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Abstract

Glutamate receptors for N-methyl-D-aspartate (NMDA) are involved in early brain development. The kynurenine pathway of trypto-
phan metabolism includes the NMDA receptor agonist quinolinic acid and the antagonist kynurenic acid. We now report that pre-
natal inhibition of the pathway in rats with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulphonamide (Ro61-8048)
produces marked changes in hippocampal neuron morphology, spine density and the immunocytochemical localisation of devel-
opmental proteins in the offspring at postnatal day 60. Golgi–Cox silver staining revealed decreased overall numbers and lengths
of CA1 basal dendrites and secondary basal dendrites, together with fewer basal dendritic spines and less overall dendritic com-
plexity in the basal arbour. Fewer dendrites and less complexity were also noted in the dentate gyrus granule cells. More neurons
containing the nuclear marker NeuN and the developmental protein sonic hedgehog were detected in the CA1 region and dentate
gyrus. Staining for doublecortin revealed fewer newly generated granule cells bearing extended dendritic processes. The number
of neuron terminals staining for vesicular glutamate transporter (VGLUT)-1 and VGLUT-2 was increased by Ro61-8048, with no
change in expression of vesicular GABA transporter or its co-localisation with vesicle-associated membrane protein-1. These data
support the view that constitutive kynurenine metabolism normally plays a role in early embryonic brain development, and that
interfering with it has profound consequences for neuronal structure and morphology, lasting into adulthood.

Introduction

There is increasing evidence to suggest that the earliest stages of
brain development in utero may be susceptible to modification by
environmental factors, including diet, stress, and infection, which
affect the rate of brain development overall or the relative develop-
ment of different brain regions, leading to the appearance of disor-
ders such as schizophrenia in postnatal life (Meyer & Feldon, 2010;
Brown, 2011). However, it is not clear, at the molecular level, how
such prenatal influences could impact on cerebral development.
One biochemical pathway that is ideally situated to link the envi-

ronment and the brain is the kynurenine pathway, the major route of
tryptophan metabolism in mammals (Stone & Darlington, 2002,
2013). The oxidation of tryptophan to kynurenine leads to the gener-
ation of two compounds with known activity at N-methyl-D-aspartate
(NMDA) receptors. These are quinolinic acid, an agonist selective
for NMDA receptors (Stone & Perkins, 1981; Stone, 2001), and

kynurenic acid, which is able to antagonise glutamate at all of its
ionotropic receptors, although with the greatest potency in blocking
the Gly2 site of the NMDA receptor (Perkins & Stone, 1982; Stone
et al., 2013). Kynurenic acid may also block nicotinic cholinocep-
tors (Hilmas et al., 2001), although others have failed to confirm
this observation (Mok et al.,2009; Dobelis et al., 2012).
It is well established that, in the course of early brain develop-

ment, NMDA receptors are involved in the formation of neurites
and axon branches, the guidance of growth cones towards their tar-
gets, and the eventual establishment of synaptic contacts (Rajan &
Cline, 1998; Colonnese et al., 2005; Alvarez et al., 2007; Ultanir
et al., 2007). These and other aspects of neuronal and synaptic
development ultimately determine synaptic function and plasticity in
the offspring (Iwasato et al., 2000; Ramoa et al., 2001). It is there-
fore possible that the kynurenine pathway, by modulating the activa-
tion and blockade of NMDA receptors, is involved in these early
stages of brain development in the embryo. As the pathway is influ-
enced by infection, which leads to the induction of the first enzyme
of the pathway (indoleamine-2,3-dioxygenase) via interferon-c, and
stress, which activates tryptophan-2,3-dioxygenase via glucocorti-
coid release, levels of the neuroactive kynurenine metabolites are
likely to change to a degree that would affect NMDA receptor
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function, and thus cerebral development. Indeed, we have shown
previously that inhibiting the kynurenine pathway in utero results in
changes in protein expression (including for NMDA receptor subun-
its), neuronal excitability or synaptic plasticity as early as 5 h after
treatment, with significant changes persisting to weaning at postnatal
day (P) 21 and adulthood at P60 (Forrest et al., 2013a,b).
In the present study, we treated pregnant rats in late gestation with

3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulphona-
mide (Ro61-8048), an inhibitor of kynurenine-3-monoxygenase
(KMO), which has been shown to increase the concentration of
kynurenic acid within the central nervous system (CNS) (R€over et al.,
1997; Clark et al., 2005; Forrest et al., 2013a). The offspring were
then allowed to litter normally and develop until P60, a time at which
behavioural changes have been reported after prenatal infection or the
administration of infection-mimetic agents (Fatemi et al., 2005; Zuck-
erman & Weiner, 2005; Meyer & Feldon, 2010). Although many pro-
teins were unchanged by Ro61-8048 treatment at P21 and P60, there
were significant changes in NMDA receptor subunits and the cell
generation and maturation proteins doublecortin (DCX) and sonic
hedgehog (Shh). Here, we sought to determine whether the modified
expression of these proteins is associated with structural changes at
the cellular level that might account for the alterations in synaptic
function, as well as any associated effects on neuronal dendritic field
structure and spine density. We also sought to visualise and localise
the changes in Shh and DCX expression. The work reported is
focused on the hippocampus, as our previous work has shown func-
tional changes in synaptic transmission and plasticity in this region
(Forrest et al., 2013a), and it was intended to produce further evi-
dence on the nature and magnitude of cellular changes that might
explain, or contribute to, those functional modifications. The hippo-
campus is believed to be important in a range of cognitive processes
(Sweatt, 2004), and could be a pharmacological target in psychiatric
disorders such as schizophrenia (Harrison, 2004). Overall, the results
indicate that prenatal inhibition of the kynurenine pathway produces
marked effects on neuronal structure and development, suggesting
that the pathway is constitutively active in the embryo and contrib-
utes to the regulation of early brain development.

