitative tools for this type

of studies [8,9], to get more insight into the physical basis and

sequence of events involved. In this paper, we employed

fluorescence lifetime spectroscopy to analyze effects of ATP on

different fluorescent proteins in more detail.

Methods

Expression constructs and purification of proteins
For the bacterial expression of proteins the open reading frames

of eCFP (CFP), Cerulean (CrFP), eYFP (YFP) and our previously

described CFP-xa-YFP control construct [1], in which a Xa

protease sensitive cleavage site is placed between the CFP-YFP

chromophores, were amplified by a polymerase chain reaction

(PCR) from the full-length cDNAs and appropriate segments were

cloned into the pTYB11 vector (New England Biolabs, Impact

vector system). The purification of the protein was performed as

described in the manual of New England Biolabs, Impact vector
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system. The protein solutions were kept in 50 mM Hepes (pH 7.5)

and stored in aliquots in 280 degrees.

For experiments in mammalian cells we used the same 6xHis-

Tag containing vector designated CFP-xa-YFP as described before

[1]. In addition a version in which the CFP part was exchanged

with Cerulean, designated as CrFP-xa-YFP, was used.

For purification of the mammalian expressed proteins we used

the Ni-NTA Qiagen kit (Qiagen, Hilden, Germany) according to

the manufacturer’s instructions.

FRET measurements
COS-1 (ATCC CRL-1650) cells expressing CFP-xa-YFP or

CrFP-xa-YFP proteins were lysed in a buffer containing 50 mM

NaH2PO4, 300 mM NaCl, 10 mM Imidazole, 0,05% Tween 20,

pH 8,0, by repeated freeze/thawing. Steady-state spectral fluores-

cence emission recordings of cleared extracts or purified protein in

a Tris/NaCl buffer of pH 7.4 were obtained using a Shimadzu

RF-5301 spectrofluorimeter (Shimadzu Corporation, Kyoto,

Japan) using an excitation wavelength of 425 nm and a bandwidth

of 10 nm.

Fluorescence Lifetime Spectroscopy
Time-resolved fluorescence measurements were carried out

using a mode-locked continuous wave laser for excitation and

time-correlated single photon counting (TCSPC) as detection

technique as described previously [10]. The samples were

prepared either in Tris/NaCl buffer, pH 7.4 or in 50 mM Hepes,

pH 7.5. ATP or MgATP were prepared in same buffer before

addition to protein samples. The samples were excited with plane

polarized light pulses (0.2 ps FWHM) at an excitation frequency of

3.8 MHz and both parallel- and perpendicular-polarized fluores-

cence intensities were detected. At 430-nm excitation, CFP

fluorescence was detected with a 480.5-nm interference filter

(Schott, Mainz, Germany; half-bandwidth of 5.4 nm). The

sensitized emission of YFP fluorescence was detected with an

OG 530 cut-off filter (Schott) and 557.6-nm interference filter

(Schott; half-bandwidth 5.9 nm). The dynamic instrumental

response function of the setup (40 ps FWHM) was obtained at

the CFP or YFP emission wavelengths by using a solution of

xanthione in ethanol as reference compound having an ultrashort

fluorescence lifetime of 14 ps [11,12]. The use of the reference

convolution method [11] together with the current instrumenta-

tion enables determining fluorescence lifetimes with high accuracy

and picosecond precision. Data analysis was performed using a

model of discrete exponential terms. Global analysis of the

experimental data was performed using the TRFA Data

Processing Package of the Scientific Software Technologies Center

(Belarusian State University, Minsk, Belarus) [13].

Results

Previously, we demonstrated that the effect of ATP on FRET

signals appeared to be independent of the linker sequence between

the CFP and YFP moieties in all biosensors studied [1]. Although

we did observe a decrease in energy transfer with increasing linker

lengths (Data not shown, see also previous work [14]) no effect of

the linker length was observed on the ATP-induced changes in

YFP/CFP ratio. Interestingly, when we subsequently analyzed a

range of constructs encoding sensors composed of different donor

and acceptor fluorescent proteins [15] we found that the effect of

ATP on the fluorescence intensity ratio’s was only observed in

constructs composed of CFP-YFP based versions. In Figure 1 the

effects of ATP on a GFP-tdTomato [15] construct is shown as an

example.

