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Simple Summary: Low-grade gliomas (LGG) with the 1p/19q co-deletion mutation have been
proven to have a better survival prognosis and response to treatment than individuals without the
mutation. Identifying this mutation has a vital role in managing LGG patients; however, the current
diagnostic gold standard, including the brain-tissue biopsy or the surgical resection of the tumor,
remains highly invasive and time-consuming. We proposed a model based on the eXtreme Gradient
Boosting (XGBoost) classifier to detect 1p/19q co-deletion mutation using non-invasive medical
images. The performance of our model achieved 87% and 82.8% accuracy on the training and external
test set, respectively. Significantly, the prediction was based on only seven optimal wavelet radiomics
features extracted from brain Magnetic Resonance (MR) images. We believe that this model can
address clinicians in the rapid diagnosis of clinical 1p/19q co-deletion mutation, thereby improving
the treatment prognosis of LGG patients.

Abstract: The prognosis and treatment plans for patients diagnosed with low-grade gliomas (LGGs)
may significantly be improved if there is evidence of chromosome 1p/19q co-deletion mutation.
Many studies proved that the codeletion status of 1p/19q enhances the sensitivity of the tumor
to different types of therapeutics. However, the current clinical gold standard of detecting this
chromosomal mutation remains invasive and poses implicit risks to patients. Radiomics features
derived from medical images have been used as a new approach for non-invasive diagnosis and
clinical decisions. This study proposed an eXtreme Gradient Boosting (XGBoost)-based model to
predict the 1p/19q codeletion status in a binary classification task. We trained our model on the
public database extracted from The Cancer Imaging Archive (TCIA), including 159 LGG patients
with 1p/19q co-deletion mutation status. The XGBoost was the baseline algorithm, and we combined
the SHapley Additive exPlanations (SHAP) analysis to select the seven most optimal radiomics
features to build the final predictive model. Our final model achieved an accuracy of 87% and 82.8%
on the training set and external test set, respectively. With seven wavelet radiomics features, our
XGBoost-based model can identify the 1p/19q codeletion status in LGG-diagnosed patients for better
management and address the drawbacks of invasive gold-standard tests in clinical practice.

Keywords: low-grade gliomas; radiogenomics; machine learning; chromosome 1p/19q codeletion;
molecular subtype; wavelet transform; magnetic resonance imaging; precision medicine; computer
aided diagnosis; decision making
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1. Introduction

Amongst tumors from the central nervous system (CNS) negatively affecting millions
of patients worldwide regardless of their age or gender, brain cancers account for the high-
est prevalence of more than ninety percent [1]. Gliomas, which originate from astrocytes,
oligodendrocytes, oligo-astrocytes, and glioneuronal cells, are the most common type of
brain cancers [1]. According to the 2016 World Health Organization (WHO) classification of
CNS tumors, gliomas could be divided into diffuse low-grade gliomas (LGGs) (i.e., grade-II
and grade-III gliomas), and high-grade gliomas. The criterion of diagnosing LGGs, which
make up 30 percent of gliomas [2,3], requires evidence of isocitrate dehydrogenase (IDH)
1 and 2 mutations, without or with the presence of 1p/19q codeletion. More specifically,
the diagnosis of oligodendroglioma requires both IDH and 1p/19q mutation, whereas
only the mutation of IDH is considered to diagnose diffuse astrocytoma [2,4,5]. Various
studies indicated that the LGGs with 1p/19q codeletion were more indolent [6–8]. Patients
diagnosed with 1p/19q codeletion mutation status LGG significantly had their survival
time improved and were more sensitive to therapeutics in terms of chemotherapy and
radiotherapy compared with those with 1p/19q non-deleted tumors [9–13]. Thus, the
manipulation of 1p/19q co-deleted mutation and the early detection of this chromoso-
mal abnormality among patients diagnosed with LGGs is highly appreciated, as this can
facilitate short-term and long-term management.

The current gold-standard procedure of identifying 1p/19q codeletion clinically is
the examination of the tumor’s histopathological sample. The pathology samples are
collected via the brain-tissue biopsy or the surgical resection of the tumor, which contain
many underlying risks [3,14–16]. Additionally, the results interpreted from the cytological
analysis of LGGs lack critical information about genomic biomarkers or pathognomonic
imaging changes of gliomas or other brain cancers [10,16].