Materials and methods

The study was approved by the Glasgow University College of
Medical, Veterinary and Life Sciences Ethics Committee. The pro-
ject was licensed by, and carried out according to the conditions of,
the UK Home Office under the Animals (Scientific Procedures) act
1986, administered and monitored by the Home Office and in accor-
dance with the Council Directive 2010/63EU of the European Par-
liament and the Council of 22 September 2010 on the protection of
animals used for scientific purposes. After mating, female Wistar
rats were examined daily for the appearance of a vaginal plug, at
which time three pregnant rats were taken for each treatment group.
These were then separated from the males and housed alone with
free access to food and water.
Inhibition of the kynurenine pathway was achieved with Ro61-

8048 (R€over et al., 1997). This compound inhibits KMO, the
enzyme responsible for converting kynurenine to 3-hydroxykynure-
nine (Stone & Darlington, 2002, 2013). This inhibition results in
increased availability of kynurenine for transamination to kynurenic
acid, and, in our previous work, has increased kynurenic acid con-
centrations in the pregnant dam and the embryo brains by 10–100-
fold (Forrest et al., 2013a), which is similar to the increase obtained
in earlier studies using KMO inhibitors in adult, non-pregnant ani-
mals (Chiarugi et al., 1995; Speciale et al., 1996; R€over et al.,

1997; Clark et al., 2005). The dose of Ro61-8048 used was
100 mg/kg, injected intraperitoneally, which we have found to be
capable of repeated administration with no ill-effects on the animals
treated (Clark et al., 2005; Rodgers et al., 2009). Control rats were
given the vehicle (0.9% sodium chloride solution adjusted to pH 7).
The compound was administered on three occasions in late gestation
– embryonic day (E) 14, E16, and E18 – to maximize the period of
development during which the activity of the kynurenine pathway is
affected. Gestation, parturition and weaning were then allowed to
proceed normally, with offspring being killed at P60 for the removal
of brains. Litter size tended to be lower in the treated rats, with a
mean of 7.4 � 1.2 (n = 9) pups per dam, than in controls
(10.2 � 1.1 pups per dam, n = 9), but the difference was not signif-
icant (two-tailed t-test, P = 0.1). For the work described below,
groups of two or three rats from three or four litters were used per
treatment with vehicle or Ro61-8048, giving a total of 7–12 off-
spring in each group.

Golgi staining and Sholl analysis

At P60, rats were killed by an intraperitoneal injection of sodium
pentobarbitone, and the brains were removed. Sample preparation
and Golgi silver staining were performed with the FD Rapid Golgi-
Stain Kit (FD Neurotechnologies, Columbia, MD, USA), according
to the manufacturer’s instructions. Brains were immersed in the
impregnation solution for 2–3 weeks in the dark at room tempera-
ture, the solution being refreshed after the initial 24 h of immersion.
The tissue was transferred into solution C and stored at 4 °C for at
least 48 h, the solution again being replenished after the first 24 h.
The brains were then cut into 200-lm coronal slices with a Leica
VT1200 series Vibratome (Leica Microsystems, Milton Keynes,
UK). Each section was mounted on a gelatine-coated slide and
allowed to dry at room temperature, shielded from light. Once dried,
the sections were rinsed twice for 2 min, and placed into a mixture
of solutions D and E of the GolgiStain Kit for 10 min. Finally, the
sections were rinsed twice for 4 min, and then progressively dehy-
drated in 50, 75 and 95% ethanol for 4 min each, followed by
100% ethanol for four 4-min periods. Sections were cleared in His-
toclear three times for 4 min each, and covered with a coverslip by
the use of Histomount (ThermoFisher Scientific, Loughborough,
UK). The chemical constitution of the commercial solutions has not
been disclosed by the manufacturers.

Dendritic morphology

In the CA1 stratum pyramidale, an average of six to eight pyramidal
neurons were examined in each of three or four hippocampal sec-
tions from each rat, with a Nikon Eclipse E400 microscope, by an
investigator blind to the treatment of the rat. Neurons were inspected
with a 940 objective lens, and a copy of each neuron was drawn
with a camera lucida onto a two-dimensional plane measuring
420 9 297 mm. The criteria for neuron selection for analysis were
that neurons were clearly delineated along their entire length and
breadth by a consistent and clearly visible level of silver staining,
and that each neuron was sufficiently distinct from neighbouring
impregnated neurons to avoid contamination of the measurement
process by elements of nearby cells. To ensure that only complete
cells were reconstructed, the selected cells were located close to the
centre of the section, and superficial cells, with significant processes
cut at the surface of the section, were excluded from analysis.
Morphological data were primarily analysed with an unpaired

t-test to compare differences in soma size, dendrite number and
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dendrite length between control and Ro61-8048-treated groups of rats.
Apical and basal dendrites were examined separately for CA1 pyrami-
dal neurons, whereas only apical dendrites were quantified in the
dentate gyrus granule cells, where basal dendrites are few in number
and rudimentary. For analysis of dendritic branching complexity (Sholl,
1953), a two-way ANOVA was performed, followed by Tukey’s post hoc
analysis to assess the contributions of drug treatment, sample number,
and distance from the soma, with a P-value of 0.05 being taken as the
criterion for significance.

