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In this article we present how in silico cardiac modelling has matured into a decision making
tool in drug discovery, contrast the different approaches being proposed and show the

opportunities and challenges that lie ahead for its acceptance by regulators.
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On the tenth anniversary of two key International Conference on

Harmonisation (ICH) guidelines relating to cardiac proarrhythmic safety,

an initiative aims to consider the implementation of a new paradigm that

combines in vitro and in silico technologies to improve risk assessment. The

Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative (co-

sponsored by the Cardiac Safety Research Consortium, Health and

Environmental Sciences Institute, Safety Pharmacology Society and FDA)

is a bold and welcome step in using computational tools for regulatory

decision making. This review compares and contrasts the state-of-the-art

tools from empirical to mechanistic models of cardiac electrophysiology,

and how they can and should be used in combination with experimental

tests for compound decision making.

What is modelling and what are models?
Scientific models, although only reflecting simplified reality, help us to integrate our knowledge,

to quantify a phenomenon and to predict outcomes; hence these models can facilitate evidence-

based decision making. They can act as a repository of information for the modelled biological

system allowing the viewer, researcher or modeller to understand the underlying assumptions of

the model, for example which biological molecules are represented and what concentration and

what association with other molecules are present. The next step is to take those static pictures

and make them dynamic. For example, what happens to those biological molecules over time

given a set of assumptions (model equations), initial conditions (model parameters) and con-

centrations of biological molecules (model variables)? This could be achieved by formulating and

solving differential equations that simulate, for example, binding events, enzyme kinetics or the

gating properties of cardiac ion channels.
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GLOSSARY

APD90 action potential duration at 90% repolarisation (time
to return to the resting membrane potential)
Bidomain equations differential equations representing the
time and space changes in charge in two compartments
(intra- and extra-cellular), owing to diffusion of charges
separately and/or differently in each compartment, and
transmembrane currents linking the two
Cardiac arrhythmia irregular heartbeat
Cardiac action potential the change in the electrical
membrane potential of the cardiomyocyte

Bottom-up describes approaches that start with the
individual molecules, whereas top-down begins at the
physiological level and attempts to include only the
physiological elements necessary for explaining the
phenomena. Middle out is a more pragmatic attempt to
address the short comings of the top-down and bottom-up
approaches
Torsade de Pointes a polymorphic ventricular arrhythmia
that exhibits distinct characteristics on the electrocardiogram
(ECG) and can potentially lead to sudden cardiac death
CiPA the comprehensive in vitro proarrhythmia assay, a new
paradigm for nonclinical assessment of cardiac risk, by a
combination of in vitro, in silico and integrated human-cell-
based assay techniques
Ensemble models an approach that uses several sets of
model parameters, rather than a single set, to give a
collection of predictions. Generally used to provide an
indication of variance in the prediction or to represent a
population
hERG human Ether-a-go-go-related gene encodes the (a-
subunit of the) protein underlying IKr, a major repolarisation
current in the cardiomyocyte during an action potential
Hodgkin–Huxley model a mathematical method, extended
to represent the cardiac ion channel, that uses independent
variables to describe the voltage and time-dependent gating
properties of an ion channel
In silico models describes models that use computers and
algorithm-based approaches for representing a system.
Particularly used to contrast to, for example, in vitro (cell-
based) models or in vivo (animal-based) models
Markov state model an alternative method to Hodgkin–
Huxley approaches that represents the open, closing and
inactivation of ion channels as a sequence of dependent
states and transitions, which can be dependent upon drug
binding and ion concentrations, voltage or time
Model calibration the process by which all or a subset of
parameters or components of the model are adjusted or
modified to best fit with a set of previously measured
outcomes
Model validation the process of testing the performance of
an in silico model against a set of measurements that are
(usually) not part of the model calibration process
Monodomain equations differential reaction–diffusion
equation representing the time and space changes in charge
throughout a single spatial ‘domain’ – the inside of cells – and
the contributions that the transmembrane currents make
to this
Parameter set this term is used to describe the set of values
that form components of the algorithm behind the in silico
model that are fit to characterise the system. These
parameters might or might not have a direct physical
meaning (e.g. the expression level of a protein or the gating
kinetics of an ion channel)
PK/PD the study of how the body responds to a dose of drug
[i.e. the drug concentration over time (PK) and the observed
effects on the body by the dose (PD)]
Quantitative systems pharmacology (QSP) a discipline that
takes a more mechanism-systems-based approach at
modelling the pharmacology of a drug and its effects on the
body
Top-down, bottom-up, middle-out modelling these terms
are used to describe the starting point for the construction of
an in silico model to explain the phenomena of interest.
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Before we describe how models are used in drug discovery, it is

worth reflecting upon the term ‘model’, which can have different

meanings for different communities. At a high level, there are

principally two main types of (in silico) models: statistical models

and mechanistic models. Statistical (or empirical) models, some-

times referred to as ‘black-box models’, are built on historical data,

and are ‘trained’ to imitate the trend of the data and to capture the

relation between datasets. Mechanistic models are built based on

our pre-knowledge of the system and the physical laws determin-

ing the system’s output; they offer a descriptive advantage over the

black-box approach by articulating more explicitly what is being

represented by the model. Often a model that is mechanistic at one

scale is black-box at another scale (e.g. we might model cell

membrane potential with an electric circuit analogy but ion

channel gating voltage-dependence is encoded by a statistical line

of best fit equation fitted to measured data points).

Statistical models (including machine-learning approaches) of-

ten need to be trained on large datasets to increase their predictive

power; a good statistical model should capture what we do not

understand yet, see for example [1]. If our pre-knowledge is ade-

quate, a mechanistic model does not need to be trained and should

be predictive in new situations. However, this is infrequently the

case, thus training and/or calibration datasets are often used to

optimise all or a subset of the model parameters. In these cases, the

lines between statistical and mechanistic models blur. Any mis-

match between the reality and the output of a mechanistic model

is useful, because it highlights limitations of the model that might

indicate gaps in our knowledge [2]. An example of this is the

prediction of the stoichiometry of the sodium/calcium exchanger

when Denis Noble and Dario DiFrancesco formulated a model

with dynamic concentration changes [3]. Mechanistic modelling,

particularly that from a biological or physiological background,

has historically included more complexity as more knowledge is

learned, whereas the empiricist tries to minimise complexity.

