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Deep learning of quantitative 
ultrasound multi‑parametric 
images at pre‑treatment 
to predict breast cancer response 
to chemotherapy
Hamidreza Taleghamar1, Seyed Ali Jalalifar1, Gregory J. Czarnota2,3,4 & 
Ali Sadeghi‑Naini1,2,3,4*

In this study, a novel deep learning-based methodology was investigated to predict breast cancer 
response to neo-adjuvant chemotherapy (NAC) using the quantitative ultrasound (QUS) multi-
parametric imaging at pre-treatment. QUS multi-parametric images of breast tumors were generated 
using the data acquired from 181 patients diagnosed with locally advanced breast cancer and planned 
for NAC followed by surgery. The ground truth response to NAC was identified for each patient after 
the surgery using the standard clinical and pathological criteria. Two deep convolutional neural 
network (DCNN) architectures including the residual network and residual attention network (RAN) 
were explored for extracting optimal feature maps from the parametric images, with a fully connected 
network for response prediction. In different experiments, the features maps were derived from the 
tumor core only, as well as the core and its margin. Evaluation results on an independent test set 
demonstrate that the developed model with the RAN architecture to extract feature maps from the 
expanded parametric images of the tumor core and margin had the best performance in response 
prediction with an accuracy of 88% and an area under the receiver operating characteristic curve of 
0.86. Ten-year survival analyses indicate statistically significant differences between the survival of 
the responders and non-responders identified based on the model prediction at pre-treatment and the 
standard criteria at post-treatment. The results of this study demonstrate the promising capability of 
DCNNs with attention mechanisms in predicting breast cancer response to NAC prior to the start of 
treatment using QUS multi-parametric images.

Breast cancer is the most common cancer type and the foremost cause of cancer-related death among women1,2. 
In 2020, around 2.3 million new cases of breast cancer were diagnosed worldwide and it caused around 0.7 mil-
lion deaths among females1. Locally advanced breast cancer (LABC) is an aggressive subtype of breast cancer 
that includes up to 20% of new cases each year3. LABC is often identified with tumors greater than 5 cm in size 
and possibly with skin and/or chest wall involvement. Moreover, LABC includes patients diagnosed with inflam-
matory breast cancer or multiple positive axillary lymph nodes3,4.

Patients diagnosed with LABC suffer from high risk of relapse and metastasis with a local recurrence rate of 
about 48% in 5 years5. With availability of different systemic and targeted regimens, neoadjuvant chemotherapy 
(NAC) followed by surgery is currently considered as the standard treatment for LABC patients6–9. In some cases, 
the surgery is followed by adjuvant radiation and/or hormonal therapies to reduce the risk of cancer recurrence4,6. 
Although response to NAC has demonstrated a high correlation to the patient survival, complete pathological 
response is limited to less than 30% of the patients, with about 30% of the patient do not even partially respond to 
NAC3,4,6,10–14. To determine the tumor pathological response to NAC, post-surgical histopathology is considered 
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as the standard approach6–9. However, post-surgical evaluations cannot be used for adjusting the NAC or switch-
ing to salvage treatment.

Currently, monitoring tumor response to NAC mostly relies on physical examination or standard anatomical 
imaging to assess the changes in tumor size. The main limitation of these methods is that detectable changes in 
tumor dimensions usually become apparent after several months of therapy, and in some cases a measurable 
change may not become evident on imaging despite a pathological response to NAC15. Early prediction of tumor 
response to NAC can permit therapy adjustments by modifying the regimen, dose, and/or sequence of treat-
ment options, switching to more effective treatments or even salvage therapies before it is potentially too late for 
individual patients16,17. A personalized strategy for LABC treatment is anticipated to improve tumor response to 
neoadjuvant therapies, spare patients from unnecessary side effects of ineffective treatment, and improve their 
overall survival and quality of life.

Ultrasound is a portable, rapid and cost-efficient imaging modality that can be applied to characterize tissue 
physical properties without injection of any exogenous contrast agents. In particular, quantitative ultrasound 
(QUS) techniques have been introduced to derive quantitative measures of tissue biophysical properties that are 
independent of instrument settings, with a lower level of dependence to the operator18. Quantitative ultrasound 
spectral analysis techniques examine the frequency dependence of the ultrasound radiofrequency (RF) signal 
backscattered from the underlying tissue which can be used for tissue micro-structure characterization18. The 
QUS parameters derived from the analysis of normalized power spectrum of RF signal including the mid-band 
fit (MBF), spectral slope (SS), spectral 0-MHz intercept (SI), effective scatterer diameter (ESD) and effective 
acoustic concentration (EAC) have shown promises in detecting and characterizing malignancies, examination 
of liver tissues and detecting cardiovascular disease19–25.