Spine density

Spine densities on the dendrites of CA1 pyramidal neurons were
observed under a Nikon Eclipse E400 microscope with a 9100
objective lens with oil immersion by an investigator blind to the
treatment group. Spines were traced and counted on a two-dimen-
sional plane, with identification of thick and thin spines based on
the criteria of Harris et al. (1992), where spines were classified as
having a mushroom profile if the diameter of the head was greater
than the diameter of the neck, and as thin if the diameter of the head
and neck were similar and the length was greater than the neck
diameter. Three apical or basal dendritic segments per cell and a
total of four cells per rat from 11 or 12 rats per treatment group
were used for analysis. The data were analysed with an unpaired
t-test to compare differences between control and Ro61-8048-treated
rats in the overall density of spines per 10-lm length of dendrite
and the numbers of mushroom spines and thin spines. A P-value of
0.05 was taken as the working criterion for significance.

Immunocytochemistry

Animals were deeply anaesthesised with sodium pentobarbitone
(Euthatal) and perfused transcardially via the left ventricle with
50 mL of artificial cerebrospinal fluid (115 mM NaCl; 25 mM

HCO3; 2.2 mM KH2PO4; 2 mM KCl; 1.2 mM MgSO4; 2.5 mM

CaCl2; 10 mM D-glucose; gassed with 5% CO2 in O2) followed by
approximately 100 mL of 4% paraformaldehyde in 0.2 M phosphate-
buffered saline (PBS) (pH 7.2). Immediately following perfusion,
the brains were removed and fixed in the buffered paraformaldehyde
solution for a further 4 h at 4 °C. After thorough rinsing in 0.1 M

PBS, the brains were protected in a 30% sucrose solution at 4 °C
until saturated. Sections (60 lm) were cut coronally (approximately
�2.5 to �3.5 mm relative to bregma) with a vibratome (Leica
VT1200; Leica), and collected serially in 0.1 M PBS. The sections
were incubated with 50% ethanol for 30 min before being washed
three times with 0.3 M PBS and stored in glycerol at �20 °C.
Immunocytochemistry for vesicle-associated membrane protein-1

(VAMP-1), vesicular glutamate transporter (VGLUT)-1/2 and vesic-
ular GABA transporter (VGAT) was carried out with the following
primary antibodies: anti-VAMP-1/synaptobrevin (goat polyclonal,
AF4828, 1 : 250 dilution) (R&D Systems, Abingdon, UK), anti-
VGLUT-1 (rabbit polyclonal, 1 : 500 dilution), anti-VGLUT-2 (rab-
bit polyclonal, 1 : 500), and anti-VGAT (mouse monoclonal,
1 : 1000 dilution) (Synaptic Systems, Goettingen, Germany).
Three to four coronal hippocampal sections per rat were examined

with a BioRad Radiance 2100 confocal laser scanning system
equipped with lasers – argon (488 nm), green helium neon
(543 nm), and red diode (637 nm) – in conjunction with LASERSHARP

2000 software. Pyramidal cell bodies in the CA1 region were
scanned with a 960 oil immersion objective lens (numerical aper-
ture, 1.4; image size, 1024 9 1024) with a zoom factor of 3 (yield-
ing a pixel size of 0.07 lm). Each field consisted of a stack of 30

optical sections with an increment of 0.3-lm z-separation. In an
attempt to count the individual punctate staining for analysis, the con-
trast of each colour channel was manually adjusted within the maxi-
mum range to minimise the fusion of puncta (Fattorini et al., 2009).
Individual punctate staining was manually counted in every third sub-
field in an area measuring 50 9 50 lm from the 1024 9 1024-pixel
images. Each channel for VAMP-1, VGLUT-1/2 and VGAT was
analysed separately to identify and manually count immunopositive
puncta. Co-localisation of VAMP-1 with VGLUT-1/2 or VGAT was
analysed by merging the two relevant channels and manually count-
ing the number of co-localised puncta. Punctate staining was consid-
ered to be co-localised when the overlap was complete or occupied
most of the punctate area (Bragina et al., 2010). The counting of
punctate staining was performed with IMAGEJ software.
For analyses of hippocampal neurogenesis, serial free-floating sec-

tions were first washed in 0.3 M PBS before incubation with primary
antibodies in PBS containing 0.1% Triton-X100 (pH 7.4) for 72 h at
4 °C with continuous agitation. The primary antibodies used were
monoclonal anti-NeuN 1 : 500 (for neuronal nuclei; MAB377; Milli-
pore, Watford, UK), polyclonal anti-DCX 1 : 250 (sc-8066; Santa
Cruz via Insight Biotechnology, Wembley, UK), and polyclonal anti-
Shh 1 : 100 (sc-9024; Santa Cruz). Following primary antibody treat-
ment, sections were incubated overnight at 4 °C in species-specific
Alexa Fluor-tagged secondary antibodies (Alexa 488; Alexa 647;
Molecular Probes, Life Technologies, Paisley, UK) and rhodamine-
conjugated secondary antibody (Jackson Immunoresearch Laboratories,
Stratech, Newmarket, UK). Rinses were performed between all steps
with 0.3 M PBS before or after the primary and secondary antibody
incubation. Sections were mounted and coverslipped with the aqueous
mounting anti-fade medium H-1000:Vectashield (Vector Laboratories,
Peterborough, UK) before storage at �20 °C. Granule cells of the
dentate gyrus and pyramidal cell bodies in CA1 and CA3 were
scanned with most parameters similar to those outlined above, but
with a 940 oil immersion objective lens. Each field consisted of a
stack of 20 optical sections with an increment of 1-lm z-separation.
Immunopositive staining was manually counted in each subfield in an
area measuring 50 9 50 lm from the 1024 9 1024-pixel images.
Each channel for Shh, NeuN and DCX was analysed separately to
identify and manually count immunopositive staining with IMAGEJ

software. The overall dendrite length of DCX-labelled granule cells
in the dentate gyrus was measured with the IMAGEJ plug-in NEURONJ.
A P-value of 0.05 was taken as the working criterion for significance.