To exclude the possibility that still other cellular factors, besides

ATP, affect the FRET efficiency, we analyzed the effect ATP has

on the FRET efficiency of bacterial expressed and purified CFP

and YFP alone, and compared it with the effects it has on the dual-

colored CFP-xa-YFP control construct. As can be seen in

Figure 2A, the effects of ATP could be nicely reproduced for the

CFP-xa-YFP construct but ATP did not influence the spectral

properties of CFP (Fig. 2B) or YFP alone (data not shown).

To answer the question whether the effect of ATP is the result of

direct quenching of the energy transfer step or whether it is

affecting the fluorescence characteristics of either one or both of

the fluorescent moieties in the FRET sensor, we employed a more

sensitive and quantitative method; time-resolved fluorescence

spectroscopy [8]. Steady-state fluorescence spectroscopy of

fluorescent sensors provides only information on average fluores-

cence properties of donor and acceptor molecules. The advantage

of time-resolved fluorescence spectroscopy over steady-state

fluorescence spectroscopy is that more detailed information on

protein dynamics can be obtained. A fluorescent lifetime can be

described as the average time a fluorescent molecule spends in the

excited state. This is an intrinsic property of every fluorescent

molecule, which is dependent on its environment but probe

concentration independent. We have performed fluorescence

lifetime measurements on individual fluorescent proteins; CFP,

Cerulean (CrFP), YFP and the different CFP based sensors.

Generally, in FRET constructs the fluorescence lifetime of the

donor (in our case CFP or CrFP) is measured. Fluorescence

lifetime measurements of the CFP-xa-YFP control construct

showed a clear effect at increasing ATP concentrations on the

fluorescence lifetime of the CFP (see table 1). The fluorescence

decay curves of this sensor in the absence and presence of ATP

and MgATP are depicted in figure 3. The calculated average

fluorescence lifetime changed from 1.37 ns to 1.83 ns upon

addition of 10 mM ATP. Fluorescence lifetime measurements of

the purified samples of CFP and YFP alone showed no effect on

the fluorescence decay kinetics of YFP (Table 2) but, interestingly,

we observed an increase of the fluorescence lifetime of CFP. As

shown in table 2 and figure 4, the fluorescence lifetime of CFP

changes from 2.86 ns to 3.04 ns at 10 mM ATP. An increase of

the fluorescence lifetime was already evident at 2 mM ATP. The

data of monomeric CFP were analyzed using a bi-exponential

decay model; the data of the CFP-xa-YFP and CrFP-xa-YFP

constructs were analyzed using a 3-component decay model

[16,17]. Since previous experiments were performed by addition

Figure 1. Effect of ATP on a GFP based FRET construct. Steady
state fluorescence emission spectrum of a GFP-tdTomato construct
([15]) in the presence or absence of 10 mM ATP. Excitation of the GFP
was at 480 nm excitation.
doi:10.1371/journal.pone.0013862.g001
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of MgATP, we tested also different concentrations of MgSO4.

Interestingly, we again found a quenched fluorescence lifetime of

CFP. The fluorescence lifetime of CFP decreased to almost the

original value (2.90 ns). All the fluorescence lifetimes and the

effects of ATP and MgATP are summarized in table 1 and 2.

The fluorescence lifetime properties of CFP are rather

complicated due to the existence of two different conformations

exhibiting two different lifetimes [18,19]. For this reason a CFP

variant [20], Cerulean (CrFP), was generated exhibiting mono-

exponentially decay. The main difference of this variant compared

to CFP is the change of histidine148 into an aspartic acid.

Surprisingly, analysis of purified monomeric Cerulean showed no

effect on the fluorescence lifetime at increasing amounts of ATP.

In figure 5 the fluorescence decay curves are shown and the

calculated fluorescence lifetimes are summarized in table 2.

