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In stochastic modeling of infectious diseases, it has been established that variations in
infectivity affect the probability of a major outbreak, but not the shape of the curves during
a major outbreak, which is predicted by deterministic models (Diekmann et al., 2012).
However, such conclusions are derived under idealized assumptions such as the popula-
tion size tending to infinity, and the individual degree of infectivity only depending on
variations in the infectiousness period. In this paper we show that the same conclusions
hold true in a finite population representing a medium size city, where the degree of
infectivity is determined by the offspring distribution, which we try to make as realistic as
possible for SARS-CoV-2. In particular, we consider distributions with fat tails, to incor-
porate the existence of super-spreaders. We also provide new theoretical results on
convergence of stochastic models which allows to incorporate any offspring distribution
with a finite variance.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The spread of SARS-CoV-2 has been notoriously difficult to predict using mathematical models for the spread of infectious
diseases. These models, such as SIR and SEIR, go back to the 1920's and the seminal works of Kermack and McKendrick
(Kermack & McKendrick, 1927). For a virus with the characteristics of SARS-CoV-2, these models predict that at least 60% of
the population will become infected before the epidemic calms down, which happens within a couple of months. However,
after the first wave had receded, most countries of Europe had a sero-prevalence below 20%. This applies in particular to
Sweden, which did comparatively little to halt transmission, making it a good example for comparison of model outcome and
reality. This is studied in (Carlsson & S€oderberg-Naucler, 2022), which finds that the discrepancy is so large that it raises the
question of whether deterministic models (such as SIR and SEIR) properly capture reality, or whether some characteristic of
SARS-CoV-2 is at odds with standard assumptions underlying these models.

A potential such feature is the existence of super-spreaders, or more generally, a very uneven distribution of individual
levels of infectiousness (Adam et al., 2020; Endo et al., 2020; Jones et al., 2021; Wong & Collins, 2020). While the law of large
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numbers intuitively implies that this effect should even out during large outbreaks, prior studies related to this topic do not
prove that this is the case (see Section 2.3 for a brief review of known results). In this paper we investigate how much a
stochastic model taking variable infectiousness into account is likely to differ from a standard deterministic SEIR-model that
assumes a homogenous distribution of infectiousness.

More precisely, we prove theoretically that our stochastic model converges to the deterministic SEIR when the population
size N approaches infinity (see Appendix 5.4). Similar statements for homogenousmodels are well known, see e.g. (Diekmann
et al., 2012), but these results are derived under the unrealistic assumption that all individuals are equally infective. Our result
is new since it does not have this limitation, and also themethod of proof differs significantly fromprior works. However, such
probabilistic statements do not imply that the stochastic model will behave like a deterministic SEIR when modeling with a
fixed population size of, say, one million (i.e. an average large city).

The second main contribution of the present paper is a numerical investigation of the impact of infectivity variations with
a focus on the probability of outbreaks and the shape of the outbreak curves. In particular we test four types of distributions
for infectivity variations, using two different Agent-Based models in a population of one million.

In order do this realistically, we need the offspring distribution for SARS-CoV-2, which unfortunately is hard to estimate.
However, we find that our conclusions are fairly robust with respect to which type of distributions we use, and align with
prior theoretical results based on simpler models, as found e.g. in (Diekmann et al., 2012). In particular, we find that the
probability of a major outbreak decrease when the offspring distribution has a “fat-tail”, but that once a major outbreak is
happening, the shape is well predicted by deterministic SEIR, irrespective of the distribution used.
2. Methods

By “secondary cases” we shall refer to the amount of new infections a given infected individual gives rise to. The corre-
sponding distribution is known as the offspring distribution, and a standard assumption is that this distribution is negative
binomial with a small value of the dispersion parameter k (Blumberg & Lloyd-Smith, 2013; Lloyd-Smith et al., 2005). Small
values of k are (somewhat counterintuitively) associated with a high variance and hence that super spreaders are common. It
has also been suggested that the offspring distribution could be fat tailed (Wong & Collins, 2020), which would give rise to
even more irregular behavior also during large outbreaks (Taleb et al., 2020).

The shape of the offspring distributionwas systematically investigated (Kremer et al., 2021).While the authors did not find
support for the hypothesis of a fat-tailed shape in a strict sense, they do provide various estimates indicating that aminority of
infected persons were responsible for the majority of transmissions. One such indicator is the estimated percentage of
spreaders that are accountable for 80% of secondary cases, denoted p80. For example, using contact tracing data from Hong-
Kong, they estimate that p80¼19%. This seems to align with the results of other observational studies that collectively es-
timate p80 in the range 10%e19% (Adam et al., 2020; Endo et al., 2020; Sun et al., 2021). Furthermore (Lau et al., 2020), es-
timates that 20% of all new infections are caused by the top-spreading 2% of all infected. In conclusion, while the shape of the
offspring distribution remains unclear, there is ample evidence that it is heavily skewed, implying that super-spreaders are
common.

In this work we test various offspring distributions to determine how much dispersion is needed to observe a funda-
mentally different behavior than the simpler deterministic SEIR model. We denote the corresponding random variable X, so
that P(X¼ n) is the probability that a given individual gives rise to n new infections. We then build an agent-based-model
where each infected individual i gives rise to xi new infections (in a fully susceptible population), where xi is drawn from
the offspring distribution. The model is a stochastic extension of the classical deterministic SEIR-model, where S stands for
susceptible, E for exposed, I for infective and R for recovered (further details in Section 2.2). We address the following
questions:

� During a major outbreak, how does the (more realistic) AB-model deviate from a standard SEIR-model in a city of one million people?
� At what threshold of “fatness” do we start to see unexpected behavior, such as an outbreak becoming self-extinct with high probability, if initiated with

100 import cases?

In short, our conclusion is that for all realistic offspring distributions, the answer to the first question is that the SEIR-
model is a good approximation, and hence lacking detailed information about the offspring distribution is not a major
drawback for modeling. Concerning the second question, we find that the probability of an outbreak becoming self-extinct
increases with the fatness of the tail. Both these conclusions are in line with well known theoretical results, see e.g. Chap-
ter 1 and 3 in (Diekmann et al., 2012) (albeit these are based on simpler models and hence are not necessarily applicable in our
scenario). This is further discussed in Section 2.3.

Note that EðXÞ ¼ R0. For all distributions we chose parameters such that R0¼1.3. While most estimates indicate that R0 for
SARS-CoV-2 is higher, we picked 1.3 since it is close to 1 and hence a random behavior is more likely than for higher values of
R0. We consider different distributions, and for each type we additionally pick parameters so that p80 is either 20%, 10% or 5%.
The distributions are the following.

(a) A simple “3-group distribution”where each infected individual either spreads to 0, 1 or n individuals, where n¼ 5(p80z 20%), n¼ 10(p80z 10%) and
n¼ 20(p80z 5%).
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(b) The negative binomial distribution with k¼ 0.35, k¼ 0.11 and k¼ 0.05.
(c) The (discretised) Pareto distribution with a¼ 1.4, a¼ 1.2 and a¼ 1.13.
(d) A truncated version of the above Pareto distribution to find out the role of extreme super-spreaders, defined as those responsible for more than 100

secondary infections.