Data analysis

Statistical comparisons were made by the use of INSTAT software,
between pups born to mothers injected with vehicle and pups born to
those treated with Ro61-8048. This protocol allowed the use of an
unpaired, two-tailed t-test to examine differences between the two
groups for each treatment. Data were initially analysed to compare
results between male and female offspring, but no significant differ-
ences were noted in the various parameters measured, so the data
were combined and analysed together. For the analysis of dendritic
complexity, ANOVA was used, followed by Tukey’s multiple compari-
son test. A P < 0.05 was used as the criterion for significance.

Results

CA1 pyramidal neurons

Measurement of the maximum diameters of neuronal somata in
CA1 did not reveal any significant changes in soma size between
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the rats exposed in utero to Ro61-8048 and the control rats exposed
only to vehicle. Somatic size in the controls was 15.79 � 0.51 lm
(n = 12 rats), and that in the drug-treated group was
14.75 � 0.52 lm (two-tailed t-test, P = 0.274; n = 12 rats).

Dendritic measurements

Several aspects of the dendritic tree were analysed. Counting each
branch point generated a value for the number of dendritic branches
in the tree. This measurement was made separately for dendrites in
the apical and basal regions of CA1 pyramidal cells, with a signifi-
cant loss being observed in the number of basal but not of apical
dendrites (Fig. 1A). A small but highly significant decrease was also
noted in the length of the basal dendritic tree (Fig. 1B).
When the data were analysed in terms of the relative contributions

of the primary and secondary dendrites in each dendritic region, a
significant difference was found between the groups, with signifi-
cantly fewer secondary dendrites (two-tailed t-test, P = 0.047,
n = 12) being observed in the basal dendritic regions of hippocam-
pal sections from rats treated with Ro61-8048 (Fig. 1C). In contrast,
there was no difference in the number of secondary dendrites in the
apical dendritic regions (Fig. 1D) (with only a single primary apical
dendrite by definition).
Despite the decreased overall length of basal dendrites, there were

no differences at the level of the primary or secondary apical tree
(Fig. 1E) or basal tree (Fig. 1F).
Finally, a comparison was made of the dendritic branching complex-

ity between the control and the Ro61-8048-treated rats. The Sholl
assessment of this parameter requires counting the number of intersec-
tions of dendrites with each ring of a series of 20-lm-spaced concentric
circles on the analysis plan. The counts were compared by use of a mul-
tifactorial analysis of variance employing a 2 9 12 9 24 ANOVA based
on drug treatment, distances of intersection for the Sholl analysis, and
number of samples included in the analysis. There were significant
effects of Ro61-8048 on treatment group (F1,242 = 6.90; P < 0.01),
intersection distance (F11,242 = 49.46; P < 0.001) and sample
(F22,242 = 8.33; P < 0.001) for the apical dendritic tree, with no signifi-
cant interaction between drug and distance (F11,242 = 0.93; P = 0.51)
(Fig. 1G) and no significant differences between individual data points.
Analysis of the dendritic branching complexity of the basal dendrites
also revealed significant effects of treatment (F1,242 = 30.18;
P < 0.001), distance (F11,242 = 776.46; P < 0.001), and sample
(F22,242 = 3.33; P < 0.001), with a significant interaction between treat-
ment and distance (F11,242 = 2.75; P < 0.01). Tukey’s post hoc analysis
indicated a significant decrease in basal dendritic branching complexity
for hippocampi exposed to Ro61-8048 as compared with the control
group at 20 lm (two-tailed t-tests, P < 0.05), 40 lm (P < 0.05),
60 lm (P < 0.01) and 80 lm (P < 0.001) from the soma (Fig. 1H).

Spine density and morphology

In the apical dendritic tree, the total spine density was no different
in the Ro61-8048-exposed tissue (Fig. 2A), although separate analy-
sis of the thin and thick (mushroom-shaped) spines indicated a sig-
nificant reduction in the number of the latter (two-tailed t-test,
P = 0.007) (Fig. 2B) with no significant difference in the population
of thin spines (Fig. 2C; two-tailed t-test, P = 0.54). The density of
spines on the basal dendrites of CA1 neurons was significantly
lower in tissue from rats exposed to Ro61-8048 in utero than in
control tissue (two-tailed t-test, P = 0.036) (Fig. 2D), but with no
differential loss of thin spines (two-tailed t-test, P = 0.07) (Fig. 2E)
or thick mushroom spines (P = 0.75; Fig. 2F).

Immunocytochemistry

As the initial postulate of this work was that altered activity along the
kynurenine pathway would affect NMDA receptor activation and thus
brain development, a primary objective was to ascertain whether any
changes were produced in glutamatergic neuron function. To this end,
the number of synaptic boutons containing VGLUT-1 or VGLUT-2
and their co-localisation with the synaptic terminal marker VAMP-1
(synaptobrevin) were determined. Punctate staining was counted manu-
ally within a box size of 50 9 50 lm, and co-localisation of VAMP-1
was assessed with VGAT (yellow) and VGLUT-1/2 (light blue).
There was no overall change in the number of cells immunoposi-

tive for VAMP-1 (Fig. 3A–C) or VGAT (Fig. 3D–F). Staining for
VGLUT revealed a widespread distribution of labelled terminals
throughout CA1. As summarized in Fig. 3G–I, there was a substan-
tial increase in the number of terminals staining for these transport-
ers in rats exposed to Ro61-8048 (two-tailed t-test, P = 0.0003,
n = 8 per group). An assessment of the co-localisation of VGLUT
or VGAT and VAMP-1 indicated no change in the fraction of cells
staining for both proteins (Fig. 3J–L and M–O), although the num-
ber of cells identified with VGLUT and VAMP-1 was small.
NeuN staining was used to provide an indication of the total num-