Rather than being seen as competing and isolated approaches,

there is a need for a more dialectic approach with increased

iteration and crosstalk between these modelling methods; we

can (and should) see this as a race towards more-productive

models.

Current modelling in drug discovery and development
Modelling and simulation (M&S) forms an integral part of the drug

discovery and development process and its systematic application

has been readily adopted by regulatory agencies as well as phar-

maceutical research organisations [4,5]. M&S is expected to

improve efficiency and productivity of drug discovery and devel-

opment with its ability to test numerous scenarios in silico and to
www.drugdiscoverytoday.com 925
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FIGURE 1

Schematic of a typical drug discovery pipeline with how and when different in vitro, in vivo and in silico techniques could be applied for cardiac risk assessment. In

the ideal state, each of the studies should provide sufficient information to support and aid decision making fully for the ascending milestone points along the
drug discovery and development pipeline. Abbreviations: EIH, entry into human; TQT, thorough QT study; AP, Action Potential.
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select those with the highest probability of success. A broad range

of mathematical models are applied, with varying complexity and

predictive power. The degree of model complexity is determined

by the available information, the specific questions that need to be

addressed and the stage of drug development [6]. We see in Fig. 1

that different modelling efforts support decision making along the

drug discovery and development pipeline. Additionally, M&S is

integral to decision making within the pharmaceutical industry.

Translational pharmacokinetic/pharmacodynamic (PK/PD; see

Glossary) modelling of efficacy and safety robustly supports a drug

development programme when implemented in early-stage devel-

opment [5,7]. It has the potential to project the pharmacological

response in humans based on the exposure–response relationship

in animal species by accounting for species differences [8]. In the

early clinical development phase, it predicts the range of effica-

cious and tolerable target exposure and supports the selection of

the most favourable dosage regimen and study design elements,

such as selection of predictive PD biomarkers and PK sampling

time points [5].

The impact of pharmacometrics, or modelling within clinical

pharmacology, on approval and labelling decisions has greatly

increased over the past decade [9]. These empirical, data-driven

top-down approaches are applied to characterise the exposure–

response relationship for efficacy and safety providing a quantita-

tive assessment to guide dose selection and trial design decisions

[10]. In recent years, approaches such as physiologically based

pharmacokinetic (PBPK) models have been increasingly included

in regulatory submissions, for example for the prediction of drug–

drug interactions, drug-exposure predictions in paediatrics, in

organ-impaired subjects and the effect of other patient factors

[11]. Applications of PBPK specific to industry include lead opti-

misation and candidate selection, prediction of first-in-human PK

and continue to support decision making in later phases [11].

These more mechanistic models provide a quantitative framework
926 www.drugdiscoverytoday.com
for prediction of systemic and tissue exposures with the distinct

separation of physiology and drug-dependent information. PBPK

models enable the extrapolation from in vitro to in vivo [12], from

animal to human [13], from healthy volunteers to patient or

special populations [11] and are applied at all stages of drug

development [14]. Quantitative systems pharmacology (QSP)

has emerged more recently [15] as a paradigm that combines

elements of translational PK/PD and systems biology aiming to

understand how the drug modulates cellular networks in space

and time to predict how the pharmacological response affects the

human pathophysiology [16]. This ‘middle-out’ approach (as op-

posed to ‘top-down’ or ‘bottom-up’), perhaps first described by

Brenner et al. [17] and more recently by Vicini and van der Graaf

[18], provides a repository of knowledge, which is powerful for

mechanism-based extrapolation and presents the opportunity to

predict unstudied scenarios throughout all stages of discovery and

development [18]. It applies the concepts of systems engineering,

systems biology and PK/PD to the study of complex biological

systems through interaction between mathematical modelling

and experimentation [19]. The rich heritage of mathematical

cardiac electrophysiology modelling [20] makes this field one of

the most mature examples of this middle-out (mechanistic)

modelling approach, and as such offers a chance to define the

pathway for wider uptake of QSP-type models.

Earlier in the drug discovery phase, the requirement is for an

improved translation from early screening (or ideally even earlier

computational chemistry) approaches to clinical cardiac out-

comes, in the form of the thorough-QT (TQT) study or cardiac

adverse events [21]. Key questions about compound progression

are asked along this pipeline, and the value for M&S is to align and

best support the decision making activities that take place.

Figure 1 shows a typical drug discovery pipeline and how in silico

cardiac modelling approaches (together with traditional experi-

mental approaches) can support the decision points along the
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pathway. Ideally, more well established models such as QSAR

models and simpler (e.g. classifier) models can be employed for

many compounds (e.g. early chemistry-driven discovery). Later,

when increasing amounts of experimental data are generated, for

instance from automated patch-clamp systems, more mechanis-

tic models can be utilised for the purpose of investigational and

interpretation type work.

Introduction to cardiac models
The groundbreaking work of Hodgkin & Huxley on squid giant axon

published in 1952 [22] laid the core foundation for the mechanistic

modelling of electrophysiology. This work linked the kinetics of ion

channel conformation change with ion fluxes across the membrane

and the change of the transmembrane potential. In 1962, Denis

Noble [23] successfully extended the Hodgkin–Huxley equations to

model the electrophysiology of cardiac cells. Since then, with the

emerging understanding of the underlying biology – for example

discovery of new ion channels [24], exchangers [25,26] and pumps

[27] – cardiac cell models have been developed further to have more-

detailed representations of cellular components. These models have

been brought to a relatively mature state and have been used to

guide further investigation of biology and underlying mechanisms

[e.g. prediction of the sodium/calcium exchanger (NCX) character-

istics] [26]; to quantify certain phenomena, for example adaptation

to different pacing frequency [28]; or for understanding mecha-

nisms related to atrial fibrillation [29,30] and hypertrophic cardio-

myopathy [31]; to refine experimental protocols [32]; and more

recently, prediction of drug action (reviewed in more detail in later

sections). Models have been developed for different cell types: for

example pacemaker cells [33,34], atrial cells [26,35–37], Purkinje

fibres [23,38–40] and ventricular cells [41–46], and for different

species: for example rabbit [26,35,47], guinea pig [42–44], human

[35,41,45,46,48].