See Fig. 1 for an illustration of (b) and (c), as well as Table 1. As is clearly visible in the figure, the negative binomial
distribution is in fact exponentially decaying, implying that high values of X are improbable, in comparison with the
Generalised Pareto distribution. For example, in the extreme case when p80¼ 5%, we see that the two graphs cross at around
100 secondary cases. While it is virtually impossible to infect more than 1000 persons using the formermodel, the probability
is 0.0076% with the latter. Whether this is possible in reality or not is an important question, and plausible offspring dis-
tributions are hence discussed in the next subsection.

2.1. What is a reasonable offspring distribution for SARS-CoV-2?

Data about the actual offspring distribution for SARS-CoV-2 comes from an analysis of contact-tracing studies. For
example, a large contact-tracing study from India summarizes the amount of secondary cases originating from 80000 index
cases in a histogram (Laxminarayan et al., 2020). At first, it seems that the offspring distribution could be estimated from this
by simply normalizing the total participants. Unfortunately, this gives rise to a distributionwith an expectation value near 0.5,
implying that R0 is well below one. This could have many reasons. For example the data could indeed have been collected in a
period when the effective reproductive rate (Re) was below one, but a far more likely explanation is that a sizable amount of
SARS-CoV-2 infections were unidentified by contact tracing (transmission in restaurants, public transportation, etc). Contact
tracing studies are naturally biased in that they focus on known contacts of the infective participant.

Still, the histogram from (Laxminarayan et al., 2020) gives valuable information, for example it shows that around 70% of
infected individuals gave rise to zero new infections, which means that a minority must give rise to the majority of new cases,
which is one indication that the distribution could be “fat-tailed” or at least very skewed. But the fact that a majority of
transmissions likely was unidentified calls for cautionwhen interpreting the distribution. Another issue is that the study was
carried out during strict NPI's, which significantly limits super-spreader events and therefore should affect the tail of the
offspring distribution.
Fig. 1. Probability distribution functions of the Generalised Pareto Distribution and the Negative Binomial Distribution for various coefficients used in this study.

Table 1
Probability charts for some of the offspring distributions used below. Note the similarity of the first column, whereas the tail probabilities differ significantly.

Negative Binomial Distribution
k P(X¼ 0) P(X> 10) P(X> 100) P(X> 1000)

0.05 85% 3.6% 2.7e-02% < e�12%
0.11 75% 3.4% 4.6e-04% < e�12%
0.35 58% 1.4% 1.8e-10% < e�12%

Discretised Pareto Distribution
a P(X¼ 0) P(X> 10) P(X> 100) P(X> 1000)

1.13 86% 1.2% 0.10% 7.6e-03%
1.2 81% 1.4% 0.10% 6.6e-03%
1.4 72% 1.8% 0.087% 3.5e-03%
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The last point raises an important issue, namely that the offspring distribution clearly will depend not only on biological
properties of the pathogen, but also on NPI's and local factors such as household density and other socio-economic factors.
Hence it is futile to talk about the offspring distribution.

The study (Kremer et al., 2021) is an attempt at inferring the offspring distribution by fitting to three large contact tracing
studies for SARS-CoV-2. Unfortunately, all studies suffer the same drawbacks as noted above, reflected in that they unex-
pectedly infer Re< 1. Since we are interested in how the offspring distribution looks when R0 is above 1, it is questionable if
these contact tracing studies can be used to derive any concrete information about the particular shape of the offspring
distribution.

On the other hand (Yang et al., 2021), found that 2% of test-positive cases (so called super-shedders) carries as much as 90%
of the total amount of SARS-CoV-2 virions circulating in a community. This of course does not imply that 90% of the spread is
caused by these 2%, since the super-shedders cannot infect more people than they interact with. Still, it is an indication that
the estimates of p80 in the range 10e20% (based on contact-tracing studies) may be overly conservative. For this reason, we
included the case p80¼ 5% as well in our study.

In summary, there is currently no conclusive evidence for the correct value of p80, let alone the shape of the offspring
distribution. For these reasons we validate our conclusions with a number of fundamentally different distributions. We found
that our conclusions are independent of which type of distribution is used, so the above mentioned uncertainties do not limit
our findings.

To really test whether heavily skewed offspring distributions yield a different behavior, wewill in particular run ourmodel
using a fat-tailed offspring distribution. A fat-tailed distribution is one where the values P(X¼ n) decay so slowly that the
second moment (i.e. the variance) does not exist. Neither of the first two distributions, (a) and (b), are fat tailed, which in
practice means that the probability of hitting a high value of xi (the amount of secondary cases caused by individual i) is
negligible. This is not the case for the Pareto distribution, which is the standard choice for modeling fat tails (see 5.1 for
details). The significance of the parameter a in the Pareto distribution is that

PðX�nÞzn�a;

so the Pareto distribution is fat tailed whenever a< 2 and for a¼ 1 the tail becomes so fat that even the expectation value
cease to exist. For values of a near one it is therefore no longer the case that we can neglect P(X¼ x) for large values of x. For
example, the probability of infecting more than 100 persons is around 10�3 for all three Pareto distributions, and the
probability of infecting more than 1000 is above 10�5. In a city of one million, this means that on average 1000 persons have
the capacity to generate more than 100 secondary cases, and between 10 and 100 individuals the capacity to generate more
than 1000. This is in stark contrast with the Negative Binomial Distributions, where the probability of the latter is less than
10�14, meaning that we would need 108 cities of one million each to find one such individual. This illustrates the vast dif-
ference between fat-tailed distributions and exponentially decaying ones.

But is it reasonable for one infected individual to infect more than a hundred, or a thousand? A super-market employee can
easily interact with more than 100 customers each day, but it is unclear whether such brief encounters are enough to infect
most contacts. In any case, we have chosen to also include a truncated version of the Pareto-type distribution to better
understand the effect of extreme super-spreaders when the tail is fat. We truncate at both 1000 and at 100, and discuss these
results separately in Section 3.4.
2.2. Modeling details

We use the standard (deterministic) SEIR model8>><>>:
_sðtÞ ¼ �asðtÞiðtÞ
_eðtÞ ¼ asðtÞiðtÞ � seðtÞ
_iðtÞ ¼ seðtÞ � giðtÞ
_rðtÞ ¼ giðtÞ

(1)

implemented with a step-size of one day (see (8) in Appendix 5.4 for details.) We use the following parameter values; Tin-
fective¼ 2.1, Tincubation¼ 4.6, a¼ R0/Tinfective, s¼ 1/Tincubation and g¼ 1/Tinfective, where R0 is set to 1.3 in all trials.