Next, we assessed Cerulean’s properties in the context of FRET

in mammalian cells, by changing CFP for Cerulean in our CFP-

xa-YFP constructs. Again, we compared directly the effects of

increasing amounts of ATP on the CFP and Cerulean-based

constructs by spectral analysis in cell lysates (Fig. 6A, C and E) and

on the purified monomeric proteins (Fig. 6B, D and F). In the

spectral analysis, the effect of ATP on YFP/CFP ratios (Fig. 6E

and F and table 3) was again only observed in the construct

containing CFP and absent in the CrFP containing construct.

Also, fluorescence lifetime measurements showed changes on

donor lifetimes only in constructs containing CFP moieties (Fig. 5

and table 2). Finally, by specifically mutating the histidine at

position 148 into an aspartic acid in the CFP-xa-YFP construct we

could reproduce the lifetime results obtained by the CrFP-xa-YFP

construct (See table 1).

Taken together, our observations lead us to conclude that the

effect of ATP on the fluorescence characteristics of CFP occurs

specifically via possible electrostatic interactions of the negative

charge of ATP to the positively charged histidine residue at

position 148 within the CFP molecule.

Discussion

Previously, we postulated that ATP could have an effect on

FRET signals in CFP-YFP based sensors by quenching of the

energy transfer between the two fluorophores. Here, we show by

time-resolved fluorescence spectroscopy that the effect of ATP is

not via quenching of the energy transfer step but via a direct

interaction of ATP with the histidine residue at position 148 of

CFP. The advantage of fluorescence lifetime measurements over

steady-state fluorescence is that fluorescence lifetimes are concen-

tration independent but can be influenced by the local

environment of the fluorophore and can therefore be used to

map this environment (pH etc.). It is known that the pH can

change the protonation of the chromophore, thereby affecting the

absorption characteristics and consequently the fluorescence

lifetime of visible fluorescent proteins [21]. In our experiments

we can exclude pH effects as most samples were prepared with and

without ATP/MgSO4 at identical pH-values.

Figure 2. Effect of ATP on a CFP based FRET construct. Steady state fluorescence emission spectra of CFP-xa-YFP (A) and CFP alone (B) at
different ATP concentrations. Excitation of the CFP was at 420 nm excitation.
doi:10.1371/journal.pone.0013862.g002

Table 1. Fluorescence decay parameters of CFP – YFP constructs.

a1 t1 (ns) a2 t2 (ns) a2 t3 (ns) ,t. (ns)

CxY 0.37 0.18 (0.15–0.20) 0.31 1.05 (0.97–1.12) 0.31 3.17 (3.12–3.20) 1.3760.04

CxY+ATP 0.32 0.24 (0.19–0.29) 0.33 1.19 (1.08–1.32) 0.42 3.25 (3.20–3.29) 1.8360.07

CrxY 0.21 0.30 (0.23–0.39) 0.38 1.30 (1.18–1.45) 0.41 3.22 (3.17–3.28) 1.8860.08

CrxY+ATP 0.19 0.31 (0.22–0.41) 0.37 1.34 (1.20–1.51) 0.44 3.24 (3.19–3.30) 1.9860.09

CxY-H148D 0.31 0.39 (0.35–0.43) 0.33 1.60 (1.46–1.74) 0.36 3.53 (3.47–3.59) 1.9260.07

CxY-H148D +ATP 0.29 0.53 (0.47–0.59) 0.35 1.89 (1.68–2.14) 0.36 3.70 (3.57–3.79) 2.1560.13

CxY+MgATP 0.32 0.18 (0.14–0.21) 0.33 1.08 (0.99–1.17) 0.35 3.22 (3.17–3.26) 1.5460.05

CrxY+MgATP 0.20 0.33 (0.24–0.43) 0.37 1.39 (1.24–1.58) 0.43 3.29 (3.22–3.36) 1.9960.10