The selection of ion channels represented in cellular models can

be different. This can be as a result of biological differences

between cell types (e.g. funny current is mainly expressed in

pacemaker cells). It can also reflect advances in the understanding

of cellular biology and physiology when new ion channels are

identified and characterised: the earlier models might have fewer

channels, exchangers and pumps included or they have ‘lumped’

currents (e.g. a generic delayed rectifier potassium current without

the separate rapid and slow components, IKr and IKs) [42]. Models

with ‘lumped’ currents can be inconvenient to use for drug-safety

prediction, where the concept of the particular ion channel pro-

tein that is blocked by a compound needs to be linked to an

individual ion current.

Ion currents can also be modelled differently. Not only can the

parameter values differ (e.g. current conductance, inactivation or

activation time constants) but the formulation can also differ. For

example, the L-type calcium (ICaL) current can be modelled using

Hodgkin–Huxley formulation (which assumes independence of

different ion channel gating kinetics) [47] or a more generic

Markov model [49]. One can also use Markov models with differ-

ent numbers of transition states to model the same current, for

example four states [50], five states [51] and six states [52] in

Markov models for IKr. An exciting new development is the

derivation of Markov models from the energy landscape produced

by molecular dynamics simulations [53]. At present this approach
has been taken for IKs, as more ion channel structures become

known this could be an excellent way to derive Markov models.

To address the complexity of intracellular Ca2+ handling in the

cardiac cells, cardiac cellular models can have several intracellular

compartments with different calcium handling processes (e.g.

Ca2+ release or Ca2+ uptake) in each compartment and Ca2+

diffusion between the compartments. The number of intracellular

compartments can differ from one model to another from the

earlier single compartment models [42] to multicompartment

models [49,54]. Although cardiac cell models differ from each

other in many ways, they were often built as extensions to earlier

models, with some channel formulations and parameter values

inherited. A 2012 review paper [55] nicely summarises this inheri-

tance between different models, which can be viewed as a family-

tree diagram in Fig. 2.

In Fig. 2, we see a complex interrelation and heritage between

cardiac cell models built for different cell types or different species.

One could question to what degree a model is really cell-type- and

species-specific. A meta-analysis was performed [56] on two fre-

quently used human models: ten Tusscher 2004 [41] and Iyer 2004

[57]. The authors found that although these two models were

fitted to different datasets, both models were based on data

obtained from multiple species: �50% from human, �25% from

guinea pig and �25% from other species (including frog). The

experimental conditions were also diverse with measurement

temperatures varying from 108C to 378C. One needs to consider

these limitations when performing a species-specific simulation or

prediction. Owing to the differences in the model parameterisa-

tion and structure, even models built to simulate the same phe-

nomenon (e.g. same cell type and same species) can behave very

differently under perturbation (e.g. drug block) [58]. This is an

issue (perhaps comfortingly) not solely in the domain of cardiac

models. Therefore consideration for how mathematical

approaches have been applied elsewhere for determining model

selection could be worthwhile [59]. Awareness of the assumptions

and underlying experimentation and data used for the calibration

of such models is essential. One must partner that awareness with

careful evaluation and validation before using these models for

prediction.

Cardiac physiology is modelled not only at the single-cell level

but also in multiple tissue dimensions from 1D (representing a

string of cells), 2D (representing a sheet or layer of cells) through to

3D models of the whole heart and torso. To couple the single

cardiac cell models together to reflect the physiology, the electrical

propagation from one cell to another is modelled as the diffusion

of charge throughout space, with the cardiac action potential

models providing sources of charge. The equations for represent-

ing this diffusion are termed either the mono- or bi-domain

equations. In the bidomain model intracellular and extracellular

charges can diffuse independently, whereas the monodomain

equation assumes intracellular and extracellular diffusion operate

proportionally but in the same directions. The monodomain

equation is a special case of the bidomain equation, and can help

to reduce the computational demand of spatial models at the

expense of being unable to represent changes in just extracellular

currents (e.g. during defibrillation). In both cases, the complex

fibre direction in the heart is represented by the diffusion of charge

operating more strongly in these equations in some directions
www.drugdiscoverytoday.com 927
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FIGURE 2

Complex heritage and interrelation between some frequently used cardiac electrophysiological cell models. Lines indicate how models inherit formulations from
‘parent’ models, whereas node colour indicates the reported species type, and shape is the reported cell type of the model. The inheritance shown in this figure

was adapted, with permission, from [55].
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than others [60]. Although the single-cell-level is sufficient to

explore the impact of ion current changes on the action potential

or calcium cycling, scaling up from the single-cell- to whole-organ-

and whole-body-level will be a crucial step in supporting our

understanding of how the effects at the ion-channel-level translate

to changes in the electrocardiogram (ECG) and phenomena such

as re-entry and arrhythmia. Models at these higher scales have

been reviewed elsewhere [61], in the majority of this review we

focus on the cellular-level models that are becoming routinely

used in drug development.
928 www.drugdiscoverytoday.com
How to handle variation in experimental data
Most cardiac models use a fixed set of parameters [33,43,49] – or a

few distinct sets of parameters for different cell populations such as

epicardial, midmyocardial and endocardial cells [62,63] – without

considering biological and experimental variability. Experimental

variation has been recently demonstrated in the context of ion

channel screening [64] and how to respond to this uncertainty is

an important challenge for electrophysiology simulations. This

variability can become important when making a prediction that

accounts for intra- and inter-individual variation or expansion for
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an entire population where distinct subcategories of patients such

as those with genetic channelopathies or underlying comorbid-

ities (e.g. heart failure, atrial fibrillation) cause significant differ-

ences in the cellular action potentials. Population-based

approaches, which can be used to fit a model to multiple datasets,

have been applied to different types of modelling, for example

PBPK modelling [65] and cardiac modelling [66–68]. Statistical

techniques, such as Bayesian inference, have also been used to

parameterise models and to quantify the variability and uncer-

tainty (with probabilities) [69,70] which could be very beneficial

for risk prediction.

Modelling and its application to cardiac risk
assessment
Figure 3 sets out the different scales at which measurements can be

taken and in silico models can be used, a more detailed discussion

on the opportunities for novel experimental techniques occurred

recently at an interdisciplinary workshop [71]. The cardiac model-

ling field has advanced in the sense that in silico approaches and

experimental measurements are now developed to the point

where an assessment of the translation between different scales

(e.g. between ion channel to whole cell or between in vitro to in

vivo) is feasible.