We first sought to construct a model as close as possible to (1), yet capturing the variability of disease transmission po-
tential between individuals. We model a population of N individuals, each one in a state z2 {S, E, I, R} respectively: sus-
ceptible, exposed, infected and recovered. Their state can vary once each day so that we denote by zk,t the state of individual k
at day t. Each individual has also a personal basic reproduction number xk drawn once from the offspring distribution. Note
that this is the number of people s/he is expected to infect, if s/he becomes infected, assuming that the population is fully
susceptible. As immunity builds up, the actual outcome will be less. Hence xk should be interpreted as the total amount of
potentially infections contacts (i.e. meetings with other individuals that lead to infection of the other in case s/he is suscep-
tible). Moreover, since Tinfective is the average time of infectiousness, this amounts to a rate of xk/Tinfectious¼ gxk daily such
contacts. We assume that the amount of infectives at any given moment is small compared to the total population, so that
781
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each person only meets at most one infective per day, and the total amount of potentially infectious contacts on any given day
stays far below the total population, which certainly holds true in our simulations.

At each time step (here each day) we compute zk,tþ1 as:

1. Each infected agent adds its new daily contacts into a global pool of contacts, Nt ¼
j
g
P

kxkdzk;t ;I
k
, where P,R denotes the integer part.

2. Nt individuals are drawn randomly among the global population. If they were susceptible, they become exposed.
3. Each exposed agent has a s probability to become infected, P(zk,tþ1¼ Ijzk,t¼ E)¼ s.
4. Each infected agent has a g probability to be cured, and to become recovered, P(zk,tþ1¼ Rjzk,t¼ I)¼ g.

See Fig. 2 for a concrete realization in comparisonwith classical SEIR. Note that it takes a bit longer for the stochastic model
to gain momentum, but that once this happens, the ensuing curve is well approximated by the deterministic SEIR model. For
similar graphs using simpler models, see e.g. Fig. 3.7 in (Diekmann et al., 2012).

The above model, which we refer to as AB-model 1, has a few principle drawbacks which we now describe. Note that the
total number of potentially infectious contacts of a particular individual equals gxk times the amount of days that person
remains in the infective compartment, which is determined by the process described in step 4 above. If we denote by T the
random variable describing the amount of days a person remains infective, then T has an exponentially decaying PDF and a
minor computation (see 5.2) shows that EðTÞ ¼ Tinfective. The total amount of secondary infections is thus given by the random
variable gXT and, since X and T are independent, we see that

EðgTXÞ ¼ gEðTÞEðXÞ ¼ EðXÞ ¼ R0; (2)

as it should be. However, it is notable that the number of potentially infectious contacts is in the end not given by the offspring
distribution, in contrast to the initial motivation. In fact, it is not even an integer. In addition, the assumption that an indi-
vidual has the same probability of remaining sick each new day, independent of how long that individual has been sick
already, is not very realistic. This drawback is not specific for the AB-model 1 but pertains to the classical SEIR-model as well.
In (Andersson & Britton, 2012) this is commented as follows: “The assumption of an exponentially distributed infectious
period is certainly not epidemiologically motivated, although with this assumption themathematical analysis becomes much
simpler.” The authors of (Brauer et al., 2019) are on the same line; “This assumption, while making the models and their
analyses easier, is not biologically realistic for most infectious diseases” (see Ch. 3.6). In section 4.5 and 4.6 of the same book
they proceed to introducemore realistic systems of integral equationswhich keep track of the “age of infection”. Such systems
Fig. 2. Result of an epidemic simulation with our AB-model and the classical SEIR, both using R0¼ 1.3. In the AB-model we used a Generalised Pareto Distribution
with shape parameter a¼ 1.40. In the upper figure, solid lines display the output of the deterministic SEIR; with blue for Susceptible, red for Exposed, yellow for
Infective and pink for Recovered. The dashed black curve displays the Recovered group in one fixed trial using the AB-model. The final values of the solid pink and
dashed black curves are the cumulative number of infections, known as the final size of the epidemic and denoted by r(∞), for the classical SEIR and the AB-model
respectively. In the lower figure, the number of daily new infections for one trial of the AB-model is shown in black and for the SEIR model in dashed red. The grey
area is considered to capture the “epidemic wave” (for the AB-model), corresponding to values of R between 5% and 95% of r(∞). The width of this area then
defines the “epidemic wave time” Twave.
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have a long history, see e.g. (Hethcote & Tudor, 1980) and (Lloyd, 2001), where it is established that these models are more
sensitive, and (Feng et al., 2007) argues that the use of these more sophisticated methods can lead to different policy de-
cisions. Based on these facts, we argue that it is by no means evident that classical results concerning the final size of the
pandemic and the probability of major outbreaks, as found in (Diekmann et al., 2012) Ch. 1 and 3, will apply in the modeling
framework considered here.

In order to make sure that our findings are not corrupted by the above mentioned drawbacks, we built a second AB-model
that keeps track of the age of infection (called AB-model 2). To do this we need the probability density function of the serial
interval, i.e. the time from infection of an individual to the time s/he infects others. We obtained the PDF for this random
variable, let us denote it TSI, from the empirical study (Bi et al., 2020). We leave the details of the second model to the 5.3. In
conclusion, we found that the output of AB-models 1 and 2 are completely analogous.
2.3. Relation to prior work

As mentioned earlier, our main findings are in line with previously established results. A good overview source is
(Diekmann et al., 2012), in particular Chapters 1, 3 and 12. For instance, stochastic models for the spread of infectious diseases
have previously been shown to behave like deterministic models when the population size tends to infinity (Andersson &
Britton, 2012; Britton, 2019). However, the stochastic ingredient in these models is that the time an infected individual re-
mains infectious is random, whereas the degree of infectivity during the infectious period is assumed to be the same for all.
Moreover, the proofs in this area are notoriously technical, we refer to (Armbruster & Beck, 2017) for an overview and a
(comparatively) “elementary” proof.

However, in this studywe aremainly interested in the behavior duringmajor outbreaks in a finite populationwithN¼ 106,
as well as in the probability that large outbreaks occur, and for these questions results of the above type could still be
misguiding, since 106 is far from ∞. Similarly, based on the theory for branching processes, it is well known that the prob-
ability of one infected individual giving rise to an outbreak that dies out by itself (minor outbreak), in an infinite population, is
given by the smallest solution in [0, 1] to the equation

q ¼ GðqÞd
X∞
k¼0

PðX¼ kÞqk (3)

(cf. (Diekmann et al., 2012) Chapter 1). It is easy to see that G(0)¼ P(X¼ 0), G(1)¼ 1, G0ð1Þ ¼ EðXÞ ¼ R0 and that G is convex on
[0, 1], so this equation has precisely one solution bq in [0, 1). If we suppose that the 100 initial spreaders in our AB-model give
rise to branching processes that do not intersect, one may suppose that the probability of our AB-model going self extinct isbq100. That does not seem to be the case, for reasons that are unclear to us, although the value of bq100 does provide a rough
indication (see Section 3.3). This underscores that one should be cautions in relying solely on theoretical predictions based on
simplifying assumptions, and demonstrates the necessity of performing the actual modeling. Moreover, it is not clear by
looking at equation (3) that a fatter tail necessarily leads to a higher probability of a minor outbreak, which is something that
we shall establish experimentally.

The paper (Lloyd-Smith et al., 2005) investigates experimentally towhat extent super-spreaders affects the probability of a
major outbreak, finding that for small enough k-value erratic behavior appears evenwhen assuming a negative binomial (thin
tailed) distribution. For example, they calculate that the probability that the disease goes self-extinct is above 90% if R0¼1.5
and the dispersion parameter k equals 0.1 (for which p80z 10%). Our work differs from this in that we also consider fat-tail
distributions, and that the epidemic is initiated with 100 rather than 1 individual, which is more realistic for import cases of
COVID-19.