ber of mature neurons in the different hippocampal regions. In the
stratum pyramidale of CA1, there was a significant increase in the
number of neurons in sections from rats exposed to Ro61-8048
(two-tailed t-test, P = 0.017, n = 9 for vehicle, n = 7 for Ro61-
8048) (Fig. 4A–C), although there was no significant difference in
the number of neurons in CA3 (P = 0.8; Fig. 4D–F).
Shh is a key protein in the early maturation and morphogenetic

organisation of cells. The changes observed in the quantification of
Shh immunostaining in CA1 were more pronounced than with any
of the other targets examined in this study, reflecting the existence
of marked changes in expression of this protein noted in embryonic,
P21 and P60 brains (Forrest et al., 2013a,b). Very significant
changes were observed, with almost double the number of Shh-posi-
tive neurons in CA1 (two-tailed t-test, P = 0.0003, n = 8 rats per
group) (Fig. 5A–C) and a 40% increase in mean numbers in CA3,
which did not quite achieve significance (two-tailed t-test, P = 0.07,
n = 9 for vehicle, n = 8 for Ro61-8048) (Fig. 5D–F).
An examination of CA1 and CA3 revealed almost no staining

with DCX, only a few scattered cells being apparent in the pyrami-
dal cell layers; no quantification of these was attempted.

Dentate gyrus granule neurons

There were no visually obvious differences between the appearance
of granule cell somata and the arborisation pattern of their apical
dendrites in Ro61-treated rats as compared with control rats
(Fig. 6A and B). The somata were round or oval in shape, and gave
rise to apical dendrites that extended into the molecular layer. There
was a lack of basal dendrites in most of the observed neurons, con-
sistent with previous reports that granule cells in normal adult rats
possess few, if any, basal dendrites (Arisi & Garcia-Cairasco, 2007).
A comparison of the total dendrite population revealed a signifi-

cant reduction in the total length of the dendrites (Fig. 6C), affecting
both primary and secondary dendritic trees analysed separately
(Fig. 6D). There was also a decrease in the total number of den-
drites (Fig. 6E), which was again associated with changes in both
primary and secondary branches (Fig. 6F). For the Sholl assessment
of granule cell basal dendritic complexity, intersection counts were
compared as described above. There were significant effects of
Ro61-8048 on treatment group (F1,234 = 44.45; P < 0.0001),
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intersection distance (F13,234 = 213.36; P < 0.0001), and sample
(F18,234 = 7.11; P < 0.0001), with no significant interaction between
drug and distance (F13,234 = 0.98; P = 0.47) (Fig. 1G). Overall, the
results obtained with this technique strongly support the inference
from DCX immunocytochemistry (below) that prenatal treatment
with Ro61-8048 resulted in a reduced number and length of den-
drites, and reduced complexity of the dendritic system.

Immunocytochemistry

With the same molecular targets examined in CA1 and CA3, the
dentate gyrus was assessed for NeuN and Shh immunoreactivity.
There was a significant increase in the number of NeuN-positive

granule cells in Ro61-8048-treated rats (two-tailed t-test, P = 0.005,
n = 9 for vehicle, n = 7 for Ro61-8048) (Fig. 4G–K), and approxi-
mately double the number of Shh-positive neurons in the dentate
gyrus (two-tailed t-test, P = 0.03, n = 9 for vehicle, n = 7 for
Ro61-8048) (Fig. 5G–K). In addition, it was noted that the intercel-
lular matrix of the dentate gyrus of treated rats showed a general
staining for Shh that was not present in control specimens (Fig. 5I
and K). As Shh is a secreted protein (Traiffort et al., 2001), this
observation may be a result of the increased density of cells reported
here secreting normal amounts of the protein. Alternatively, there
may be an additional effect of Ro61-8048 treatment on the kinetics
of Shh accumulation, such as an increase in the rate or quantity of
secretion or a decrease in its removal.
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Doublecortin is widely used to estimate the number of newly gen-
erated and immature neurons in studies of neurogenesis, a phenome-
non that is particularly prominent in regions such as the subgranular
zone of the hippocampal dentate gyrus. DCX produced clear stain-
ing in the dentate gyrus, labelling cells almost exclusively in the
granular layer, many of which, especially in control tissue, showed
long, clearly stained dendrites. There was no overall effect of Ro61-
8048 on the total number of granule cells staining for DCX
(Fig. 7A), but there was a significant difference in the nature of the
dendritic projection (Fig. 7B). Dendrites in vehicle-treated rats gen-
erally projected at least 50 lm from the cell somata and gave rise to
complex networks of fine branches (Fig. 7C and D), whereas den-
drites in Ro61-8048-treated rats remained relatively simple and
unbranched, and often did not extend more than 50 lm from the
somata (Fig. 7E and F). There were significantly fewer neurons
bearing these longer dendrites in tissue from rats exposed to Ro61-
8048 (two-tailed t-test, P = 0.003, n = 9 for vehicle, n = 8 for
Ro61-8048) (Fig. 7B).