At the lower scales, investigators have described the pharma-

cology of single ion channels and single myocardial cells with

focus on mechanistic approaches. Tissue, organ and whole-body

biophysical models have been employed to understand the

electrophysiology of cardiac activity. At the higher scales, model-

ling efforts are geared towards describing ECG characteristics in

the population and explaining the link to adverse cardiac events

[72]. As in any application, modelling should be pragmatic and its
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Schematic diagram showing that cardiac models (top) and corresponding experim
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adapted, with permission, from [49,75,81], and from StockSnap (https://stocksnap
complexity fit for purpose, often ranging from cellular models

with tens of equations and parameters to simple concentration–

effect relationships. It is useful to recognise that observations (that

can support, for example, model calibration and validation exer-

cises) can be made along all the different scales (e.g. from isolated

ion channel recordings) through single cell recordings, whole

heart wave patterns via techniques such as ECGi [73] up to

consequential observations via clinical trials and the emerging

discipline of real-world data via adverse event recordings and

electronic health records (EHRs) [74]. As a result, academic and

commercial tools, such as the preDiCT project [75,76], the UT-

Heart initiative [77] and the Cardiac Safety SimulatorTM [78], that

include aspects of 3D structure considerations as well as PK, single

and multicellular models are being developed. These tools offer a

chance to bring these multiscale measurements, after careful

calibration and validation, into a single framework for decision

making. Evaluating predictive power for different modelling

approaches is essential for understanding how the additional

complexity that is introduced into the models affects overall

predictive capacity. To minimise discordance between the differ-

ent scales, there is a tendency to add increasing complexity to

models. This can be reflected by observing that the number of

parameters in models correlates well with the CPU transistor count

over time (Davies et al., unpublished data). It is here that an

iterative approach that can simplify and add the necessary com-

plexity should be applied; bigger is not necessarily better [79,80].

A challenge facing drug developers in the assessment of cardiac

safety is the interpretation of preclinical findings and their trans-

lation to human. The pharmaceutical industry typically evaluates

a palette of in silico, in vitro and in vivo assays for potential

cardiovascular risk before testing in human. ECG and blood
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ental platforms (bottom) have been developed for use at different scales and

hole organ and whole body (ECG). The biophysically detailed model has been

reas the empirical models tend to focus on modelling in vivo data such as ECG

ariants (virtual subjects) within a population. Images within the figure were
.io).
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pressure recordings in animal models are often used to bolster

confidence in a drug candidate’s in vivo cardiovascular effects and

support decision making on the compound’s suitability for pro-

gression. Various publications describe the top-down analysis of

such data and PK/PD models in support of the interpretation of in

vivo findings [82–84]. To that purpose, the models attempt to

elucidate and reproduce the relationship between drug exposure

and observed changes in various cardiovascular endpoints (e.g.

QRS, QTc, T-wave morphology, heart rate, blood pressure and

contractility) [85,86]. M&S techniques enable developers and

researchers to gain key insights for the assessment of a compound’s

therapeutic index, for instance through the extrapolation of expo-

sures associated with the onset of cardiovascular effects or specific

effect magnitudes (e.g. 10 ms QTc prolongation). These exposure–

response analysis techniques have recently formed a component

of data presented to support a TQT study waiver and a key part of

Phase I clinical studies [87]. Often, semi-mechanistic, empirical or

statistical approaches are preferred over mechanistic models, ow-

ing to the lack of, or partial understanding of, the mechanism of

pharmacological action. This in turn could hinder the translat-

ability of findings across species, and indeed discordance is some-

times observed between predictions and clinical outcomes [80].

Naturally, opportunities exist to combine bottom-up and top-

down approaches to use their strengths and potentially link phar-

macological effects at a cellular level to cardiac observations and

clinical outcomes. A mechanistic simulation of cellular processes

should allow prediction of cardiac toxicity potential in a detail

unsurpassed by empirical concentration–effect relationships, par-

ticularly for compounds affecting ion channels in novel ways.

Cardiac myocyte modelling holds the promise of enabling truly

translational in vitro investigations and in silico extrapolations

from animal to human. By contrast, the complexity of most

biophysical models does not readily permit their widespread use

for high-throughput risk assessment and compound prioritisation

in early development. It has been suggested that these models

might not yet have matured enough to add predictive power over

more pragmatic approaches [79]. Further efforts can be devoted to

linking cardiac myocyte model readouts for the purpose of defin-

ing the mechanisms behind the cardiac disturbance (e.g. APD90,

triangulation, EAD propensity, upstroke velocity) to biomarkers of

preclinical and clinical significance (e.g. TQT, QTc, T-wave mor-

phology, beat-to-beat variability) [58,88–92]. Such attempts to link

cardiac safety endpoints across multiple scales have the potential

to provide a more human-relevant assessment of proarrhythmic

risk earlier in drug development. Here, the mechanism-based

models together with physiological experiments should be used

to integrate the findings and to reduce the incidence of discor-

dance with some drugs by providing mechanistic insights for these

observations.

Existing in silico evaluations for drug development
decision making
The ideal scenario for drug developers and regulators is to identify

that a minimal set of measurements needs to be made experimen-

tally to predict accurately the propensity for causing arrhythmia.

Preferably, these measurements would be made in early discovery

and in a reproducible and high-throughput format. The outputs

can then be integrated into an algorithm to provide a risk score for
930 www.drugdiscoverytoday.com
decision making. To date, various measurements, models and

algorithms, and risk scores have been applied to this task within

the pharmaceutical industry [58,67,79,80,82,93,94]. Five of these

studies use the IC50 score as the input values into the algorithm,

whereas two of the studies [82,94] use in vivo cardiovascular end-

points or gene expression signatures, respectively, as alternative

strategies for the purpose of cardiac safety risk scoring.

The first study [82] demonstrated a PK/PD modelling approach

for assessing cardiovascular safety when in vivo data are already

known. In this study, the cardiovascular safety data, such as QRS

complex, QTc interval, heart rate and blood pressure, could be

correlated to the plasma concentrations to predict across species

and to provide an estimate of therapeutic window. Whereas some

ion channel data are measured in this study, the integration of this

information was used only for qualitative purposes. A holistic

approach was used to identify compounds with a likely cardiovas-

cular risk [94]. This study suggests gene expression profiles can be

used as a surrogate for hERG inhibition based on the premise that,

although hERG inhibition is independent of structurally diverse

chemicals, it is dependent on a conserved cell physiological re-

sponse that can be independent of chemical diversity. They cluster

gene expression fingerprints then identify those clusters where

hERG channel inhibition has been previously described. Therefore

de novo gene fingerprints that co-cluster with these hERG inhibitor

enriched fingerprints are more likely to show hERG current block.