The paper (Wulkow et al., 2021) start with a detailed AB-model focusing on mobility patterns linked to Google data,
however without taking variable infectivity into account. They conclude numerically that the output of such an advanced
model, when applied to the city of Berlin, is well approximated by an 11-compartment ODE model (extended SEIR). This is
thus in line with previous findings about stochastic models converging to deterministic models during large outbreaks
(Andersson & Britton, 2012; Britton, 2019), which we also confirm in the present contribution.

There are various papers studying numerically how various population heterogeneities affect the model curves, with the
result that most heterogeneities such as variation in social activity or susceptibility, does have a damping effect on the overall
spread (Britton et al., 2020; Dolbeault& Turinici, 2021; Gerasimov et al., 2021). From this perspective, the finding that variable
infectivity does not affect model output is a bit surprising. In contrast, variable infectivity has been shown to lead to larger
outbreaks if it is positively correlated with variable susceptibility (Miller, 2007), but this is not a topic we pursue here. Finally,
the final size of an epidemic r(∞) can be computed with surprising accuracy, using only heuristic arguments (i.e. without
solving the SEIR), by solving an equation of the type

r∞ ¼ 1� e�R0r∞ (4)

(see e.g. (Diekmann et al., 2012)). In (Miller, 2012), this argument is extrapolated to show that variable infectivity (super-
spreaders) does not effect the equation and hence not the final size. However, this conclusion is derived under the assumption
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that deterministic approximations apply, which is precisely what wewant to establish in this paper. As a conclusion, we thus
infer that the estimate r∞ from (4) is a good approximation of the final size in our AB-model.
3. Results

3.1. Theory

Intuitively, once the population is large enough that the law of large numbers applies, differences in infectivity should
average out. This is the essence of the below theorem.

Theorem 3.1. Assume that X has finite variance. Let T be a fixed integer and let s, e, i and r be random variables describing the
fraction of susceptible, exposed, infected and recovered in a realization of the AB-model 1 from Section 2.2. In the limit as the
population goes to infinity, these random variables converge in probability to a solution of (the discrete time version of) SEIR (1) for
each t in the time interval {1, …, T}.

We refer to 5.4 for a more stringent formulation. As mentioned in Section 2.3, classical proofs of similar results are
notoriously difficult. Our framework differs from the abovementionedworks in that we use a discrete timewhich, as noted in
(Diekmann et al., 2021), is quite natural for many biological phenomena, in particular humans that need to sleep on a daily
basis. The second key difference is the use of arbitrary offspring distributions. We have not found any result establishing the
same conclusionwhen the stochastic model also includes an individual offspring distribution, nor have we found a proof that
works for SEIR, most references consider SIR. Our proof is interesting in its own right, since it avoids the “Sellke construction”
(Diekmann et al., 2012) and the heavymachinery used by Ethier and Kurz (Ethier& Kurtz, 2009). In fact, the proof is relatively
simple in that it only relies on basic concepts from probability theory. It can be considered as an advanced version of the proof
of the weak law of large numbers, ultimately boiling down to demonstrating that the variance goes to zero and then applying
Chebyshev's inequality. The proof can easily be adapted to other similar models, and it is our hope that this can help improve
the understanding of when deterministic models are a good approximation of stochastic counterparts.
3.2. Evaluation criteria

In order to answer the questions posed in Section 2, we need to decide on some key features as a basis for model com-
parison. In all our simulations, we model a city of 106 people, starting with 100 infected individuals, or 0.01% of the popu-
lation, and set R0 to 1.3. We compare two epidemic endpoints, the “final size of the epidemic” r(∞), and the “epidemic wave
time” Twave, described below.

In Fig. 2 we show the dynamics of an epidemic computed with a classical SEIR model and with our AB-model. In the upper
graph we have plotted the four SEIR time series, respectively Susceptible, Exposed, Infected and Recovered, as given by the
classical deterministic model. In dashed black, we also display the Recovered time series R(t) for our AB-model. The final
values of the solid pink and dashed black curves are our first feature r(∞), the ratio of people that have been infected after the
“wave”. The grey area is what we consider the “epidemic wave”, when the number of recovered R(t) is between 5% and 95% of
its final value r(∞). Thewidth of this grey area corresponds to the epidemic wave time Twave. We remark that the deterministic
value of r(∞) can be obtained by solving (4), whereas there is no closed formula regarding Twave, cf. Ch 3 in (Diekmann et al.,
2012).

We study the effect that various type of offspring distributions have on the epidemic endpoints r(∞) and Twave, since these
two values are the key parameters one is typically interested in predicting. In each trial we simulate 103 epidemics and plot
the histogram of the stochastic results together with the values computed with classical SEIR, see Figs. 3e5.
3.3. Numerical results

In Figs. 3e5, we compare the epidemic features r(∞) and Twave of the classical SEIR model, shown using vertical red lines,
with the statistical results from a corresponding AB-model, displayed in the histograms. The epidemic duration Twave is
plotted in the upper figures and the final size r(∞) in the lower figures. We have simulated epidemic dynamics with all the
distributions described in Section 2, (along with many other distributions and parameter values, which we have decided to
omit from the presentation for brevity). The results fall into three overall categories, described below.

(1) For distributions with thinner tails, the AB-model gives the same result as the classical SEIR. The distribution of spreaders is too thin-tailed to in-
fluence the epidemic features r(∞) and Twave and the AB-model is still mostly deterministic. Occasionally an epidemic goes self-extinct in its wake
(minor outbreak), but when this does not happen the epidemic will terminate at a value close to the deterministic r(∞) in a time frame also well
predicted by the deterministic Twave.

For the Negative Binomial Distribution this happens for k¼ 0.11(p80¼10%) and above. Using a Generalised Pareto dis-
tribution, we fall into this category with aT 1.6(p80z 25%), see Fig. 3.
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Fig. 3. Case (1). The epidemic features are well predicted by the classical SEIR, shown by red solid lines. The histogram in blue shows the results of 1000
simulations with the AB-model. Overbars, like Twave, denotes averages, and std denotes the standard deviation.

Fig. 4. Case (2). A dichotomy appears, either the epidemic becomes self-extinct, or its features are relatively well predicted by the classical SEIR. We differentiate
between the two kinds of outcomes by color coding, where blue refers to epidemics going self-extinct and orange refers to epidemics with r(∞) near the
deterministic value r∞.
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(2) When the distribution tail becomes thicker, minor outbreaks becomemore common. However, if this does not happen, then its characteristics of the
major outbreak are still well predicted by the classical SEIR model. We exemplify this in Fig. 4 using the Negative Binomial Distribution with
k¼ 0.05(p80¼ 5%) as well as the Generalised Pareto distribution with a¼ 1.4, (p80¼ 20%). As a general trend, the deterministic estimate of r(∞) has
less variance than that for Twave.