Discussion

When Ro61-8048 and other KMO inhibitors are administered to
adult animals, their major effect is to increase the levels of kynure-
nic acid in the blood and tissues (Chiarugi et al., 1995; Speciale
et al., 1996; R€over et al., 1997; Cozzi et al., 1999; Clark et al.,
2005), including at least 10-fold elevations in brain microdialysates
in vivo (Urenjak & Obrenovitch, 2000) In the present study, Ro61-
8048 was administered to pregnant rats at a dose that has been
shown to increase kynurenic acid levels in the blood and brain
of the pregnant dam and the brains of the embryos. An increase of
10–100-fold was produced after 5 h in utero; the level returned to
the control value in the mother after 24 h, but remained little
changed in the embryos (Forrest et al., 2013a). This indicates that
kynurenic acid is produced within the embryo, rather than merely

being present as a result of secondary influx from the maternal
circulation. This conclusion is supported by the presence of endoge-
nous kynurenic acid in fetal brains at levels higher than those found
in the mother (Walker et al., 1999). In addition, fetal and placental
cells do express indoleamine-2,3-dioxygenase (Ligam et al., 2005),
so that kynurenic acid can also be generated from either tryptophan
or kynurenine from the maternal circulation.
The increase in kynurenic acid level produced would block gluta-

mate receptors in the embryonic brain, especially those sensitive to
NMDA (Perkins & Stone, 1982; Stone & Darlington, 2002; Stone
et al., 2013). Increasing the brain levels of kynurenic acid by the
administration of kynurenine and the acidic transport blocker pro-
benecid can increase kynurenic acid levels to a similar degree as
that obtained here (Shepard et al., 2003), with the ability to reduce
quinolinic acid-induced neurotoxicity (Santamaria et al., 1996) and
neuropathic pain (Pineda-Farias et al., 2013), and disrupt sensory
gating or prepulse inhibition, as seen in patients with schizophrenia
(Shepard et al., 2003; Nilsson et al., 2006). The endogenous con-
centration of quinolinic acid is not likely to have been affected, as
most previous studies have failed to detect any such change in
response to Ro61-8048 (Chiarugi & Moroni, 1999; Clark et al.,
2005), and quinolinic acid levels do not change even when KMO is
completely removed from transgenic mice (Giorgini et al., 2013).
The objective of this study was to identify structural and neuro-
chemical changes in the adult that might explain the previously
described changes in protein expression and synaptic transmission
generated by these alterations in kynurenine metabolism (Forrest
et al., 2013a,b).

Spine density and neuronal morphology

Neuronal dendrites and their projecting spines receive a majority of
the excitatory input to central neurons (Kolb et al., 1998), account-
ing for the close relationship between dendrite and spine numbers,
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afferent neurotransmission, and learning-related behaviours (Alvarez
& Sabatini, 2007), with a probable involvement in a range of neuro-
psychiatric conditions (Penzes et al., 2011).
The density and dendritic distribution of spines is markedly

dependent on glutamatergic transmission and the precise composi-
tion of the glutamate receptors (Segal & Andersen, 2000). It is par-
ticularly intriguing that spine density is affected by the GluN2B
subunit (Brigman et al., 2010), as Ro61-8048 treatment increased its
expression in the embryos after 5 h and in neonates at P21 (Forrest
et al., 2013a,b). This change could affect the total and relative
densities of thick mushroom and thin spines on apical and basal
dendrites (Brigman et al., 2010). An impact of GluN2B expression
on spine formation would help to explain the strong association

between GluN2B expression and various aspects of neural plasticity
and learning (Mathur et al., 2009; Rammes et al., 2009; Zhuo,
2009; Fontan-Lozano et al., 2011).
Metabotropic glutamate receptor 5 also modifies spine density.

Deletion of this receptor results in increased spine density in the
neocortex (Chen et al., 2012). However, metabotropic glutamate
receptor 5 can affect the developmental shift from predominantly
GluN2B-containing NMDA receptors to those containing primarily
GluN2A, suggesting that NMDA receptors may represent a final
common factor in these phenomena. Certainly, the changes in den-
dritic arborisation are consistent with involvement of the Gly-B site
of action of kynurenic acid on the NMDA receptor (Birch et al.,
1988; Stone, 1993; Stone et al., 2013).
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The changes in dendritic architecture seen here are likely to have
significant effects on neuronal function. The apical and basal den-
dritic regions have different physiological and pharmacological char-
acteristics, with different plasticity thresholds (Gordon et al., 2006;
Sajikumar & Korte, 2011) and responses to cholinergic input (Cho
et al., 2008; Leung & Peloquin, 2010). A differential change in the

basal dendrites, the altered location of synapses and the different
balance of excitatory and inhibitory synapses that would result may
therefore contribute to differences in neuronal excitability and plas-
ticity (Forrest et al., 2013a,b). This is especially the case given that
minimal changes in the number and calibre of dendritic branches
can have a major influence on synaptic input and neural excitability
(Ferrante et al., 2013).
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It is particularly striking that most dendritic parameters were
changed by Ro61-8048 in the granule cell population of the dentate
gyrus, despite the increased number of neurons implied by increased
NeuN-immunopositive cells. This may reflect the presence of more
neurons at an early stage of development.

NeuN

The most fundamental indication of altered cerebral development
lies in the number of neurons generated. The hippocampal dentate
gyrus is of particular importance in this respect, as it is one of few
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regions in the adult CNS that shows continuing neurogenesis, pri-
marily in the subgranular zone. The newly formed neurons arise
from precursors that, after differentiation, become fully integrated
into the pre-existing neuronal circuitry (Mongiat & Schinder, 2011).
These cells are therefore likely to be key contributors to the mainte-
nance of cerebral function with ageing or following minor forms of
trauma.
The effects of Ro61-8048 seen here on NeuN-containing cells

may involve modulation of NMDA receptors. The direct administra-
tion of NMDA receptor-blocking agents prenatally or in the early
postnatal period increases cell proliferation and overall granule neu-
ron density in the dentate gyrus (Nacher et al., 2001; Maekawa
et al., 2009), consistent with the increase in the number of NeuN-
immunoreactive neurons in the hippocampal CA1 region and the
dentate gyrus seen here. An overall increase in cell numbers is also
reminiscent of the increased expression of proliferating cell nuclear
antigen at P21 (Forrest et al., 2013a). On the other hand, several
groups have reported that the administration of NMDA antagonists
produces a loss of neurons and synapses in the CNS (Ikonomidou
et al., 1999; Harris et al., 2003). Some of these variations may
depend on the timing of drug administration and their effects on
NMDA receptor subunit composition. In particular, the GluN2B
subunit has been found to be especially important in cerebral devel-
opment (Wang et al., 2011a), and, although expression of this sub-
unit was elevated by Ro61-8048 in P21 rats, levels had normalised
by P60 (Forrest et al., 2013a,b). The early change in its expression
may nevertheless have permanently altered the sequence of events
leading to new neuron formation.