The remaining studies have all used ion channel screening data

as an input with varying abstractions of statistical or mechanisti-

cally based models. Each of these studies attempts to emulate or

improve on the inherent modelling performed within the mind of

an experienced electrophysiologist or safety pharmacologist (i.e. in

cerebro modelling). Variance in this strategy for predicting cardiac

safety concern is also present, and referred to as a ‘matter of

opinion’. A seminal study [95] was the first major attempt to

classify potential risk of Torsade de Pointes (TdP) based on hERG

IC50 data only, from 100 drugs. In their analysis the authors

concluded a correlation of hERG activity with incidence of TdP,

yet it is not absolute and in general a threshold of 30-fold differ-

ence between a free plasma concentration and hERG IC50 was

proposed as sufficient to mitigate risk (except in the cases of

multichannel drugs). Another study to use the Redfern categories

as a surrogate of TdP risk [93] was also the first study to benchmark

a mechanistic in silico model simulation against a drug’s clinical

risk. For the 31 drugs profiled, an improved prediction (i.e. Redfern

categorisation) was observed when using multichannel (hERG,

hNaV1.5 and hCaV1.2) data from combining literature reports

with patch-clamp data versus using a ratio of hERG IC50 and

effective free therapeutic plasma concentration (EFTPC) alone.

A parallel study [67] also used a mechanistic model to integrate

multichannel data to predict action potential changes from a

canine cardiomyocyte assay. Here, they used an additional two

channels (hKv4.3/hKChIP2.2 and hKv7.1/hminK, corresponding

to the Ito1 and IKs currents) for a set of 53 compounds that had all

been profiled using the IonWorks1 automated patch-clamp sys-

tem. This study also included an ensemble of parameter sets to

represent 19 different dogs from which the model had been

parameterised. A further study [96] evaluated the accuracy of an

in silico model when presented with data from QSAR predictions or

from different experimental platforms, either the PatchXpress1
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TABLE 2

Differences in predictive power for TQT study results when
varying in silico models (a) and validation data (b)

Concentration range O’Hara TenTusscher-06 Grandi

(a)

At TQT conc. 62% 50% 59%

10-fold TQT conc. 76% 71% 68%
100-fold TQT conc. 88% 79% 71%

Concentration range Q-Patch Manual and Q-Patch

(b)

At TQT conc. 62% 71%
10-fold TQT conc. 76% 91%

100-fold TQT conc. 88% 91%

Data adapted, with permission, from [58].

TABLE 1

Compounds selected for CiPA proarrhythmia testing, ranked by
torsadogenic risk assessmenta

High risk Intermediate risk Low risk

Azimilide Astemizole Diltiazem

Bepridil Chlorpromazine

DL-Sotalol Cisapride Loratadine

Dofetilide Clarithromycin Metoprolol

Ibutilide Clozapine Mexiletine

Methadone Domperidone Nifedipine

Quinidine Droperidol Nitrendipine

Vandetanib Ondansetron Ranolazine

Pimozide Tamoxifen

Risperidone Verapamil

Terfenadine

a Source: Table 1 from https://dx.doi.org/10.1038/nrd.2015.34.
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(77 compounds) or a combination of using data from IonWorks1/

FLIPR assays (121 compounds) for predicting QT prolongation

obtained from a rabbit ventricular wedge assay.

Reemphasising the importance of considering hERG, Nav1.5

and Cav1.2 channels was a study [80] that integrated the data

obtained from PatchXpress1 and QPatch platforms for 55 com-

pounds divided between compounds that were either torsado-

genic (32) or nontorsadogenic (23) (determined from either the

Redfern study or the AZCERT database), and showed that a statis-

tical (logistic regression) model based on multichannel data is

superior to models based only on hERG data. In another study [58],

ion channel screening datasets were combined (for up to five

currents) from two pharmaceutical companies to evaluate the

prediction of the outcome of the TQT study using simulations

of APD90 at the EFTPC. The study importantly highlights discor-

dance for some drugs between simulated action potential effects at

EFTPC and clinical observations at EFTPC that cannot readily be

explained.

The most recent study [79] shows that cardiac liability is essen-

tially a balance between the predicted depolarising and repolaris-

ing effects. They simplified the risk assessment algorithm, similar

to that described in [80], to just integrate three key cardiac ion

currents: IKr, INa and ICaL, as the input values for an empirical,

classifier model. Other emerging areas of prediction not reliant on

mechanistic modelling include machine learning approaches that

attempt to use the knowledge of well-studied compounds to

parameterise an empirical model that accepts ion channel data

as the differentiating data between compounds (see for example:

https://cardiotox-predictor.com).

Considerations for improving the reproducibility and
accuracy of cardiac risk prediction
The in silico approach has attracted a lot of attention and interest

and has shown some promising results. However, it is vital to

highlight that different models can produce very different predic-

tions, see particularly [98] and also the Web Lab tool [97] (see

https://chaste.cs.ox.ac.uk/FunctionalCuration). Understanding

these differences and assessing the performance of any given

model for individual context is important to avoid drawing incor-

rect conclusions. Modelling relies not only on diligence in build-

ing models but on a thorough and honest assessment of its

limitations to avoid inappropriate predictions. In this section,

we discuss some of the aspects of these models that can lead to

divergence in predictions, what these divergences mean and what

can be done to mitigate them.

Selection of training and validation data
Because each study has used different input parameters (measure-

ments and different outputs) it is not currently possible to evaluate

one versus the other easily. Therefore, a carefully balanced and

highly characterised evaluation set that can be routinely applied to

these different systems is essential. The CiPA initiative has defined

a set of 28 compounds (Table 1) that have a range of proarrhythmic

potential as defined by the CredibleMeds1 score (http://www.

crediblemeds.org). Therefore, each model system should be eval-

uated against a standard set of compounds to collect data across

the scale continuum (Fig. 3) enabling a more thorough under-

standing of the translatability of these models.
Careful validation of a statistical or mechanical model’s predic-

tive performance involves testing the predictions against unseen

validation data. The validation set defines the performance of a

model, and should be chosen carefully to represent a context of

use. In a cardiac safety situation there are various aspects to this.