(3) Whenwe get closer to very fat tailed distributions, with a( 1.2 in the Generalised Pareto distribution (i.e. p80(10%), most of the trials lead tominor
outbreaks, see Fig. 5 where around 900 simulations out of 1000 obtain r(∞)z 0.

For the 3-groups distribution, the simulations donewith p80¼ 20%,10% and 5% fall into the case (1). However, for p80¼ 5%,
around 80 epidemics out of 1000 yield only a minor outbreak, so we see the beginning of a random behavior like in the case
(2). As mentioned in Section 2.3, the probability of a minor outbreak can be estimated theoretically by solving (3). In our
experience, this provides a rough estimate of what is observed in themodel. For example, with the parameters as in Fig. 4, the
theoretical probability of a minor outbreak was 9% (based on equation (3)) whereas we observed roughly 17% when using the
binomial distribution (left). However, for the Pareto distribution (right) the order was reversed, with a theoretical value of 37%
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Fig. 5. Case (3). Most epidemics become self-extinct after infecting only a fraction of the population (minor outbreak).
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and an observed value of around 23%. Our modeling in general suggests that thicker tails for the offspring distribution
(keeping R0 fixed) lead to higher probability of a minor outbreak. This is not clear to see from equation (3), and we have also
not verified that this holds theoretically.

To sum up, we see a dichotomywhere the outcome of the AB-model either is fairly well predicted by the deterministic SEIR
model, or the epidemic becomes self-extinct at an early stage. The parameter p80 is not enough to determine how the AB-
model will behave; for the 3-groups distribution we need a very low value of p80 to end up in Case (2) or (3), for the
Negative Binomial Distribution this happens already at p80z 10%, and for the Generalised Pareto distribution at p80z 20%.

In conclusion, for the deterministic SEIR model, replacing a constant basic reproduction number with a distribution of
spreaders has a marginal effect on the epidemic dynamic once it has clearly started (irrespective of whether we are in Case
(1), (2) or (3)). However, it has amajor effect on the probability of the epidemic to start or not, at least for distributions that are
sufficiently skewed. We have shown that this probability is decreasing with the thickness of the distribution's tail, but we
were not able to formulate a definitive measure to predict it.

3.4. Truncating the Pareto distribution

As expected, we found the Generalised Pareto Distribution to produce themost erratic behavior of the distributions tested.
In this section we come back to the question of whether the Pareto distribution is suitable for describing the spread of an
infectious virus such as SARS-CoV-2. In particular, what is the relevance of extreme events where one individual gives rise to
an enormous number of secondary cases? To answer this, we truncated the distribution at 1000 (as well as at 100) and ran the
experiment with the AB-model again. In practice, this means that anytime a value xi larger than 1000 is drawn, we simply
redefine xi to be 1000. The results are displayed in Fig. 6. Comparing with the untruncated simulations in Fig. 4 (right), we see
that the more we truncate, the more the average of r(∞) gets shifted to the left, and the more Twave gets shifted to the right.
However, observe that when truncating we change R0 ¼ EðXÞ, so the observed shifts are completely in line with the general
observations of the previous section. More precisely, in both cases we see a dichotomy where the epidemic either becomes
self-extinct, or leads to amajor outburst whosemagnitude and duration arewell predicted by the deterministic SEIR using the
updated R0-value.

4. Discussion

The COVID-19 pandemic has been notoriously hard to predict with deterministic models for spread of infectious diseases.
We have investigated numerically whether this could be related to the existence of super-spreaders, but found that this does
not seem to be the case. We tested the difference between the classical SEIR model and an AB-model using several funda-
mentally different offspring distributions, from fat-tailed ones to exponentially decaying ones to distributions with finite
support. For each given distribution we kept R0 fixed and measured skewness by the parameter p80. Irrespective of distri-
bution used, we identified a similar qualitative pattern; For large enough p80 the behavior of the AB-model is always well
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Fig. 6. By truncating we shift the expectation and hence the R0-value. However, we observe the same dichotomy as described in the previous section.
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predicted by the deterministic SEIR, with somewhat larger fluctuations for the predicted Twave than the final size r(∞). This is
followed by a transition zonewhere the above conclusion is still truewhenever themodel leads to a substantial outbreak, and
when this does not happen we only see a minor outbreak that becomes self-extinct. For small enough p80, the epidemics
almost never start, hence this case is too extreme and not relevant for understanding the spread of SARS-CoV-2.

Our numerical observations are in sync with related works and theoretical predictions, both from simpler models and our
own proof that the AB-model 1 converges to SEIR as the population size approaches infinity. As discussed in Section 2.1, there
is great uncertainty about the actual shape of the offspring distribution, which also likely is country specific. Moreover, the
precise value of p80 remains unknown, due to the large amount of spread that is not registered in contact tracing studies. A
strength of the conclusions of this paper is thus that they are independent of the type of distribution as well as the value of
p80. In addition, we have also confirmed numerically that given an overdispersed offspring-distribution, the relative chance of
the epidemic going self-extinct is increased even if R0> 1, with the likelihood of self-extinction being negatively correlated to
R0 and positively correlated to a low k-value or, more generally, a fat tail.
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Appendix
The Pareto distribution

Here we describe in detail the generalised Pareto distribution used in the main text. This distribution has two parameters:
scale s, and shape a (the location m is set to 0). The shape parameter is traditionally called x and is related to a by a¼ 1/x, but
we have decided to work with a since this is easier to interpret for non-specialists. The continuous PDF (Probability Distri-
bution Function) of the generalised Pareto distribution is given by

fa;sðxÞ ¼ 1
s

�
1þ x

as

��ðaþ1Þ
; x>0; (5)

and the expectation of a corresponding random variable Xa,s is then
R0 ¼ EðXa;sÞ ¼ as

a� 1
: (6)

The distribution becomes “fat-tailed” when its variance becomes infinite, here when a< 2. The scale parameter s¼ s(a) will

always be chosen so that R0¼1.3. We have gathered in Table 2 several points of the Cumulative Distribution Function with
different p80 and shape parameter a.

Table 2
Probability chart of the Generalised Pareto Distributions for various values of pa.
p80
 a
 P(X� 1)
788
P(X� 10)
 P(X� 100)
 P(X� 1000)
5
 1.125
 10.6%
 0.11%
 8.16e-4%
 6.14e-6%

10
 1.197
 14.2%
 0.14%
 9.41e-4%
 6.01e-6%

10.2
 1.2
 14.3%
 0.142%
 9.43e-4%
 5.98e-6%

19.6
 1.4
 20.5%
 0.196%
 8.77e-4%
 3.53e-6%

20
 1.415
 20.8%
 0.20%
 8.16e-4%
 3.36e-6%

24.8
 1.6
 24.0%
 0.222%
 6.65e-4%
 1.70e-6%

34.2
 2.5
 30.1%
 0.225%
 1.24e-04%
 4.17e-8%

42
 10
 34.7%
 0.096%
 1.42e-9%
 4.23e-20%
The continuous cumulative distribution function Fa;contðxÞ ¼
R x
0 fa;sðaÞðyÞdy is then given by 1� �1þ x

as

��a. We discretize
this to the set of integers by simply setting Fa(n)¼ Fa,cont(n), which leads to the discrete probability density function

paðnÞ ¼ Faðnþ1Þ � FaðnÞ: (7)

The distinction between Fa and Fa,cont is a major change which e.g. completely alters formula (6). In the discretised case there
is no closed form expression for the expectation, and hence we need to use a small numerical routine to find an appropriate
value of s (i.e. such that R0 ¼ EðXaÞ ¼

P∞
n¼0npaðnÞ holds).