It has been shown that QUS spectral parameters can detect tumor cell death induced by various anti-cancer-
therapies26–29. Also, several studies have demonstrated that the hand-crafted features derived from the QUS 
parametric maps can be used to predict and monitor breast cancer response to neoadjuvant chemotherapy 
before or within weeks after the start of treatment, with a high correlations to clinical and pathological response 
identified at the end of treatment30–33. For example, it has been demonstrated that textural features of QUS 
spectral parametric maps have higher correlations to histological tumor cell death in response to chemotherapy 
in comparison with QUS mean-value parameters34. Further, A few studies have revealed the potential of the 
textural features of QUS parametric images in predicting LABC tumor response to NAC as early as 1 week after 
starting the treatment35–37. In a recent study, Tadayyon et al. have demonstrated that using the QUS hand-crafted 
features derived from both the tumor core and its margin could improve the performance of tumor response 
prediction before starting the treatment38.

The deep learning approaches have recently been investigated in different applications of medical image 
analysis39,40. Such methodologies can potentially remove the process of extracting carefully designed hand-
crafted features from images required for conventional machine learning techniques. Instead, the deep learning 
frameworks optimize their data-driven feature maps during the iterative training procedure41. In this context, a 
few studies have been conducted on adapting deep convolutional neural networks (DCNN) for NAC response 
prediction in breast cancer patients using magnetic resonance imaging (MRI)42–44. Moreover, few studies have 
explored the potential of DCNNs in analyzing ultrasound images of breast tumors for cancer classification. For 
example, Byra et al. have demonstrated the potential of convolutional neural networks for breast lesion clas-
sification using Nakagami parametric images45. To our knowledge, no previous study has explored the efficacy 
of deep learning techniques with QUS multi-parametric images for therapy response prediction.

In this study, the effectiveness of DCNN methodologies on QUS spectral multi-parametric images has been 
investigated to predict LABC response to NAC before the start of treatment. The QUS spectral parametric 
images were generated using the ultrasound data acquired from 181 LABC patients at pre-treatment. The patient 
responses to NAC were identified after their surgery using the standard clinical and pathological criteria, and used 
as the ground truth to evaluate the performance of the prediction models. The dataset was randomly partitioned 
into a training set and an independent test set. Different DCNN architectures including RAN46, and ResNet47 
were investigated for feature extraction in the developed framework. In a set of experiments, the feature maps 
were extracted from the tumor core and the core and its margin. After averaging the features on different tumor 
cross-sections, a fully connected network was utilized for response prediction. The results demonstrate that the 
developed model with the RAN architecture for extracting feature maps from the expanded parametric images 
of the tumor core with margin had superior performance with an AUC of 0.86 on the independent test set. The 
Kaplan–Meier survival analyses show that the patients predicted as the responders using this model demonstrated 
a significantly better survival rate in comparison with those predicted as non-responders.

Materials and methods
Study protocol.  This study was conducted following the guidelines and regulations in accordance with 
institutional research ethics board approval from Sunnybrook Health Sciences Centre (SHSC), Toronto Canada. 
The study was open to all women aged 18–85, diagnosed with LABC and planned for NAC followed by surgery. 
After obtaining written informed consent, 181 eligible patients were recruited for the study. A core needle biopsy 
was done for each patient to confirm the cancer diagnosis and grade the tumor. The initial tumor size was deter-
mined for each patient using the magnetic resonance (MR) images of the affected breast. Ultrasound B-mode 
images and radiofrequency (RF) data were acquired from the patients (in supine position with arms above the 
head) before the start of NAC, following a standardized protocol. Three experienced sonographers were respon-
sible for ultrasound data acquisition. For NAC, 62.9% of the patients received doxorubicin, cyclophosphamide 
followed by paclitaxel/docetaxel (AC-T/D), 32.6% were treated with 5-fluorouracil, epirubicin, cyclophospha-
mide followed by docetaxel (FEC-D), and 4.5% with paclitaxel and cyclophosphamide (TC). The patients with 
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HER2+ tumors also received tratuzumab. Patients were followed up to 10 years after their treatment and their 
clinical data were recorded for survival analysis. Out of the 181 patients, about 30% (n = 50) were randomly 
selected through a stratified random sampling and kept unseen as an independent test set, and the remaining 
patients (n = 131) were considered as the training set and used to develop and optimize the predictive models.