First, the training and validation datasets should be gathered in the

same way as the data that are intended to be used for predictions

when in production. Table 2 shows predictions are seen to depend

strongly on: (Table 2a) the mathematical model that is used

(O’Hara, ten Tusscher ’06 or Grandi) when the data source (fully

automated ‘Q’) is fixed; and (Table 2b) the basis of the validation

dataset – using the same compounds but ion channel screening

was performed using fully automated (Q) or automated and man-

ual (M&Q) methods when the model is fixed (O’Hara model). In

both cases, the concentration at which predictions are made, often

unknown in early safety testing, is flexible to account for the

apparent discordance between prediction and clinical observa-

tion. To provide an accurate estimate of future performance,

the relevant production protocols should be used for validation

data gathering. Second, the compounds that are evaluated should

be representative of those that are to be assessed in future –

predicting the effects of strong specific hERG blockers is necessary
www.drugdiscoverytoday.com 931
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FIGURE 4

An illustration of the dependence of performance statistics, and the uncertainty in these, on the number of compounds used in a validation study. Here, we

compare whether compounds caused 10% prolongation of QT interval in a rabbit left-ventricular wedge with simulations based on multiple ion channel
automated PatchXPressW screens. We plot the (left) sensitivity and (right) accuracy of the assay as a function of the number of compounds that are considered in

the validation set (n = 77 available in total). The blue and red data are from the same compounds but considered in a different (randomly permuted) order, note

that both measures have to start at either 0% or 100% (the first classification is right or wrong), and that the entries for n = 77 must be identical. 95% confidence
intervals on these statistics are generated using Wilson’s Score Interval, and are shown with the shaded regions. The data shown are taken, with permission, from

[96] (available to download from: http://www.cs.ox.ac.uk/chaste/download.html – Jptm2013Beattie project).
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but not sufficient when we consider that most of the compounds

that are likely to be encountered today are multichannel blockers.

In addition, it is important to know which data were used in the

calibration of a statistical model (or, equally, in the selection of a

mechanistic model), and these should be avoided in the validation

dataset. Otherwise, a spuriously accurate validation assessment

will be made for cases that are actually part of the training set; and

the model will subsequently perform worse than expected on a

future set of compounds. An example would be where a mecha-

nistic model is trained, such that the model provides accurate

predictions of the effect of 100 nM dofetilide on APD. Clearly,

dofetilide should then be omitted from any validation dataset,

because its effect will be correctly predicted by definition and

hence skew the performance. Therefore users should demand a

clearly defined training procedure from open- and closed-source

models and software to avoid this situation.

There should also be confidence estimates on our assessments

of predictive power. In Fig. 4 we show how an assessment of
TABLE 3

Comparison of compound assessment from previous in silico studie

Study Compounds in common

with at least one other studya

Mirams 2014 (39 cmpds) 11 

Kramer 2013 (55 cmpds) 28 

Davies 2012 (53 cmpds) 6 

Mirams 2011 (31 cmpds) 18 

a Seven compounds have appeared in more than two studies: amiodarone, cisapride, dofetilide

study.
b Eight compounds (azimilide, clarithromycin, domperidone, metoprolol, ondansetron, ranolazi

silico cardiac study.

932 www.drugdiscoverytoday.com
sensitivity and accuracy of a binary classifier depends on the

number of compounds in a validation set, as well as the order

of the compounds in this set. The real predictive power of an assay

(if it were to be evaluated on an extremely large dataset) can be

very different to the reported value from a single validation study.

By calculating a confidence interval, in this case based on Wilson’s

Score Interval [99] (as previously used in this contextin [96]), we

see an estimate of how much confidence we should place in the

performance statistics, and see how this changes with different

numbers of validation compounds. Thirty compounds might

appear a reasonable number to make a judgement as to the validity

of a model (black vertical line from Fig. 4); but, in this example,

precisely which 30 compounds have been randomly selected can

markedly impact the predictive score of the model, we see 70%

versus 86.7% accuracy in the example shown.

Table 3 shows how the composition of compound sets

across several in silico evaluation studies is variable and, therefore,

the importance of a defined, well-balanced set of compounds
s

No. unique in silico

study compounds

Compounds common

to CiPA listb

28 1

27 20

47 5

13 13

, nifedipine, pimozide, quinidine and terfenadine. No compounds have been used in every

ne, tamoxifen, vandetanib) from the CiPA list have not previously been the subject of an in

http://www.cs.ox.ac.uk/chaste/download.html
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(e.g. from the CiPA initiative) is of considerable value for making a

genuine comparison possible. Although 28 compounds have

appeared in more than one study, no compounds have been used

in every study and only seven of those compounds have appeared

in more than two studies, therefore meaning that evaluation

across different studies is difficult.

Finally, the example in Fig. 4 shows how a model scores for

predicting 10% prolongation of QT interval. Multiple, equally

valid markers (e.g. 5 ms change in QT-interval) could have been

chosen that would have influenced the model’s performance. This

becomes more pronounced when the comparator is more subjec-

tive in nature, such as a Redfern category or AZCERT ranking.

These values can and do change, based on medical observation,

therefore a drug with ‘no TdP risk’ cannot always be viewed as safe,

see for example recent modifications of drugs such as propofol,

ciprofloxacin from ‘conditional’ to ‘known TdP’ (https://www.

crediblemeds.org/blog/changes-made-crediblemeds-lists1/). An

opportunity therefore exists to translate cardiac models not to

‘incidence of TdP’ but rather to cardiac adverse events. This is

emphasised in a study [74] that shows that, although TdP is an

exemplar adverse event, a low incidence of TdP from their obser-

vational study and a lack of ICD-10 coding options mean that

some important drug-induced arrhythmia events could be missed

or recorded as other ventricular fibrillation events.

Model version control
Models can be, and are, modified relative to the published version;

often this can be to correct typographical errors [55] or to test

alternative parameterisations. All of which emphasises the abso-

lute requirement to standardise and version control such modifi-

cations, so that a simulation run in different labs, by different

modellers, can produce mathematically identical results. An

equally important aspect of ensuring reliable results is to ensure

that simulation codes are well tested or verified [100,101]. To

illustrate the issues that can arise, we use the Hund & Rudy

2004 model to demonstrate the importance of parameter control.