The extraction of tumor properties from medical images (e.g., magnetic resonance
imaging (MRI), computed tomography (CT), positron emission tomography (PET), etc.) is
one of the various approaches conducted to address the limitations of mentioned meth-
ods [10,16,17]. Following the ubiquity of medical images, the term “radiomics” is devel-
oped and defined as quantifiable data or features derived from those images that can be
utilized to uncover disease properties for diagnosis, making decisions, and further clinical
evaluation of morbidities (e.g., tumors, lesions, etc.) [17–21].

Since the advent of precision and personalized medicine, machine learning (ML)
has received great interest as a promising tool for diagnosing and predicting optimal
treatment for cancer patients [3,22–24]. Recent ML models were proposed to assist the non-
invasive detection of 1p/19q co-deleted LGGs, based on the intensity, texture, and geometry
obtained via radiomics features from medical images [4,5,10,18,19,25–33]. However, the
performance of most models remained unstable on the external test set, as the accuracy
score ranged from 0.68 to 0.93. Additionally, the database used to create these models
contained mostly retrospective cohorts, or they had to use many features for the prediction,
and yet, the predictors could not replace the histopathological methods in the tumor
genetic profiling.

In this study, we hypothesize that a ML model could predict the mutation of 1p/19q
chromosomal arms using only a number of optimal radiomic features. We propose an
eXtreme Gradient Boosting (XGBoost) model to tackle the limitations of most models
in terms of prolonged runtime, stable performance on different data, and reproducibil-
ity under various conditions, which would then contribute to targeted decisions and
reduce the adverse effects induced by invasive diagnostic methods on LGG patients. Both
our training and validation database included preoperative patients from retrospective
studies [10,34], and their condition of 1p/19q was verified by clinical gold standard exami-
nations. With only seven optimization features, we believe that further studies can build
on this framework to optimize cancer prediction models in the future.
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2. Results

The updated The Cancer Imaging Archive (TCIA) database of 159 LGG patients [10]
was used as our training database. All MR images were downloaded via the National
Biomedical Imaging Archive (NBIA) Data Retriever (version 3.6, https://wiki.cancerimagi
ngarchive.net/display/NBIA/Downloading+Images+Using+the+NBIA+Data+Retriever,
accessed on 20 March 2021). Statuses of 1p/19q chromosomal arms were fully reported
based on the gold standard histopathology examination via brain biopsy or open surgical
tumor resection.

2.1. Baseline Comparison among Different Machine Learning Algorithms and Selecting the
Baseline Machine Learning Model

We obtained 159 complete region-of-interest (ROI) segmentations from the previous
study by Akkus et al. [10,26]. Next, 851 radiomic features were derived from each segmen-
tation via 3D Slicer Software (version 10.4.2) [35]. The lack of negative instances (or 1p/19q
non-deleted mutations) may affect the performance of models (especially for specificity
score). Therefore, the Synthetic Minority Over-sampling Technique (SMOTE) [36] would
be applied in the following steps to handling the imbalance and improve the model’s speci-
ficity. Among the five machine learning algorithms (with default parameters) surveyed
on the initial training set (159 instances and 851 radiomic features), the eXtreme Gradient
Boosting (XGBoost) algorithm outperformed other classifier algorithms, as it correctly
predicted 69.17% total instances using all features (Table 1). The accuracy score of Random
Forest (RF) and Adaptive Boosting (AdaBoost) ranked second and third at 66.67% and
60.99%, respectively. On the other hand, the performance of k-Nearest Neighbors (kNN)
and Logistic Regression (LR) algorithm were noticeably low. kNN observed the lowest
accuracy score with 42.16%, whereas LR accurately predicted 47.8% total observations.

Table 1. Comparative performance among different machine learning algorithms using all radiomics features and top
37 features. The experiments were done and reported via 5-fold cross validation and SMOTE technique.