Clinical and pathological response evaluation.  In keeping with the institutional guidelines, all patients 
had breast surgery after completing their neoadjuvant chemotherapy. Before surgery, the residual tumor size was 
determined using MRI. Standard histopathology was performed on the surgical specimens to assess the patho-
logical response of tumor to NAC. The specimens were stained with hematoxylin and eosin (H&E) and pre-
pared when possible on whole-mount 5″ × 7″ pathology slides. The mounted slides were digitized using a confo-
cal scanner (TISSUEscope, Huron Technologies, Waterloo, ON). A board-certified pathologist who remained 
blinded to the study results examined all pathology samples. A modified response (MR) grading system based on 
response evaluation criteria in solid tumors (RECIST)48 and histopathological criteria38,49 was used to categorize 
the patients into two groups of responders and non-responders, as before50. In the MR grading system, the MR 
score is defined as follows: MR 1: no reduction in tumor size; MR 2: less than 30% reduction in tumor size; MR 
3: between 30 and 90% reduction in tumor size or a very low residual tumor cellularity determined histopatho-
logically; MR 4: more than 90% reduction in tumor; MR 5: no evident tumor and no malignant cells identifiable 
in sections from the site of the tumor (ductal carcinoma in situ may be present). In this study, patients with a 
MR score of 1–2 (less than 30% reduction in tumor size) were considered as non-responders, and patients with 
a MR score 3–5 (more than 30% reduction in tumor or very low residual tumor cellularity) were determined 
as responders. In keeping with this, 138 and 43 patients were identified as responders and non-responders, 
respectively.

Ultrasound data acquisition.  Ultrasound RF data were acquired utilizing an RF-enabled Sonix RP sys-
tem (Ultrasonix, Vancouver, Canada) and an L14-5/60 transducer. The transducer operated at the center fre-
quency of ~ 6 MHz with a − 6 dB bandwidth of 3–8 MHz. The RF data were acquired with a sampling frequency 
of 40 MHz and digitized with a 16-bit resolution. For each tumor, the ultrasound data were acquired at four to 
seven image planes across the breast with approximately 1 cm intervals. The focal depth was set at the center of 
the tumor depending on the individual patient circumstances. The breast region for ultrasound scanning was 
specified by an oncologist who determined the acquisition scan planes via a physical examination of the patient. 
The image size along the lateral and axial directions was 6 cm and 4–6 cm, respectively.

QUS parametric map generation.  For generating the parametric images, QUS spectral analyses were 
performed in conjunction with a sliding window analysis (described below) to derive MBF, SI, ESD, and EAC 
parameters22,23. The mean power spectrum was obtained by averaging over the Fourier transform of the Han-
ning-gated RF data calculated for every scan line of the analyzed window. The average power spectrum was 
normalized using a reference phantom method to remove the effects of the system transfer function and trans-
ducer beam-forming51,52. The reference phantom was composed of 5–30 μm diameter glass beads embedded 
in a homogeneous background of microscopic oil droplets in gelatin (Medical Physics Department, University 
of Wisconsin, USA). The reference phantom had an attenuation coefficient of 0.576 dB/MHz.cm and a speed 
of sound parameter of 1488 m/s. The MBF and SI parameters were estimated using a linear regression analysis 
within the − 6 dB bandwidth of the transducer22,53,54. The ESD and EAC parameters were derived by fitting a 
spherical Gaussian form factor model to the estimated backscatter coefficient55,56.

To generate the QUS parametric maps for each tumor, the tumor core was manually outlined by trained staff 
under the supervision of expert oncologists on each scan plane using the associated B-mode image. The tumor 
margin contour was automatically generated with a thickness of 5 mm around the core, based on the observa-
tions of a previous study38. The parametric maps were generated for all imaging planes of the tumor using a 
sliding window analysis throughout the entire region of interest (tumor core and margin) with windows of 
size 2 mm × 2 mm and 95% overlap in both lateral and axial direction, where the calculated parameter for each 
window was assigned to its center. The sliding window size was selected such that it covers sufficient ultrasound 
wavelengths in the axial direction for spectral analysis while preserving texture in generated parametric maps, 
with an overlap size to obtain isotropic pixels57,58.