Fluorescence decay parameters of the CFP-xa-YFP (CxY), CrFP-xa-YFP (CrxY) and CxY-H148D in absence and presence of ATP or ATP where Mg (MgATP) is added.
Note. Values in parentheses are the 67% confidence limits. The average fluorescence lifetime (in ns) is calculated as ,t. = a1t1 + a2t2 + a3t3.
doi:10.1371/journal.pone.0013862.t001
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It is known that the presence of multiple fluorescence lifetimes

in CFP is due to conformational adaptation, where two different

conformations of CFP result from the alternate displacement of

two hydrophobic residues (Tyr145 and His148) [18,19] to the

surface of the protein. Mutation of His148 to aspartic acid results

in an almost completely single exponential fluorescence decay, a

Figure 3. Fluorescence decay curves of CFP – YFP constructs. Normalized experimental (dotted line) and fitted (solid line) fluorescence decay
curves of CFP-xa-YFP (curve 1), CFP-xa-YFP in the presence of 10 mM MgATP (curve 2) or 10 mM ATP (curve 3). The excitation wavelength was
430 nm and the detection wavelength of CFP emission was 480 nm. Weighted residuals are shown in the bottom panel and the recovered
parameters (a, t) are collected in Table 1.
doi:10.1371/journal.pone.0013862.g003

Table 2. Fluorescence decay parameters of purified monomeric proteins.

a1 t1 (ns) a2 t2 (ns) ,t. (ns)

CFP 0.28 1.03 (0.95–1.09) 0.72 3.57 (3.56–3.59) 2.8660.03

CFP+ATP 0.26 1.23 (1.13–1.32) 0.74 3.68 (3.64–3.7) 3.0460.04

CFP+MgATP 0.28 1.11 (1.02–1.18) 0.72 3.60 (3.56–3.62) 2.9060.05

CrFP 0.33 1.80 (1.66–1.93) 0.67 3.75 (3.69–3.82) 3.1060.08

CrFP+ATP 0.32 1.76 (1.62–1.89) 0.68 3.74 (3.69–3.80) 3.1060.07

CrFP+MgATP 0.31 1.70 (1.56–1.82) 0.69 3.71 (3.66–3.76) 3.0960.07

YFP 3.0560.02

YFP + ATP 3.0460.02

YFP+MgATP 3.0660.03

Fluorescence decay parameters of the CFP, CrFP and YFP in absence and presence of ATP or MgATP.
Note. Values in parentheses are the 67% confidence limits. The average fluorescence lifetime (in ns) is calculated as ,t. = a1t1 + a2t2.
doi:10.1371/journal.pone.0013862.t002
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feature that was rationally engineered in Cerulean [20]. The

recent described X-ray structure of Cerulean [22] now provides a

structural explanation for the described change in the fluorescence

decay compared to the CFP variant. It has been shown recently

that the fluorescence decay of Cerulean is also not exactly

monoexponential [23]. As shown here, the His148 residue in CFP

is involved in binding ATP, thereby effecting the fluorescence

lifetime properties upon ATP application.

In the two conformations of the original CFP, the side chain of

His148 is either oriented towards the chromophore or positioned at

the outside of the protein. Since the effect of ATP is seen on all

lifetime components of CFP, we now speculate that ATP

dynamically associates with this residue via p-p or cation-p
interactions [24,25] or indirectly by influencing the conformation

of the side chain. However, a direct electrostatic interaction with the

negatively charged ATP molecule is also possible since the pKa of

the side chain of histidine is about 6 [26]. Our experiments have

been performed at pH 7.5, which results in a partially positive

charge of the histidine residue. The fluorescence lifetimes of purified

monomeric CFP were calculated using a two-component fit model.

A closer look at the data showed that it is the long component that is

mainly affected upon ATP addition. In principle two effects are

mixed during these analyses. First, the minor or major conformation

Figure 4. Fluorescence decay curves of purified monomeric CFP. Normalized experimental (dotted line) and fitted (solid line) fluorescence
decay curves of CFP (curve 1), CFP in the presence of 10 mM MgATP (curve 2) or 10 mM ATP (curve 3). The excitation wavelength was 430 nm and
the detection wavelength of CFP emission was 480 nm. Weighted residuals are shown in the bottom panel and the recovered parameters (a, t) are
collected in Table 2.
doi:10.1371/journal.pone.0013862.g004