Features Algorithm Sensitivity Specificity Precision Accuracy AUC AUPRC

All features

Logistic Regression 61.75 ± 5.17 32.26 ± 6.69 50.19 ± 9.31 47.80 ± 5.38 0.510 ± 0.095 0.687 ± 0.064
k-Nearest Neighbors 56.20 ± 3.87 27.97 ± 3.46 44.19 ± 4.98 42.16 ± 3.93 0.434 ± 0.065 0.607 ± 0.027

Random Forest 72.13 ± 3.07 57.88 ± 7.77 79.48 ± 12.34 66.67 ± 3.09 0.685 ± 0.061 0.799 ± 0.040
AdaBoost 68.47 ± 7.31 47.03 ± 15.80 71.33 ± 11.39 60.99 ± 10.44 0.599 ± 0.082 0.740 ± 0.051
XGBoost 73.16 ± 2.84 61.51 ± 12.25 81.19 ± 9.83 69.17 ± 6.09 0.710 ± 0.079 0.827 ± 0.057

37 features

Logistic Regression 64.95 ± 12.05 35.71 ± 6.79 44.10 ± 8.15 48.49 ± 8.20 0.587 ± 0.106 0.706 ± 0.091
k-Nearest Neighbors 69.82 ± 8.04 42.83 ± 13.25 62.86 ± 8.61 58.55 ± 9.76 0.590 ± 0.116 0.720 ± 0.077

Random Forest 74.10 ± 7.60 54.16 ± 10.94 75.29 ± 11.18 66.61 ± 7.57 0.713 ± 0.078 0.858 ± 0.041
AdaBoost 71.80 ± 7.50 46.67 ± 6.67 70.67 ± 7.94 62.28 ± 4.72 0.632 ± 0.099 0.755 ± 0.090
XGBoost 77.89 ± 5.75 55.85 ± 7.46 73.52 ± 3.96 69.21 ± 4.83 0.753 ± 0.058 0.809 ± 0.045

XGBoost also ranked first in sensitivity with 73.16%, precision with 81.19%. Even
though the specificity was relatively low at 61.51%, it still outperformed the other algo-
rithms. Moreover, XGBoost showed a significant performance in terms of AUC and AUPRC
(0.71 and 0.827, respectively). In this experiment, XGBoost was therefore chosen to be
our baseline algorithm, for feature selections with SHapley Additive exPlanations (SHAP)
analysis [37] and further considerations.

2.2. Radiomics Signature Building

We performed SMOTE on the dataset with 159 instances and 851 original features
before features selection. In this study, we performed two steps of features selection using
Spearman’s Correlation Coefficient (SCC) [38] and the combination of XGBoost-SHAP
analysis. First, with the threshold of SCC equal to 0.8, we kept features with SCC greater
than 0.8 and discarded features with at least one SCC less than 0.8. As a result, 68 features
were removed.

Then, features selection continued with the combination of XGBoost-SHAP analysis.
Only 37 features were retained after this step. The SHAP values bee swarm plot expressed

https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+Images+Using+the+NBIA+Data+Retriever
https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+Images+Using+the+NBIA+Data+Retriever
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the SHAP values of the 20 best features and ranked them by their importance (out of
37 retained features) (Figure 1). In addition, the below part of Table 1 shows that the
performance was increased when we only used our 37 features inserting into our model.
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value 0.06 (absolute value −0.05 plus +0.01), although it was still a relatively important feature 
(density thick red and purple dots). 

2.3. Model Ensembling and Predictions on the Training Set 
Finally, we added each feature from the 37 aforementioned features to the XGBoost-

baseline model to seek the model with the best combination of XGBoost algorithm and 
certain set of features. We found the model with the highest accuracy score at 87% with 
the first seven features and the XGBoost algorithm with the following parameters: 
max_depth = 6; min_child_weight = 1; max_delta_step = 0; lambda = 1; alpha = 0; 
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Table 2.  

Figure 1. Top 20 features extracted using SHAP analysis. The horizontal axis showed how much the features contribute to
the output predictor variable via SHAP values. Features were ranked based on their contribution to the output predictor;
the higher the SHAP value, the higher the rank of the corresponding feature. The vertical axis with the color ranged
from blue to red represented the value of a feature from low to high, respectively. The density of the colored dots in
any SHAP value represented the strength or weakness of the feature in that SHAP value range. The original first order
Skewness feature had the greatest impact on the predictability of the model. The SHAP value of original first order Skewness
was 0.48 (absolute value of −0.4 plus +0.08). The density of red and purple points concentrated in the range from 0 to
+0.08 indicated that the predictive value of this feature was highest as its corresponding SHAP value was from 0 to +0.08.
On the other hand, the feature wavelet HHH first order Median ranked last in the graph, with the lowest SHAP value 0.06
(absolute value −0.05 plus +0.01), although it was still a relatively important feature (density thick red and purple dots).