Deep learning model.  The scheme of the deep learning framework developed in this study for response 
prediction is shown in Fig. 1. The framework consists of two cascaded networks. The first network is a DCNN, 
with several convolutional layers as its backbone, adapted to extract the optimal feature maps from the QUS 
parametric images and is called the feature network in this paper. Two main architectures including a modified 
residual network version 101 (ResNet)47 and a modified residual attention network version 56 (RAN)46, were 
investigated in this study as the backbone of the feature network. Figure 1 demonstrates the fully connected 
layers after the convolutional layers (backbone) in the feature network that are applied in training this network 
on single parametric images to extract the optimal feature maps for response prediction. The figure also depicts 
the adapted ResNet and RAN architectures with their residual and attention modules. In the residual mod-
ule applied in the ResNet architecture, the convolutional layers could be skipped through the identity branch. 
This strategy permits a more efficient training of very deep networks such as ResNet to achieve an improved 
performance on unseen samples. In the attention module applied in the RAN architecture, the trunk branch 
determines the information that can be passed through the network, whereas the mask branch determines the 
amount of information from the trunk branch that should be passed. Therefore, the module is able to pass the 
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Figure 1.   Scheme of the developed deep learning framework for response prediction, demonstrating the feature 
and predictive networks (A), the residual module (B), and the attention module (C).
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important information with higher weights and reduce the effect of less-important information in the network’s 
output.

As shown in the Fig. 1, the optimized feature maps obtained from the feature network are averaged over 
all parametric images associated with each tumor, and subsequently used in a second fully connected network 
(predictive network) adapted for response prediction at the patient level (described further below). The predic-
tive network consists of two fully-connected layers with an input layer with the same size as the flatten feature 
vector (256), a middle layer with 100 neurons, and a softmax layer at the end with an output size of two to predict 
the probability of the response categories (responder vs. non-responder) for each patient. Drop-out layers have 
been added after the first and second layer of this network to avoid overfitting and enhance its generalization 
performance.

Preprocessing and model training.  Before training the models, the parametric images were preproc-
essed and adjusted for the convolutional model. About 25% (31 patients) of the training set was randomly 
selected as a validation set to optimize the network hyperparameters. The parametric images were resampled 
to the size of 512 × 512 pixel. Then the pixel values in the parametric images of the training set were normalized 
to (0 1) to facilitate the training convergence. The training set normalization parameters were used for normal-
izing the validation and test sets. In order to improve the network training and alleviate the problem of having a 
relatively small training dataset, data augmentation was applied on the training set. For augmenting the training 
data, flipping horizontally and shifting both horizontally and vertically (maximum shift: 30% of image size) were 
stochastically applied.

In the first step of model training, the feature network was trained to generate the optimal feature maps for 
single QUS parametric images. For training the feature network, parametric images of the training set were fed 
into the network while different imaging planes of each tumor were considered as independent inputs with the 
tumor response as their output. The optimal feature maps for each imaging plane were acquired by feeding its 
corresponding parametric images into the trained feature network. For each patient, the optimal feature maps 
were calculated for all 2D imaging planes of the tumor, flatten to a 1D vector, and subsequently averaged over 
the entire tumor volume to obtain an averaged feature vector with size of 256 × 1 that was used in the predictive 
network. This strategy was applied to standardize the input size of the networks for different tumors with various 
sizes and, consequently, different number of QUS parametric images. The predictive network was trained using 
the averaged feature vectors associated with the patients in the training set, and evaluated over the independent 
test set for response prediction. For training the networks, the cross entropy was used as the loss function, with a 
cost weight ratio of C:1 (C ≥ 1; optimized as described below) for non-responders to responders to account for the 
unbalance in the dataset. The network hyperparameters including the dropout rate (range 0.3–0.7), width of the 
hidden fully connected layers (range 50–300), learning rate (range 0.1–0.00001), cost weight (range 1 ≤ C ≤ 10), 
and batch size (range 4–16) were optimized using the validation set. Preliminary experiments were conducted 
using the validation set to select the network training optimizer among the Adam and stochastic gradient descent 
(SGD) methods, where the Adam optimizer was selected and applied59. The optimal hyperparameters for train-
ing the models were as follows: dropout rate = 0.5, learning rate = 0.0001, cost weight = 5, batch size = 8. Early 
stopping was used to avoid overfitting by monitoring the network’s performance on the validation set during 
the training process.