Doublecortin

Doublecortin is a microtubule-associated protein that is known to
have key roles in early neuronal migration, especially of inhibitory
interneurons (Friocourt et al., 2007; Cai et al., 2009), and is associ-

ated with recently generated neurons, for which it is frequently used
as a diagnostic marker (Couillard-Despres et al., 2005; Jin et al.,
2010). The highest concentrations of DCX correlate with sites of
neurogenesis such as the subgranular zone of the hippocampal den-
tate gyrus (Francis et al., 1999), where it is expressed in post-mito-
tic cells in the adult during the initial phases of migration, when
rapid dendritic growth is occurring (Spampanato et al., 2012). It is
required for correct hippocampal lamination (Corbo et al., 2002),
and its deletion results in reduced neurogenesis and poor recovery
after stroke injury (Jin et al., 2010). The increase in hippocampal
DCX levels therefore probably reflects increased neurogenesis fol-
lowing treatment with Ro61-8048 in utero. In fact, the direct obser-
vation of immunostained cells in this study indicates no change in
the number of DCX-positive cells in the dentate gyrus and a
decrease in the number of neurons bearing complex dendrites. This
implies that the increase in protein expression reflects an increase in
the numbers of recently generated neurons in other regions of the
hippocampus. However, as no DCX-immunopositive cells were
found in the CA1 and CA3 pyramidal layers, other positive cells
may be primarily interneurons not studied here. In view of the sub-
stantial and ubiquitous increase in Shh levels across all hippocampal
subfields, with Shh reflecting early cell maturation and tissue locali-
sation, it may also be that new interneurons are migrating from the
subgranular zone more rapidly after Ro61-8048 treatment, or at an
earlier phase of the developmental sequence. Certainly, the develop-
mental roles attributed to DCX temporally precede those ascribed to
Shh, supporting the hypothesis that there is increased production of
new neurons that then mature and differentiate more slowly than in
control animals. This interpretation would be consistent with the
normal number of granule cells overall but with fewer bearing
extensive, mature, complex dendritic trees.
Functionally, the reduced numbers of dentate gyrus neurons with

well-developed dendritic trees may imply increased excitability.
Mutations of the DCX molecule can result in reduced synaptic
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inhibition (Kerjan et al., 2009), which is consistent with the neuro-
nal co-localisation of DCX and GABA, together with accepted
markers of GABA neurons such as parvalbumin (Cai et al., 2009)
and evidence that many DCX-expressing neurons are destined to
become GABAergic interneurons (Xiong et al., 2008). An increased
excitability resulting from fewer DCX-containing inhibitory neurons
could contribute to the reduced paired-pulse inhibition reported
previously. There may also be another link to the early increased
expression of GluN2B after Ro61-8048 treatment, as this subunit is
important in the modulation of inhibitory interneuron activity (Han-
son et al., 2013), and blockade of NMDA receptors by ketamine
affects the hippocampal location of inhibitory, parvalbumin-contain-
ing interneurons (Sabbagh et al., 2013).

Shh

The glycoprotein Shh and the functionally related group of Wingless
proteins are involved in regulation of the cell cycle (Alvarez-Medina
et al., 2009), as well as the early development of tissue polarisation
and the generation of morphogenetic gradients (Jessell, 2000; Palma
et al., 2005; Traiffort et al., 2010), cell proliferation, and the migra-
tion of progenitors to their functional destinations (Traiffort et al.,
2001; Charytoniuk et al., 2002; Palma et al., 2005; Balordi &
Fishell, 2007).
Despite its importance in the earliest stages of CNS formation,

Shh continues to exist in the adult brain, notably in regions such as
the cerebellum and hippocampus (Traiffort et al., 1998; Charytoniuk
et al., 2002), where neurogenesis continues in the adult. The pro-
duction of Shh may contribute to increased neurogenesis and recov-
ery after brain damage, as the loss of Shh activity worsens such
damage.
Expression of Shh appears to be especially sensitive to interfer-

ence with the kynurenine pathway, and is downregulated in neonatal
and adult animals by Ro61-8048 (Forrest et al., 2013a,b). The pres-
ent results show a significant increase in the number of Shh-positive
neurons in all three areas of the hippocampus examined as com-
pared with control tissue. In the dentate gyrus, there is an additional
shift in Shh localisation, with animals exposed to Ro61-8048 show-
ing more cell bodies staining for the protein, but an increased level
of diffuse staining in the intercellular space. As Shh is known to be
a secreted protein (Traiffort et al., 2001), it is likely that this inter-
cellular material reflects an increase in the secretion or leakage of
Shh from the more dense pool of neurons.
Shh also plays a role in attraction and repulsion between develop-

ing synaptic terminals and their target areas of contact on neuronal
somata or dendrites (Angot et al., 2008; Hor & Tang, 2010). The
changes in Shh presence and cellular distribution may therefore con-
stitute a factor affecting the dendritic rearrangements and complexity
described above. In addition, as Shh has been linked to the develop-
ment of inhibitory neurons such as cerebellar granule cells (Spassky
et al., 2008), the changes in Shh expression and Shh-positive cell
numbers may reflect differences in inhibitory neuron numbers or
connectivity that could be partly responsible for the observed
decreased in paired-pulse inhibition and long-term potentiation
(Forrest et al., 2013b).