2.3. Model Ensembling and Predictions on the Training Set

Finally, we added each feature from the 37 aforementioned features to the XGBoost-
baseline model to seek the model with the best combination of XGBoost algorithm and
certain set of features. We found the model with the highest accuracy score at 87%
with the first seven features and the XGBoost algorithm with the following parameters:
max_depth = 6; min_child_weight = 1; max_delta_step = 0; lambda = 1; alpha = 0;
scale_pos_weight = 1 (Figure 2). Names of the chosen radiomic features were provided in
Table 2.

The original first-order skewness was the best radiomic feature in our study. Skewness
of the first-order matrix refers to the measurement of figure distribution’s symmetry around
the Mean value (i.e., the average gray level of intensity that lies within the ROI). Depending
on the symmetry, this feature could be positive or negative.

Our final model, build on XGBoost algorithm (max_depth = 6; min_child_
weight = 1; max_delta_step = 0; lambda = 1; alpha = 0; scale_pos_weight = 1) and seven
optimal features (Table 2), was applied to predict the LGG 1p/19q codeletion mutations
on the training set, with five-fold cross-validation. The results were promising, with 87%
in accuracy, 88.2% in sensitivity, and 77.2% in specificity. Our model achieved an AUC of
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0.87, and we also plotted the area under a receiver operating characteristics (AUC ROC)
curve and the precision–recall curve to visualize the performance of our model in each fold
(Figure 3) .

Table 2. Seven radiomics features using our final model.

Form Type Matrix Name

original First Order Skewness
Wavelet LLH GLCM Inverse Difference Moment Normalized (IDMN)
Wavelet LHL GLCM Informational Measure of Correlation 1 (IMC1)
Wavelet HLL First Order Kurtosis
Wavelet HLH GLCM Cluster Shade
Wavelet HHH First Order Mean
Wavelet LLL GLCM IMC1
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2.4. Comparison with Previous Studies on 1p/19q Status Prediction

LGG gliomas are malignant tumors; however, the detection of 1p/19q codeletion
mutation could enhance the prognosis and the therapeutic procedures [9–13]. Various
studies were conducted to address the limitations in early diagnosing 1p/19q mutated LGG
gliomas. We compared concretely our proposed model with models formerly developed
by other authors in Table 3. It was notable that the deep learning algorithm-based models
were superior to our model, whereas the XGBoost-7 outperformed a variety of the ML
frameworks.

Table 3. Performance comparisons between our XGBoost-7 and other typical models.

Study Algorithm Dataset Accuracy Sensitivity Specificity AUC

van der Voort et al. SVM
LGG 284 69.8 65.7 72.1 0.755

LGG 108 [39] 69.3 73.2 61.7 0.723

Yogananda et al. Deep learning LGG 268 [5] 93.5 0.9 95 95.3

Akkus et al. CNN LGG 159 [10] 87.7 93.3 82.2 -

Shboul et al. XGBoost
LGG 81 - 78 83 0.83

LGG 23 [33] - 75 85 0.8

Ours XGBoost LGG 159 [10] 87.0 88.2 77.2 0.87

2.5. Performance Results on the External Test Set

We applied our optimal model to the external test set with unseen data. The dataset
contained 65 LGG patients with 52 1p/19q non-deleted and 13 1p/19q codeleted mutations.
Our model accurately classified 82.80% of 1p/19q codeleted LGG, with 94.10% in specificity
and 33.30% in sensitivity.

2.6. Performance Results of Our Radiomics Model on Different Patient Subgroups

We also used the model to predict 1p/19q codeletion mutations in different patient
groups according to grades and types of LGG cells in the training and external test set
(Table 4).

Table 4. Performance results of our model on different patient subgroups. The final model used XGBoost algorithm and top
seven features. The results show that we had promising performance on cross-grade and cross-tumor subtype problems.