Response prediction and risk assessment.  In different experiments, the QUS multi-parametric images 
(MBF, SI, ESD, and EAC) of the tumor core, as well as the core and its margin were investigated, as the inputs to 
the DCNN framework and their performance were compared in response prediction. The deep learning models 
with different feature networks were trained and optimized using the training set. The performance of the opti-
mized models was evaluated on the independent test set using the accuracy, sensitivity, specificity, and the ROC 
analysis. In this study, sensitivity refers to the ratio of the non-responses that were predicted as non-responder, 
and specificity refers to the ratio of the responding patients correctly predicted as responder by the model. A 
prediction difference analysis (PDA) was performed to visualize the importance of different regions of the input 
QUS parametric images to the network’s decision60. In each iteration of the modified PDA procedure applied in 
this study, a small patch (8 × 8 pixel with 50% overlap between adjacent patches) of one of the input parametric 
images was occluded (pixel values were set to zero). The absolute change in the model’s prediction (output prob-
ability) was then calculated compared to the case of inputting the original parametric images, and considered 
as the impact of the occluded patch on the network’s decision. The PDA maps were generated for each input 
parametric image by sliding the occluding patch over the image and assigning the estimated impact to its center.

The efficacy of the developed predictive models in differentiating the LABC patients with different recurrence-
free survival was assessed through Kaplan–Meier survival analysis. The survival curves were generated for the 
responders and non-responders identified based on each model’s prediction at pre-treatment, and at post-treat-
ment based on the clinical and histopathological criteria. A long-rank test was applied to assess for statistically 
significant differences between the survival curves of the two response cohorts obtained in each experiment.

Results
Table 1 presents the clinical and histopathological characteristics of the participating patients. The patients had 
an average initial tumor size of 5.2 cm, and an average residual tumor size of 2.5 cm at the end of treatment. 
Using the MR grading system, 76.2% and 23.8% of the patients were identified as responders and non-responder, 
respectively, at the end of treatment.

Figure 2 demonstrates QUS parametric maps of MBF, SI, ESD, and EAC overlaid on the ultrasound B-mode 
images obtained from representative responding and non-responding patients, respectively. As observed in these 
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representative images, the QUS parametric maps associated with the responding and non-responding patients 
demonstrated different mean and spatial pattern of pixel values within the tumor core and margin. The figure also 
shows the PDA maps associated with these parametric images, visualizing the relative impact of different regions 
in each image to the network’s decision for response prediction. Figure 3 demonstrates H&E stained histopathol-
ogy images of the surgical specimens acquired from representative responding and non-responding patients. In 
responding patients, minimal tumor cellularity usually remained within the tumor bed after chemotherapy, as 
evident in the histopathology slides. In contrast, histopathology images of the non-responding patients typically 
indicated large areas of residual disease with minimal chemotherapy effects.

Table 2 presents the results of response prediction in different experiments on the validation and independ-
ent test sets. The ROC curves associated with the validation and test sets for different predictive models are 
demonstrated in Fig. 4. Using the ResNet architecture as the model’s backbone to extract feature maps from 
the parametric images of the tumor core resulted in an AUC of 0.77 on the independent test set. Extending the 
input parametric images to include both the tumor core and its margin improved the AUC of this model to 0. 83.

Applying the extracted features from the parametric images of the tumor core using the RAN architecture 
resulted in an accuracy of 80%, and an AUC of 0.82 on the independent test set. Similar to the model with the 
ResNet architecture as the feature extractor, the overall performance of this model improved by extending the 
input parametric images to include the tumor margin. In particular, this model resulted in the best prediction 
performance with an accuracy and AUC of 88%, and 0.86, respectively, on the independent test set. All models 
demonstrated a relatively similar performance on the validation and test sets, implying a good generalizability 
of the trained models on never seen samples.

Figure 5 presents the 10-year recurrence-free survival curves for the responders and non-responders identi-
fied based on the clinical and histological criteria at post treatment, and at pre-treatment using the four pre-
dictive models presented in Table 2. The survival analysis demonstrated a statistically significant difference (p 
value = 0.030) between the survival curves of the responders and non-responders identified at post-treatment. 
Among the response cohorts predicted at pretreatment, the ones identified using the predictive models with 
the RAN as their feature network demonstrated a statistically significant difference or approaching significance. 
Specifically, whereas the model that input the parametric images of the tumor core approached a significant dif-
ference (p value = 0.058), the one with the input parametric images extended to the tumor margin demonstrated a 
statistically significant difference between the survival of the two predicted cohorts (p value = 0.040). The response 
cohorts identified by the other two models at pre-treatment did not show a significant difference in survival.