VGLUT and VGAT

VGLUT-1 and VGLUT-2 have been widely adopted as indicators of
excitatory glutamatergic transmission, the density of the transporters
providing a valuable reflection of quantal size and transmitter
release. VGLUT-1 is substantially more important in the adult

hippocampus and associated behaviours (Balschun et al., 2010).
VGLUT-2 is the predominant transporter in subcortical regions such
as the thalamus and midbrain (Moechars et al., 2006; Kubota et al.,
2007), especially during embryonic and neonatal development, being
replaced by VGLUT-1 in adulthood (Fremeau et al., 2004). One of
the most striking effects of prenatal Ro61-8048 exposure was an
increase in the number of synaptic terminals showing VGLUT stain-
ing, with no change in the number of VAMP-1-positive terminals,
confirming that there was no overall change in the total number of
synaptic contacts. Equally, the absence of any change in VGAT
staining confirms the absence of any global gain or loss of synapses,
and reinforces the concept that the change in VGLUT-positive ter-
minals is a highly specific phenomenon. It may be that this is a con-
sequence of the increased proportion of dendritic branches available
for synaptic contact relative to the decreased number and length of
basal dendrites. It is well recognised that different groups of afferent
neurons project onto different regions of the dendritic surface
(Gidon & Segev, 2012; Ferrante et al., 2013). Although no attempt
was made here to define the anatomical origin of the VGLUT-positive
terminals counted, it is quite possible that the increase noted was
confined to only one or a small number of afferent sources.
It is also possible that the increased number of VGLUT-positive

terminals contributes to the reduced paired-pulse inhibition at small
(10-ms) interpulse intervals (Forrest et al., 2013b). Although paired-
pulse inhibition and facilitation are primarily determined presynapti-
cally (Zucker et al., 1991; Rosenmund & Stevens, 1996), the final
level of paired-pulse interaction is partly influenced by the number
of excitatory and inhibitory terminals on the neurons being recorded.
The larger number of excitatory terminals defined here could there-
fore be responsible for the reduced paired-pulse inhibition. It has
also been noted by others that the expression of VGLUT is a factor
in the relative and overall efficacy of excitatory and inhibitory neu-
rotransmission (Fremeau et al., 2004; Wojcik et al., 2004; Wilson
et al., 2005).

The kynurenine pathway

Overall, this study reinforces the argument that the kynurenine path-
way is active in the embryonic brain during early development.
Components of the kynurenine pathway are present in neurons and
glia at this time (Beal et al., 1992; Walker et al., 1999; Guillemin
et al., 2001, 2005; Schwarcz & Pellicciari, 2002), the glia influenc-
ing the activation of NMDA receptors, possibly via the balance
between the concentration of quinolinic acid (agonist) and that of
kynurenic acid (antagonist). Indeed, the morphological organisation
of developing tissues, including the brain, may be primarily defined
by a gradient of antagonists such as kynurenic acid (Gurdon & Bou-
rillot, 2001). Interfering with the kynurenine pathway during devel-
opment would then significantly affect neuronal morphology and
function in the hippocampus, as reported previously.
Indeed, any immune challenge to the mother or neonate that

results, directly or indirectly, in the activation of central glia or
peripheral macrophages, or changes in the levels of cytokines or
kynurenines in the fetal or neonatal CNS, would alter the balance of
quinolinic acid and kynurenic acid concentrations, and could seri-
ously perturb neural development and plasticity. This could, in turn,
increase the risk of CNS disorders, and would be consistent with
evidence that genetic abnormalities of the kynurenine pathway are
linked to disorders such as schizophrenia (Sathyasaikumar et al.,
2011; Holtze et al., 2012; Stone & Darlington, 2013). The blockade
of NMDA receptors by kynurenic acid produces neurochemical
and behavioural changes that have been likened to those seen in
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schizophrenia (Harris et al., 2003; du Bois & Huang, 2007), and a
significant amount of clinical evidence has identified elevated levels of
kynurenic acid in the brains of schizophrenic patients (Linderholm
et al., 2012; Stone & Darlington, 2013).
The focus in this study has been on the modulation of glutamate

receptors, especially those responding to NMDA, by the kynurenine
pathway. There are other recently identified sites at which kynurenic
acid may also act to affect neuronal development or function (Stone
et al., 2013), and one of these, the a7-nicotinic cholinoceptor, has
received significant attention in recent years. Initial reports indicated
that kynurenic acid was a potent antagonist at these receptors,
although the high potency could not be confirmed (Stone, 2007).
Indeed, more recent work has failed to find any antagonistic action
of kynurenic acid at a7 receptors (Mok et al., 2009; Dobelis et al.,
2012), suggesting that the original observations may have been
made under highly selective conditions that are not generally appli-
cable. The balance of evidence at present would therefore suggest that
NMDA receptors remain the major site of action of kynurenic acid in
the CNS. This would be consistent with the fact that NMDA receptors
play key roles in the development and contact formation of neuronal
growth cones (Wang et al., 2011b), the sprouting, stabilisation and
length of dendritic branches (Sin et al., 2002; Kwon & Sabatini,
2011), and the specification of spine profile and density (Ultanir et al.,
2007; Kwon & Sabatini, 2011). The implication of this study is that
all of these may be under regulatory control by the kynurenine path-
way and subject to environmental influences via this pathway.
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