Subtype
Training Data External Validation Data

Acc Sens Spec AUC AUPRC Acc Sens Spec AUC AUPRC

Grade 2 83.7 ± 11.7 87.9 ± 6.6 76.3 ± 22.4 0.876 ± 0.11 0.891 ± 0.07 82.1 16.7 100.0 0.695 0.855
3 80 ± 15.1 97.2 ± 25.9 47.4 ± 4.1 0.759 ± 0.20 0.815 ± 0.13 88.6 50.0 96.6 0.847 0.885

Type
Astrocytoma 76.5 ± 8.6 25 ± 9.0 92.3 ± 11.9 0.85 ± 0.09 0.785 ± 0.078 - - - - -

Oligoastrocytoma 80.4 ± 2.0 82.1 ± 0.9 78 ± 4.0 0.836 ± 0.04 0.858 ± 0.05 - - - - -
Oligodendroglioma 93.3 ± 6.9 100.0 ± 0 0.0 ± 0 0.726 ± 0.07 0.864 ± 0.05 64.0 58.3 69.2 0.733 0.828

-: there is no ‘d/d’ class in this group.

The accuracy scores were not lower than 64% in two sets. In particular, the model’s
predictive ability achieved high accuracy for LGG grade 2, LGG type Astrocytoma, and
Oligoastrocytoma in the training set and LGG grade 3 in the test set, with AUC reaching
0.876, 0.85, 0.836, and 0.847, respectively. Moreover, the model’s ability to recognize
codeletion mutations was considerable for LGG grade 2, 3, or LGG type Oligoastrocytoma
and Oligodendroglioma (with high sensitivity over 80% for these grades and types).

3. Discussion

In this study, we proposed a predictive model based on XGBoost algorithm and seven
radiomic features. Our training database contained 159 LGG patients with semi-automated
segmentations by Akkus et al. [26]. The authors’ method fully segmented tumors (or
ROIs); however, there was still the possibility of errors due to user-to-user variability.
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A study by Rundo et al. [40] performed semi-automatic segmentation of brain tumors
based on the presence of a cellular automata model and Gamma Knife. The method
proposed by Rundo et al. was effective in brain tumor recognition and reproducible.
However, auto-segmentation can reduce the time for segmentation while minimizing
human error. Pereira et al. [41] proposed an MRI-based auto-segmentation method for
patients with gliomas. In the future, we will apply the auto-segmentation technique in
further studies and take advantage of the development of deep learning algorithms in
identifying cancer mutations for better management of cancer patients.

Many studies have used machine learning or deep learning to identify 1p/19q codele-
tion mutations in LGG patients based on medical imaging. However, some studies still
need to use many radiomic features [33], or the model’s performance is not high [28,30,39].
On the other hand, our model achieved a high performance using only seven optimal
radiomic biomarkers. We compared our model’s performance with previously developed
ML models by other authors. The similar XGBoost-based model by Shboul et al. [33]
achieved the AUC, sensitivity, and specificity of 0.8 ± 0.04, 0.75 ± 0.08, and 0.85 ± 0.06,
respectively. Given that the total features sorted out by Shboul et al. [33] were more than
ours (15 vs. 7), our model achieved a higher score of AUC (0.8 vs. 0.85), and sensitivity
(0.75 vs. 0.88), but lower specificity (0.85 vs. 0.77). Furthermore, our model outperformed
the SVM-based model proposed by van der Voort et al. [39] (AUC 0.723 vs. 0.85, sensitivity
0.732 vs. 0.88, specificity 0.617 vs. 0.77), and Rathore et al. [30] (accuracy 75.15% vs. 86.80%,
sensitivity 0.82 vs. 0.88, specificity 0.74 vs. 0.77). A two-step classification based on the
presence of the T2-FLAIR mismatch sign yielded by Batchala et al. [31] in 2019 surpassed
our results regarding the training process, but overall lower scores were observed in the
test set (accuracy ranged from 79.2% to 81.1% vs. 82.80%). The authors also included the
contribution of humans in the procedure; this was appreciated. However, it may be prone
to inconvenience and excessive total cost of the implementation in real-world conditions.
Since we used fewer features than previous studies and our wavelet features were not hard
to be produced, clinicians may actually use our model to predict 1p/19q mutation status
with less time and more accuracy than other studies.