Table 1.   Patients’ characteristics.

Data set All Training Test

Characteristic Mean ± SD/Percentage

Age 50.6 ± 11.5 years 51.2 ± 11.5 years 49.2 ± 11.4 years

Initial tumor size 5.2 ± 2.7 cm 5.3 ± 2.7 cm 5.1 ± 2.7 cm

Residual tumor size 2.5 ± 3.4 cm 2.8 ± 3.7 cm 1.9 ± 2.3 cm

Histology

Invasive ductal carcinoma 90.3% 89.8% 91.7%

Invasive lobular carcinoma 3.4% 4.6% 0.0%

Invasive metaplastic carcinoma 6.3% 5.6% 8.3%

Tumor grade

Grade I 10.6% 12.1% 10%

Grade II 38.8% 36.4% 45%

Grade III 50.6% 51.5% 45%

Molecular features

ER +  63.4% 62.5% 64.4%

PR +  54.7% 55.5% 51.1%

HER2 +  34.3% 30.5% 46.7%

Triple negative 24.4% 26.6% 17.8%

ER + /PR + /HER2 +  18.6% 18.0% 20.0%

ER + /PR + /HER2- 33.7% 35.9% 26.7%

ER-/PR-/HER2 +  10.5% 9.4% 15.5%

NAC

AC-T/D 62.9% 63.2% 62%

FEC-D 32.6% 31.2% 36%

TC 4.5% 5.6% 2%

Therapy response

Responder 76.2% 74.8% 80%

non-responder 23.8% 25.2% 20%
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Discussion and conclusion
In this study, a deep learning methodology was proposed and investigated for predicting breast tumor response 
to NAC using the QUS parametric images acquired at pre-treatment. In the proposed framework, a DCNN archi-
tecture is utilized to extract optimal feature maps from QUS multi-parametric images. The flatten feature vectors 
associated with different cross-sections of a tumor are averaged over the entire tumor volume. A fully-connected 
network is subsequently applied for response prediction, using the average feature vectors. The performance 
of the framework was investigated in a set of experiments using two different DCNN architectures including 
the ResNet and RAN as the backbone feature extractor, and the QUS parametric images of the tumor core, and 
the tumor core with margin as the input. The best performance in response prediction was achieved with the 
RAN architecture and the extended parametric images of the tumor core and margin, with an AUC of 0.86 on 
the unseen test set. Long-term survival analyses demonstrated statistically significant differences between the 
survival of the responders and non-responders identified at pre-treatment based on this model’s prediction, and 
at post-treatment based on the standard clinical and pathological criteria.

A number of previous studies have investigated the potential of QUS multi-parametric imaging in predicting 
and monitoring response of breast cancer tumors to NAC38,61. In those studies, handcrafted features such as the 
statistical and textural features of the QUS parametric maps were analyzed and applied for response predic-
tion using traditional machine learning methods. With predefined hand-crafted features, the feature extraction 

Figure 2.   Ultrasound B-mode images (A), and parametric overlays of MBF (B), SI (C), ESD (D), and EAC (E) 
on B-mode images acquired at pre-treatment from a representative responder and non-responder to NAC, and 
the associated PDA maps visualizing the level of impact of different regions in each parametric image on the 
network’s decision (model 4 in Table 2). The tumor core has been outlined with white dashed line.
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process is easier to understand and analyze. But these features only carry limited information based on their 
definition. Further, carefully determining and defining optimal discriminatory features for each specific applica-
tion is crucial in this approach but is not always feasible. In this study, we investigated the potential of DCNN 
architectures for extracting optimal features from QUS multi-parametric images automatically through multiple 
convolutional layers. The advantage of using deep learning model for feature extraction is that the model learns 
during the training process to extract the important information while considering the whole image. As the PDA 
maps generated for the QUS parametric images implied, different regions of these parametric maps contribute 
substantially to the model’s prediction, albeit with varying levels.