Figure 5. Fluorescence decay curves of purified CrFP and CrFP-
xa-YFP. Normalized experimental (dotted line) and fitted (solid line)
fluorescence decay curves of CrFP (curve 1; no ATP, curve 2; 10 mM
MgATP, curve 3; 10 mM ATP), and CrFP-xa-YFP (curve 4; no ATP, curve 5;
10 mM MgATP, curve 6; 10 mM ATP). The excitation wavelength was
430 nm and the detection wavelength of CFP emission was 480 nm.
The recovered parameters (a, t) are collected in Table 1 and 2.
doi:10.1371/journal.pone.0013862.g005
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of CFP determines the binding of ATP to the histidine. Secondly, at

lower pH the side chains of histidine becomes more positively

charged. Using lower pH has a direct influence on the chromophore

of CFP causing a change in fluorescence lifetime properties. A third

explanation may be the stacking of ATP to the histidine thereby

changing the local conformation of CFP. As a result, flipping of the

side chain can open up a pore, thereby giving access for quenching

molecules to the chromophore (see [19]).

Either way, since His148 is one of the amino acid residues

closest to CFP’s chromophore, we can easily explain that

changing the conformation of CFP or charge of the chromophore

can have an effect on the CFP fluorescence properties. These

effects become even more drastic in CFP/YFP FRET biosensors

because distance and/or orientation may affect the fluorescence

characteristics and thereby change the FRET readout of CFP/

YFP based biosensors.

Figure 6. Fluorescence emission spectra of proteins expressed in Cos-1 cells. Steady state fluorescence emission spectra of Cos-1 cells
expressing CFP-xa-YFP (A, C) and CrFP-xa-YFP (B, D) in cell lysates (A, B) and of Ni-NTA purified protein (C, D) at different ATP concentrations. Under
both conditions the YFP/CFP ratio shows a clear ATP dependent change in the CFP-xa-YFP construct whereas hardly any change was observed in the
CrFP-xa-YFP construct (E, F). Excitation of the CFP was at 425 nm excitation.
doi:10.1371/journal.pone.0013862.g006
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During the course of our studies, Imamura et al. [27] published

a FRET based sensor for the visualization of ATP levels inside

single living cells, which is also based on CFP and YFP but

contains the epsilon subunit of the bacterial F(o)F(1)-ATP synthase

as ATP sensing domain. However, in their control studies they do

not see a direct effect of ATP on their sensor. We can explain this

observation by the fact that these authors study changes in FRET

ratios using micromolar concentrations of ATP, while we use

millimolar ATP concentrations. We therefore conclude that the

sensitivity of their ATP binding linker for ATP is much higher

than an electrostatic interaction of ATP with the histidine at

position 148, making their sensor better suited for the analysis of

the intracellular distribution of ATP concentrations in living cells.

In cells or conditions with large and sudden fluctuations in local or

global ATP concentration however, we still conclude that findings

should be interpreted with caution if genetically encoded CFP-

YFP based biosensors are used.

Finally, combining recent spectroscopic work of Villoing et al.

[28], showing that both CFP and its H148D mutant exhibit highly

complex temperature and pH dependent fluorescence decays, and

our work presented here, illustrates that we still have only limited

understanding of the complex and heterogeneous fluorescence

properties of CFP and the H148D variant Cerulean or the effects

thereon of small molecules in its environment. Therefore, further

physicochemical characterization is needed to explain the

sensitivity of CFP fluorescence to changes in solute conditions,

including changes in ATP-Mg concentration. Ultimately, better

understanding of the emissive properties of fluorescent proteins

may lead to a more rational design of FRET sensors.
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Table 3. YFP/CFP peak ratios of CFP – YFP constructs.

mM ATP 0 1 3 5 7 10

Lysate:

CFP-xa-YFP 2.57 2.17 2.10 1.88 1.72 1.64

CrFP-xa-YFP 1.49 1.49 1.47 1.44 1.40 1.36

Purified Protein:

CFP-xa-YFP 2.83 2.72 2.52 2.36 2.10 1.90

CrFP-xa-YFP 1.57 1.56 1.53 1.48 1.43 1.43

YFP/CFP peak ratios in Cos-1 cells expressing CFP-xa-YFP and CrFP-xa-YFP in cell
lysates and in Ni-NTA purified protein from these lysates (see Materials and
Methods) at different ATP concentrations.
doi:10.1371/journal.pone.0013862.t003
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