Protocol-related parameters (number of paces, amplitude and

duration of stimulation pulse) were varied to test the impact on

the output. To see whether the protocol-related parameters can

also influence the cardiac risk prediction, quinidine was taken as a

case study, with IC50 values extracted from the literature – IKr:

1.5 mM [67], IKs: 50 mM [102], INa: 9.4 mM [67], ICaL: 15.5 mM [67] –

and an AP was simulated with increasing concentration of quini-

dine (ten logarithmically, equally-spaced concentration steps be-

tween 0 and 100 mM), and with varied protocol parameters

[number of paces: 1–200 paces; stimulation pulse duration: 3

(original value from the publication), 4 or 5 ms; stimulation pulse

amplitude: �15 (original value from the publication), �18, �20,

�22 or �25 mA/mF]. From Fig. 5a,b, one can observe that the

stimulation pulse duration, amplitude and the number of pulses

all influence the prediction. Although in this case the number of

pulses has a smaller influence on the outcomes compared with the

stimulation pulse amplitude and duration, some other models

such as Mahajan model [49] are very sensitive to the number of

pulses. In Fig. 5c (ci to ciii: each subfigure shows AP traces at one

concentration point of quinidine), the AP traces simulated with 1–

200 paces and with different stimulation pulse amplitude and

duration are plotted (black); AP traces simulated using original
stimulation pulse specification and after 200 paces are plotted in

red. APD90 and maximal upstroke velocity were calculated from all

AP traces simulated (with different stimulation pulse and after

different number of paces) and are plotted against quinidine

concentration (Fig. 5di,ii, respectively). Increasing variation is

seen (Fig. 5c,d) as concentration of quinidine increases.

Integration of PBPK modelling and cardiac modelling
Prediction of cardiovascular effects for different formulations and

dosing schedules requires a solid understanding of in vivo PK in the

target patient population, which is where a PK model can prove a

valuable tool. In particular, PBPK modelling techniques can also

support the prediction of concentration time courses in the tissue

of interest, namely the myocardium, and PK drug–drug interac-

tions. A goal in coupling these modelling approaches is to support

the link from bench to bedside in a more informative and accurate

way. An opportunity exists to collect and collate experimental or

observational information from across the continuum (Fig. 3) to

instruct the models on how they should be parameterised and

assess how they predict (at least for that limited sample). In doing

so we can better understand the experimental variability that

exists for, for example, patch-clamp data and therefore which

value (or range of values) to use in simulations [60]. In Fig. 6

we show an example of linking PK with a cardiac model to simulate

two related drug formulations with different clearance rates (one

fast and one slow). It exemplifies the importance of applying a QSP

approach, which looks to integrate our understanding of drug PK

profile over time to these mechanism-based cardiac models. PK

profiles of two different forms of clarithromycin were taken from

the literature [103]; AP simulation was performed at data points

along the PK profiles using the O’Hara–Rudy model [46]. The hERG

IC50 (�30 mM) of clarithromycin was taken from the literature [95].

The PK profiles and predicted APD90 and APD at 50% repolarisa-

tion (APD50) are shown in Fig. 6.

Contribution of in silico tools to reduce animal usage
In silico methodologies play an important part in the 3Rs: the

refinement, reduction and replacement of tests in live animals.

The in silico approach helps to identify safety liabilities and to

remove toxic molecules from the pipeline long before animal

experiments are conducted. This allows limiting drug testing to

compounds with less toxic effects and higher chances for success.

Computer models are, therefore, becoming an important tool for

development of alternative testing methods that efficiently inte-

grate complementary information derived from experimental da-

ta. The Toxicology Testing in the 21st Century document released by

the US National Academy of Sciences contains recommendations

on how to move the risk identification from descriptive to mech-

anistically based safety assessment including the use of computer-

based technologies for the assessment of toxicities [104]. The

FDA’s Critical Path Initiative pipeline contains various computa-

tional science activities including a project on building an in silico

tool for screening new drugs for QT prolongation potential, using

human clinical trial data [105]. And there are several examples

where in silico cardiac approaches have reduced animal tests. At

AstraZeneca, although extensive screening of all key ventricular

ion channels has significantly reduced overall cardiac ion channel

liability, the implementation of an in silico cardiac model [67] for
www.drugdiscoverytoday.com 933
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FIGURE 5

The impact of the protocol-related parameters when simulating an increasing concentration of quinidine. (a) The effect of stimulation pulse amplitude on AP. The

solid lines show control AP and the dashed lines show the AP with 12.9 mM quinidine. The AP traces simulated with �15 mA/mF stimulation pulse and �25 mA/mF

stimulation pulse, coloured in red and blue, respectively. (b) The APD90 dose–response (with ascending concentration of quinidine) simulated using 3 ms
(coloured in orange) and 5 ms (coloured in turquoise) stimulation pulse and after two (shown in dashed line) or 200 (shown in solid line) paces. (ci–iii) Simulated

AP with different concentration of quinidine when applying various pacing protocols (stimulation pulse amplitude: �15, �18, �20, �22 or �25 mA/mF;

stimulation pulse duration: 3, 4 or 5 ms; number of pulses: 1–200 pulses). The red line shows the AP simulated using stimulation protocol published with the

original model and after 200 pulses and black line shows the AP simulated using other variants of stimulation protocols as mentioned above. (di,ii) shows dose–
response of the APD90 and maximum upstroke velocity simulated using the variants of stimulation protocol used for subfigure (ci–iii). The red line shows the

simulation result obtained using the stimulation protocol published with the original model, the grey shade marks out the variability induced by applying the

variants (as above) of stimulation protocols.
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interpreting those remaining actives meant that an isolated myo-

cyte study could be scaled down (from approximately 23 to one

dog per year) via the simulation approach (C. Pollard, personal

communication). Likewise, at GlaxoSmithKline in silico models are

helping to profile and select an increased number of compounds

while reducing the ex vivo rabbit wedge model by approximately

50% (J. Louttit, personal communication). Replacement and reduc-

tion of animal testing methods in different drug safety areas is not
934 www.drugdiscoverytoday.com
only being used in research but has also been taken up into EU law

and the OECD regulations (https://eurl-ecvam.jrc.ec.europa.eu/).