As argued in themain text, it seems unrealistic that one individual can give rise tomore than, say 100 or 1000 newcases, so
to test how much the tail beyond a certain number N0 affects the performance of the AB-model, we introduce a second
truncated distribution Fa,trunc by simply redefining Fa so that Fa,trunc(n)¼ 1 for all n>N0, i.e., pa(n>N0)¼ 0 according to (7).
This interference will lower the value of the expectation (i.e. R0), which of course could be countered by adjusting s, but in the
examples displayed in the main text we chose not to do so, in order to better see the influence of the truncation on a concrete
distribution (see Fig. 6). In conclusion, we see that the truncation, whether at 100 or at 1000, does not alter the overall
behavior of the AB-model in terms of the key features Twave and r(∞), except for a shift that is completely predicted by the
updated value of R0.

Agent Based model 1

Since the main features of this model is described in Section 2.2, we shall not repeat it here. It remains to prove the claim
that EðTÞ ¼ Tinfective which was used in equation (2). Based on Step 4 in the algorithm, we see that the probability of being
cured after one day only is g. The probability of being cured after two days is (1� g)g, three days (1� g)2g and so on. Thus

EðTÞ ¼
X∞
t¼0

tgð1� gÞt�1 ¼ g
d
dg

 
�
X∞
t¼0

ð1� gÞt
!

¼ g
d
dg

�
� 1
1� ð1� gÞ

�
¼ g

d
dg

�
� g�1

�
¼ g�1 ¼ Tinfectious;

as desired.



F. Rousse, M. Carlsson, M. €Ogren et al. Infectious Disease Modelling 7 (2022) 778e794
Fig. 7. Comparisons of the different AB-models with the same parameters.

Agent Based model 2

In this section we describe our variation of the agent based model presented in Section 2.2, with the key difference that
this model takes the age of infection into account. To this end, we need an estimate of the PDF of the serial interval TSI, i.e. a
function pTSI such that pTSI ðtÞ is the probability that onward transmission of the virus happens on day t after a given infected
individual got infected. We used an estimate of TSI from (Bi et al., 2020), where in particular we set pTSI ð0Þ ¼ 0. As in Section
2.2 we model a population of N individuals, each individual k having a state-variable zk,t which keeps track of the current
status of that individual. However, instead of s, e, i and r, we now introduce the states S (meaning Susceptible as before), n (for
newly infected) and R where R stands for “Removed” as opposed to “Recovered”. The reason for this semantic change is that
with this construction a person can only be in the n-group one day, and is automatically moved to R on the subsequent day,
and hence the R-group will also contain people that are still sick and even pre-symptomatic.

We introduce a function n on the non-negative integers, where n(t) is the amount of potentially infectious contacts on the
given day t. This function takes the role of the variable Nt in AB-model 1, whose value only depended on the amount of
infectious people on day t. The value n(t), in contrast, depends on the entire times series prior to day t. At each time step twe
compute zk,tþ1 and update n as follows:

1. For each infected agent, i.e. k with zk,t¼ n, we draw a number xk from the offspring distribution.
2. We then draw xk integers t1;…; txk from the TSI distribution. Note that these numbers by construction are non-zero.
3. For each such value tj we add þ1 to the function n on day tj þ t. Formally,

nðtÞdnðtÞ þ
Xxk
j¼1

dt;tjþt :
4. All individuals in state n are given state R.
5. n(t) individuals are drawn randomly among the global population. Among these, those that are in state S are moved to state n on day t þ 1. Formally, if

individual m is drawn and zm,t¼ S, we set zm,tþ1¼ n.

The above model is a stochastic version of the integral equation type models found e.g. in (Hethcote & Tudor, 1980) and
(Lloyd, 2001) or Chapter 4 of (Brauer et al., 2019). Before we can compare this model 2 with the previous one, we need to
determine suitable values for Tincubation and Tinfective (used in AB-model 1) in accordance with the PDF for TSI. A standard
analysis (see e.g., the supplementary material of (Carlsson et al., 2021)) yields that the average time for the serial interval in
the SEIR model becomes Tincubation þ Tinfective, and hence it is important for a comparison to run model 1 with values such that

Tincubation þ Tinfective ¼ EðTSIÞ:

When this condition is met, we have found that there is only marginal difference in the histogram output of model 1 and 2. In
Fig. 7 we show the output of the two models using the Negative Binomial Distribution with k¼ 0.05. The only notable
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difference in the figure is that there seems to be a somewhat higher probability that the epidemic becomes self-extinct when
using model 1 (this observation seems to be a general trend). However, the overall behavior follows the same pattern. In
particular, we see the dichotomy between the epidemic either becoming self-extinct or its key features Twave and r(∞) being
well predicted by the classical SEIR. Hence the conclusions of the main text will be identical independent of the particular
stochastic model.Convergence of AB-model 1 to discrete SEIR

Given a fixed (small) ε> 0 let sd, ed, id and rd be the deterministic solution to the discrete version of the equation system (1)
implemented with a step size of one day, i.e.8>><>>:

sdðt þ 1Þ ¼ sdðtÞ � asdðtÞidðtÞ
edðt þ 1Þ ¼ edðtÞ þ asdðtÞidðtÞ � sedðtÞ
idðt þ 1Þ ¼ idðtÞ þ sedðtÞ � gidðtÞ
rdðt þ 1Þ ¼ rdðtÞ þ gidðtÞ

; (8)

with initial condition ed(0)¼ rd(0)¼ 0, id(0)¼ ε and sd(0)¼ 1� ε. We remark that the difference between solutions to this
implementation and the corresponding ODE (1) is marginal and completely irrelevant for the tests in this paper. For an
interesting account of how to discretize ODE's like (1), in particular with longer step-lengths, see (Diekmann et al., 2021).

In the AB-model 1 (recall Section 2.2), let

fzk;tgNk¼1

be random variables describing the state {S, E, I, R} of individual k on day t. Set SðtÞ ¼PN
k¼1dzk;t ;S and define E, I and R

analogously. These are then random variables (with values in {0, 1, …, N}) that implicitly depend on the N random variables
fzk;tgNk¼1 (we use bold letters for random variables). Finally, introduce s¼ S/N and define e, i and r analogously. The key
question posed in this paper is whether the deterministic model (8) is a good approximation of the average behavior of the
random AB model 1, with N¼ 106 and ε¼ 100/106, for a variety of offspring distributions that may reflect the actual spread
pattern of SARS-CoV-2.

In this section, we prove mathematically that the randommodel converges in probability to the deterministic one, as N/

∞. Note that this result does not answer the key questions posed, namely what happens when N is fixed at a finite value
realistic for a medium-large city. In the below result, we initialize the AB-model 1 by randomly selecting PεNR infectives on day
t¼ 0, letting the remaining variables zk,t equal S, (where PεNR denotes the integer part of εN).