It has been shown that intratumor heterogeneity is an important factor in responsiveness of tumors to cancer 
therapy, with several studies demonstrated the value of imaging-based quantitative features of tumor heteroge-
neity for response prediction23,62–65. The results obtained in the study here using the DCNN feature extractors 
are in agreement with the observations of those studies. Specifically, the features maps extracted from the QUS 
multi-parametric images are computed using multiple layers of convolutional filters throughout a DCNN archi-
tecture and can quantify the spatial heterogeneity within multi-channels of the QUS images simultaneously. The 
results of different experiments performed in this study demonstrated that extending the input QUS parametric 
images to include the tumor margin in addition to the core enhances the performance of the model in response 
prediction. Further, whereas the PDA maps demonstrated considerable contribution of various regions of the 
QUS parametric images to the network’s decision, the impact of the margin areas on the model’s prediction was 
highlighted particularly in the MBF and EAC parametric images. These results are in agreement with observa-
tions of the previous studies in which the imaging-based characteristics of tumor margin were shown important 
in different diagnostic and prognostic applications38,65–67.

The RAN architecture demonstrated a better performance compared to the ResNet in deriving optimal 
feature maps from QUS parametric images for response prediction. Both architectures use residual modules to 
overcome the overfitting throughout their very deep layers. The RAN architecture also utilizes attention modules 
that potentially facilitate feature optimization. Specifically, the attention module enables the network to focus 
on significant and influential regions of images while extracting the feature maps. The observations of this study 
imply that the attention modules in the RAN architecture have been successful in identifying the important 
regions of the QUS parametric maps for response prediction.

A potential limitation associated with this study is the relatively small dataset that was available to train and 
optimize the models. Training large DCNN models on small datasets may result in overfitting and lack of gen-
eralizability. Effective approaches including network regularization through drop-out layers and early training 
stopping was applied in this study to reduce the chance of model overfitting and improve its generalizability. An 

Figure 3.   Histopathology images of surgical specimens obtained from representative patients.

Table 2.   Results of response prediction on the validation and independent test sets with different models. Acc 
Accuracy ± 95% confidence interval, Spec specificity, Sen sensitivity, AUC​ area under the ROC curve ± 95% 
confidence interval.

Model
Feature 
network

Input parametric 
maps

Validation set Test set

Acc (%) Spec (%) Sen (%) Loss Acc (%) Spec (%) Sen (%) AUC​

1 ResNet Core 77 ± 15 76 78 0.27 80 ± 11 82.5 70 0.77 ± 0.12

2 ResNet Core + margin 86 ± 12 90 78 0.17 82 ± 11 85 70 0.83 ± 0.10

3 RAN Core 83 ± 13 86 78 0.22 80 ± 11 80 80 0.82 ± 0.11

4 RAN Core + margin 86 ± 12 90 78 0.16 88 ± 9 92.5 70 0.86 ± 0.10
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independent unseen test set was applied to evaluate the model’s performance, where the results demonstrated a 
good generalizability on never seen samples. Availability of larger datasets in future would permit more compre-
hensive training of the models and more rigorous evaluation of their prediction performance for new patients. In 
terms of NAC, the majority of the patients in this study (95.5%) were treated with either AC-T/D or FEC-D. The 
performance of the response prediction models in this study was relatively similar for the patients treated with 
different NAC regimens with the number of incorrect predictions proportional to the number of patients receiv-
ing each regimen. Nevertheless, response to different NAC regimens may be different for a patient. Future strati-
fied analysis on larger datasets with separate models for different NAC regimens and possibly various molecular 
subtypes may result in more robust predictive models. Such models can also facilitate future randomize clinical 
trials to investigate the adjustment of NAC regimen for patients with low likelihood of response to the standard 
treatment. In conclusion, this study demonstrated that DCNN models can be adapted in the context of quantita-
tive imaging for therapy response prediction. The results indicated a better performance of the attention-guided 
convolutional networks in deriving optimal quantitative features form QUS multi-parametric images. The deep 
learning models developed in this study could predict the survival-linked response of LABC patients to NAC 
before starting the treatment with a high accuracy. Predicting the outcome of NAC at pre-treatment would help 
the clinicians to adjust ineffective treatment regimens for individual patients. The results obtained in this study 
are promising and encourage further investigations using other DCNN architectures with the data acquired 
from larger (multi-institutional) cohorts of patients to evaluate the robustness of the methodologies in clinic.

Figure 4.   ROC curves generated for responding and non-responding patients in the validation set and 
independent test set identified at pre-treatment using the predictive models 1–4 in Table 2 (A–D).
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