A prerequisite for regulatory acceptance is validation of an

alternative method showing that it can provide the same or better

protection of human health when compared to traditional meth-

ods. Validation includes demonstration of relevance and reliabili-

ty of a method for a specific purpose and it serves to facilitate and/

or accelerate the international (regulatory) acceptance [106]. In

https://eurl-ecvam.jrc.ec.europa.eu/
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FIGURE 6

Integrating an understanding of PK allows translation into a cardiac
biomarker, in this case changes to action potential duration (APD50 and

APD90) for two formulations of clarithromycin.
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general, the following aspects have to be considered when devel-

oping alternative methods using a combination of experimental

data, computer models and integrative approaches:
� Scientific relevance, characterisation, standardisation and

affordability of a biological model.
� The physicochemical diversity in the training and validation

sets to cover a variety of mechanisms of action.
� Strategic fit (e.g. prioritisation of approaches for further

compound testing in lead identification and optimisation

and support in decision making for selected drug candidates at

later stages).

To facilitate the acceptance of mechanistically based models for

regulatory purposes, new in silico tools should be associated with

the following information according the OECD principles for

QSAR validation [106,107]:
� A defined endpoint.
� An unambiguous algorithm.
� A defined domain of applicability.
� Appropriate measures of goodness of fit, robustness and

predictivity.
� A mechanistic interpretation, if possible.

No internationally accepted in silico alternative currently exists

for a full replacement for all testing of a specific hazard. In silico tools

alone are not yet sufficiently developed to replace the standard

animal tests completely. Therefore, successful development and

application of computational tools in drug safety is strongly depen-

dent on their integration and interplay with the experimental

approaches. Models are established using either in vitro or in vivo

data or a combination of both to obtain predictions of system-level

behaviour. Embracing more in silico tools at various levels in our

current approaches is a logical consequence of trying to mimic an

organ(ism). The higher level of complexity needs to be recapitulated

through the use of multiple complementary tests and computation-

al models, which translate the results of scientific research into valid

tools that can significantly reduce animal testing while still ensuring

the highest level of public health protection.

The practical use of mechanistic mathematical models for safety

assessment by regulators is a rather new concept with no specific
regulatory guidance in place. Computational safety data are usu-

ally submitted on a voluntary basis and are not required. New tools

are emerging fast and changing continuously as new data become

available – an intrinsic feature of the technology that makes it

challenging for potential users to gain sufficient experience. The

use of mechanistic models, therefore, must be seen in the context

of their potential to model multiple mechanisms of compound

toxicity. Customised computational platforms of understandable

construction validated with appropriate compound sets provide

advantages for practical implementation of in silico tools and for

successfully integrating in vitro, in silico and in vivo information.

Concluding remarks
The current paradigm of cardiac safety screening for, primarily,

hERG activity to eliminate TdP-causing drugs from reaching the

market has reduced incidence of adverse drug-induced TdP. How-

ever, this is potentially at the cost of excluding many effective

therapies where multichannel effectors might have mitigated

hERG-induced cardiac risk. Therefore, the initiative to reconsider

the current approach is something to be applauded. However,

whereas the aim to reduce the number of incorrectly labelled TdP-

liable drugs (false positives) is an important step for accessing more

potentially highly efficacious new medicines, it cannot be done

(blindly) at the expense of increased false negatives.

In silico modelling approaches have great potential to support

the drug discovery process through better systematic decision

making, animal usage reduction and for providing mechanistic

insights as to the compound’s intentional (and unintentional)

actions. These approaches are already being utilised in the industry

and now more mechanistic, systems-pharmacology models are

also being investigated for regulatory purposes. However, before

wide-scale adoption, careful evaluation and validation need to be

conducted on these models, to ensure that we are indeed improv-

ing decision making rather than confusing it. It is vitally impor-

tant to recognise the end user of such tools, so that a consistent

interpretation is overlaid to the simulations. For this purpose,

development of user-friendly tools and further training of software

and model developers and the end user of such simulations to

make predictions more readily interpretable is essential for the

successful implementation of new initiatives [16,71,97,108]. In

the consideration of the most appropriate model(s) we advocate a

need to consider how the models can respond to future predictions

of the unknown compounds rather than simply retrospectively

fitting past observations. The reality is probably a need for com-

plementary and fit-for-purpose solution rather than a one-size-fits-

all approach, which also aims to support decision making in the

understanding of prediction.

Reconciling the demand for ever more detail with the demand

that models be sufficiently tractable, mathematically and compu-

tationally, to be useful is an essential consideration. These

demands could appear to be in opposition to each other. There

cannot be any doubt that more detail will be required because

there are still many factors that can be involved in arrhythmogen-

esis that are not yet represented, but could be. These include more

detail on metabolic changes underlying forms of arrhythmia and

more detail on the feedbacks by which electrical and ionic changes

might be involved longer-term in controlling gene expression

(electrotranscription coupling). These alternative mechanisms
www.drugdiscoverytoday.com 935
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have been attempted elsewhere, for instance inclusion of binding

kinetics [52], gene expression [109], safety pharmacology [110],

influence of beta-adrenergic activity [111] and cell signalling

[112,113]. Because we are already faced with problems of under-

determination in the more-complex models, how can these addi-

tional demands be compatible with the need for mathematical

reduction to simpler models? One aspect is improving the infor-

mation content of experiments by using models to assist in the

experimental design. When we treat experiments as informing us

about the parameters in models it becomes possible to optimise

the experiments to tell us more about the underlying processes

[114]. But there is a paradox: it could be by incorporating more

detail that we will eventually find it possible to derive the most

useful mathematical reductions. This might be a case of exploring

more to focus on less.
936 www.drugdiscoverytoday.com
For in silico cardiac models, many studies and providers have

evaluated the value of a different model or software for predict-

ing cardiac proarrhythmic risk. Yet with a different emphasis on

each approach and a different set of evaluation drugs for which

the approach is scored, an overall assessment of which platform

is most appropriate for onward prediction is difficult. In this

review we have discussed approaches that have been previously

implemented, how each might respond differently dependent

upon the circumstances and the consequent need for caution in

implementing a solution. With a careful and thorough ap-

proach, there is considerable value to be gained from in silico

approaches, where the primary motivation is not only about

mapping out cardiac biology to high accuracy but in providing a

method for supporting decision making within drug discovery

and development.
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