It is important that ε is chosen small enough that id(t)< 1/a for all values of t. For “reasonable” parameter values, this is
always the case, but still this assumption is necessary since otherwisewewill get negative values for sd in (8), which is absurd.
Another technicality (which significantly complicates the proof) is that the numberNt, representing the amount of potentially
infectious contacts in step 1 of AB-model 1, in theory can exceed N, inwhich case the subsequent steps are not well defined. In
all our trials with this model Nt was always way below N, but still we need to add the rule that Nt is set to N if this happens.
With these modifications we have:

Theorem 5.1. Assume that X has finite variance. Let T be a fixed integer and assume that id(t) < 1/a holds for all t¼ 1, …, N. The
random variables s, e, i and r, initialized as above, converge in probability to sd, ed, id and rd for all t in the time interval {1, …, T}.
More precisely, fix any d> 0 and let UN be the set of realizations (s, e, i, r) such that js(t)� sd(t)j< d, je(t)� ed(t)j< d, ji(t)� id(t)j< d

and jr(t)� rd(t)j< d holds for all t¼ 1, …, T. Then lim N/∞PðUNÞ ¼ 1.

To make the proof more transparent, we begin by proving a few preliminary results. Let fXkgNk¼1 be i.i.d. random variables
whose distribution function is that of the offspring distribution, and introduce the random variable

NðtÞ ¼ min

 $
g
XN
k¼1

Xkdzk;t ;I

%
;N

!
: (9)

Note that the number Nt, chosen in accordance with step 1 in AB-model 1, modified to avoid too large numbers as described
earlier, is drawn from the PDF of N(t). Let n(t)¼N(t)/N, let fN be the function fNðxÞ ¼ min

�1
N PNxR;1

�
and set f(x)¼min(x, 1).

Finally let p(t) be the random variable

pðtÞ ¼ g

N

XN
k¼1

Xkdzk;t ;I (10)

and note that n(t)¼ fN(p(t)). Our overall goal is to establish that n(t) converges in probability whenever i(t) does. We begin
with some basic lemmas.

Lemma 5.2. Let AN and BN be uniformly bounded real random variables on the same probability space (which may vary with N),
and assume that they converge in probability to the values A and B respectively, as N/∞. Let f be any continuous function on R2.
Then
790



F. Rousse, M. Carlsson, M. €Ogren et al. Infectious Disease Modelling 7 (2022) 778e794
limN/∞Eðf ðAN ;BNÞÞ ¼ f ðA;BÞ;

and lim N/∞Varðf ðAN;BNÞÞ ¼ 0.
Proof. Let m be the joint probability measure for (AN, BN) on R2, and denote by CR the square {(a, b): max(jaj, jbj)� R}. By the

assumption of uniform boundedness we can pick an R such that mNðR2yCRÞ ¼ 0 for all N. Fix any d> 0, let

Sd ¼ fða; bÞ : ja�Aj < d; jb�Bj < dg;

and note that limN/∞mN(Sd)¼ 1 by assumption. Then

jEðf ðAN ;BNÞÞ � f ðA;BÞj ¼
���� Z f ða; bÞ dmN � f ðA;BÞ

���� ¼ ����Z
CR

f ða; bÞ � f ðA;BÞ dmN
����

� supða;bÞ2Sd jf ða; bÞ � f ðA;BÞjmNðSdÞ þ supða;bÞ2CR
jf ða; bÞ � f ðA;BÞjmNðCRySdÞ

which implies that the limit as N / ∞ is bounded by sup ða;bÞ2Sd jf ða; bÞ � f ðA;BÞj. But this number can be made arbitrarily
small, by the continuity of f, which establishes the first part of the lemma.

For the second part, note that Varðf ðAN;BNÞÞ ¼ E
�
ðf ðAN;BNÞÞ2

�
� ðEðf ðAN ;BNÞÞ Þ2 and both terms converge to ðf ðA;BÞÞ2

by the first part of the lemma. ,
In particular, we have the following consequence.

Lemma 5.3. Let AN be a sequence of uniformly bounded real random variables on some probability space (which may vary with
N), and let A be a fixed number. Then ðANÞ∞N¼1 converges in probability A, as N / ∞, if and only if

limN/∞E½AN � ¼ A

and lim N/∞Var½AN� ¼ 0.
Proof. The “only if” part follows immediately from the previous lemma. The reverse is a simple application of Chebyshev's

inequality. More precisely, let mN be the probability measure for AN on R and note that

VarðANÞ ¼
Z

ðx� E½AN �Þ2dmN � ε
2mNððAN � ε;AN þ εÞÞ;

where AN ¼ EðANÞ and ε> 0 is any fixed number. Now if limN/∞AN¼ A and the variance converges to 0, the above inequality
clearly implies that

limN/∞mNððA� ε;Aþ εÞÞ ¼ 0;

as desired.
With this we are ready to prove our first key result.

Proposition 5.4. If i(t) converges in probability to some value i*, then p(t) converges in probability ai*.

Proof.
We have

E½pðtÞjiðtÞ¼ i� ¼ g

N
iNEðXÞ ¼ giR0 ¼ ai (11)

by (2) and the parameter settings following (1), wherewe also used that there are precisely iN non-zero copies of X in the sum
(10). Thus the law of total expectation implies that

EðpðtÞÞ ¼ E½E½pðtÞjiðtÞ�� ¼ aEðiðtÞÞ;

which in turn yields that lim N/∞EðpðtÞÞ ¼ ai*. Similarly, note that

E½p2ðtÞjiðtÞ¼ i� ¼
�
ðiNÞ2 � ðiNÞ

��g
N
EðXÞ

�2 þ ðiNÞ g
2

N2 EðX
2Þ:

Combining this with (11), we get
791



F. Rousse, M. Carlsson, M. €Ogren et al. Infectious Disease Modelling 7 (2022) 778e794
VarðpðtÞjiðtÞ ¼ iÞ ¼ E½p2ðtÞjiðtÞ ¼ i� � ðE½pðtÞjiðtÞ ¼ i�Þ2

¼
�
i2 � i

N

�
ðgEðXÞÞ2 þ i

g2

N
EðX2Þ � ðgiEðXÞÞ2

¼ ig2

N

�
EðX2Þ � ðEðXÞÞ2

�
¼ ig2

N
VarðXÞ

since the first and last term on the middle line cancel each other. By the law of total variance we thus get

VarðpðtÞÞ ¼ E½VarðpðtÞjiðtÞ¼ iÞ� þVarðE½pðtÞjiðtÞ¼ i�Þ ¼ EðiðtÞÞg2
N

VarðXÞ þ gVarðiðtÞÞEðXÞ:

Recall that both EðiðtÞÞ and VarðiðtÞÞ implicitly depend on N. By the assumption on i(t) and Lemma 5.3 we have
lim N/∞EðiðtÞÞ ¼ i* so the first term (on the right) goes to zero due to the division by N. The second term also goes to zero,
since lim N/∞VarðiðtÞÞ ¼ 0, again by Lemma 5.3.

We have shown that lim N/∞EðpðtÞÞ ¼ ai* and lim N/∞VarðpðtÞÞ ¼ 0, so p(t) converges in probability to ai* by Cheby-
shev's inequality (the details are the same as in the proof of Lemma 5.3, which holds even though p(t) is not bounded). ,

In order to convert this into a similar statement about n, we first need another lemma.

Lemma 5.5. Let AN be a sequence of real random variables on some probability space (which may vary with N), and assume that
ðANÞ∞N¼1 converges in probability to the value A, as N/∞. Let fN be a sequence of uniformly bounded functions on R that converge
uniformly to some continuous function f. Then ðfNðANÞÞ∞N¼1 converges in probability to f(A).

Proof. Let mN be the probability measure for AN on R and pick any a, b such that a < A< b. Note that

EðfNðANÞ� f ðAÞÞ ¼
Z
R

fN � f ðAÞ dmN ¼
Z

ð�∞;a�
fN � f ðAÞ dmN þ

Z
ða;bÞ

fN � f ðAÞ dmN þ
Z

½b;∞Þ
fN � f ðAÞ dmN :
The first and last contribution are bounded in modulus by supfjfNðxÞ � f ðAÞj : x;NgPðAN ;ða; bÞÞ, which goes to 0 by
assumption on AN. The central term is bounded by

supfjfNðxÞ� f ðAÞj : a < x < b; NgmNðða; bÞÞ< supfjfNðxÞ� f ðAÞj : a < x < b; Ng;

which in the limit as N / ∞ equals sup{jf(x)� f(A)j: a < x< b}. By the continuity of f we see that this bound can be made
arbitrarily small, upon choosing a and b close to f(A). This proves that

limN/∞EðfNðANÞÞ ¼ f ðAÞ;

and the fact that the variance converges to 0 now follows exactly as in the previous lemma. ,
We can finally establish the following:

Proposition 5.6. If i(t) converges in probability to some value i*, then n(t) converges in probability to min(ai*, 1).

Proof. Recall that with fNðxÞ ¼ min
�1
N PNxR;1

�
we have n¼ fN(p), and that ðfNÞ∞N¼1 converges uniformly to min(x, 1). The

desired conclusion is now an immediate application of Proposition 5.4 and the previous lemma. ,
Armed with this, we can prove the main result as follows:
Proof of Theorem 5.1. Denote (s, e, i, r) by y. Let UN,t be the set of realizations such that the four previous inequalities hold on

day t, so that UN ¼ ∩T
t¼1UN;t . We then have

Pðfy2Uc
NgÞ ¼ Pð∪T

t¼1fy2Uc
N;tgÞ �

XT
t¼1

Pðfy2Uc
N;tgÞ;

(where Uc denotes the complement of U), by which it follows that it suffices to prove

limN/∞Pðfy2UN;tgÞ ¼ 1; (12)

for a fixed but arbitrary t.
This will now be established using induction. It is certainly true for t¼ 0, because the discrepancy in yd(0) and yr(0) (for any

realization yr of y) caused by taking the integer part of εN is less than 1/N, and hence Pðfy2UN;0gÞ ¼ 1 whenever N> 1/d.
Now we assume that (12) holds for a given t. In order to establish (12) for tdt þ 1 it suffices to prove that each of the four

probabilities
792



F. Rousse, M. Carlsson, M. €Ogren et al. Infectious Disease Modelling 7 (2022) 778e794
Pðjsðtþ1Þ� sdðtþ1Þj < dÞ; Pðjeðtþ1Þ� edðtþ1Þj < dÞ; Pðjiðtþ1Þ� idðt0 þ1Þj < dÞ

and Pðjrðtþ1Þ�rdðtþ1Þj < dÞ converge to 1 as N/∞. LetMse(t) be the random variable which denotes the amount of people
who, on day t, leave S and enter E. Define Mei andMir analogously, and let mse, mei and mir be the corresponding normalized
variables.

Our first goal will be to establish that

limN/∞Pðjsðtþ1Þ� sdðtþ1Þj < dÞ ¼ 1 (13)

for all d> 0, which by Lemma 5.3 is equivalent with proving that

limN/∞Eðsðtþ1ÞÞ ¼ sdðtþ1Þ ¼ sdðtÞ � asdðtÞidðtÞ

and that lim N/∞Varðsðt þ 1ÞÞ ¼ 0. In particular, the inductive assumption implies that lim N/∞EðsðtÞÞ ¼ sdðtÞ and
lim N/∞VarðsðtÞÞ ¼ 0. Since clearly s(t þ 1) ¼ s(t)�mse(t þ 1), we are done if we establish that

E½mseðtþ1Þ� ¼ asdðtÞidðtÞ (14)

and lim N/∞Varðmseðt þ 1ÞÞ ¼ 0. (To see this, note that the expectation is linear and that

VarðsðtÞ�mseðtþ1ÞÞ � 2VarðsðtÞÞ þ 2Varðmseðtþ1ÞÞ

which follows from the basic inequality j2xyj � x2 þ y2).
We begin by proving (14). It is standard that the probability forMse(t þ 1) ¼M, given that S(t)¼ S and N(t)¼Nt, is given by

the hypergeometric distribution (sampling without replacement)

PðMseðtþ1Þ¼Mj SðtÞ¼ S;NðtÞ¼NtÞ ¼
�
S
M

� �
N�S
Nt�M

�
�
N
Nt

� ; (15)

for which we have the well known formulas
E½Mseðtþ1Þj SðtÞ¼ S; NðtÞ¼Nt � ¼ Nt
S
N

(16)

and VarðMseðt þ 1Þj SðtÞ ¼ S;NðtÞ ¼ NtÞ ¼ Nt
S N�S N�Nt . Now, by the law of total probability we have
N N N�1

E½Mseðtþ1Þ� ¼ E½E½Mseðtþ1Þj SðtÞ; NðtÞ�� ¼ E

	
NðtÞ SðtÞ

N



which upon division by N yields
E½mseðtþ1Þ� ¼ E½nðtÞsðtÞ�:
By the induction hypothesis we know that s(t) converges in probability to sd(t), so the desired identity (14) follows by
Lemma 5.2 and the fact that n(t) converges to aid(t) in measure, as established in Proposition 5.6 (and the assumption that
id(t)< 1/a).

We now turn to the identity lim N/∞Varðmseðt þ 1ÞÞ ¼ 0. By (16) and the subsequent formula for the variance we have
E½mseðtþ1Þj sðtÞ¼ s; nðtÞ¼ n� ¼ ns and

Varðmseðtþ1Þj sðtÞ¼ s;nðtÞ¼nÞ ¼ nsð1� sÞð1�nÞ 1
N � 1

:

The law of total variance thus implies

Varðmseðtþ1ÞÞ ¼ 1
N � 1

E½nsð1� sÞð1�nÞ� þVar½ns�:
The above expectation converges to a finite number as N/∞ by Lemma 5.2 and Proposition 5.6, hence the first term goes
to 0 due to the factor 1

N�1. By Lemma 5.2 again, the variance of the second term converges to 0 as well.
This completes the proof that (13) holds. The proofs of the corresponding identities for e, i and r are simpler, sowe omit the

details.
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