Referring to the deep learning models, the compared results were also eminently fa-
vorable. In 2019, a review article by Kocak et al. [27] yielded that the model could correctly
classified the 1p/19q deletion status at an average AUC of 0.869, which was somewhat
lower than our XGBoost model’s performance (0.869 vs. 0.85). Matsui et al. [28], in 2016,
introduced a comprehensive model to predict the mutation of concerned chromosomal
arms, and achieved only 58.5% accuracy on MRI database, despite the reasonable results
on the combination of different forms of medical images. Nonetheless, there were vari-
ous remarkable performances via the application of deep neural networks. In 2017, the
performance of a convolutional neural network (CNN)-based model by Akkus et al. [10]
generated an accuracy of 87.7% on the same dataset used in this study.

Yogananda et al. [5], in 2020, proposed a network correctly predicted the 1p/19q
co-deletion with a prominent accuracy level of 93.46%, compared with 86.80% obtained
from our research. The difference lies in the fact that the author has used deep learn-
ing algorithms to learn and predict. Deep learning algorithms have been proven highly
effective in auto-segmentation, feature extraction, and learning capacity. However, train-
ing a deep learning model requires big data, massive time, and hardware. In contrast,
our current model used a machine-learning algorithm (XGBoost), which requires less
data and reduces the runtime to complete. Our model’s highly accurate prediction had
clinical significance as it significantly reduced the time for diagnosing the 1p/19q codele-
tion mutation to adjust the treatment plan accordingly. Moreover, using only a few ra-
diomics features could reduce the complexity of the diagnostic process but still ensures the
model’s performance.

Shortening the time to detect the type of 1p/19q mutation in patients with LGG is
important in terms of the treatment and prognosis of LGG. In clinical practice, it is necessary
to shorten the runtime of the model, while ensuring high accuracy in predictions. Our
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model achieved high performance and stability based on seven optimal features with a ten-
second runtime for MRI images with tumor segmentation. Problems can arise during the
extraction of radiomics features from tumor images. In this study, the time from extracting
radiomics features until the prediction was made was 2.8 + −0.3 min, achieving AUC
0.85 + −0.06. The deep learning model proposed by Yogananda et al., with a runtime of
three minutes (from tumor segmentation to results), achieved the AUC of 0.95 + −0.01 in
predictions. Despite the similar runtime, our model had a lower predictive performance
compared with the model proposed by Yogananda et al. In the future, we will focus on
improving the model’s performance while maintaining or further shortening the total time
of the process from image input to output.

In terms of the performance of our model on the external test set, the sensitivity was
low with 33.30%, compared with 94.10% of specificity. The overall accuracy reached
82.80%, which indicated that the performance was reasonable. However, the imbal-
ance of sensitivity and specificity was due to the imbalance of the external test set, with
52 1p/19q non-deleted LGG patients (accounting for 80% of the data) and only 13 1p/19q
codeletion LGG patients (accounting for 20% of the data). This could be interpreted as
our model can identify accurately LGG patients with 1p/19q non-deleted status to apply
appropriate cancer therapies. It is necessary to evaluate our model on different external
test sets with more balanced data for further assessment and to validate the model’s sen-
sitivity. Moreover, our model can be applied into cross-group training of LGG patients.
As shown in Table 5, we reached promising performance when training with different
grades, or tumor subtypes. Especially, our model worked well on oligoastrocytoma and
oligodendroglioma subtypes with high sensitivity even though we had a small sample size
in each problem.

Table 5. Patients’ characteristics.

Feature Subtype
Training Cohort External Test Cohort

d/d (n = 102) n/n (n = 57) d/d (n = 13) n/n (n = 52)

Grade
2 66 (64.7%) 38 (66.7%) 6 (46.2%) 22 (42.3%)
3 36 (35.3%) 19 (33.3%) 7 (53.8%) 30 (57.7%)

Type
Astrocytoma 4 (3.9%) 13 (22.8%) 0 (0%) 21 (40.4%)

Oligoastrocytoma 56 (54.9%) 41 (71.9%) 0 (0%) 18 (34.6%)
Oligodendroglioma 42 (41.2%) 3 (5.3%) 13 (100%) 13 (25%)

“d/d” means 1p and 19q are co-deleted, “n/n” means neither 1p nor 19q were deleted.

Wavelet features made up the majority of the most important features in our study.
Many studies have shown the strengths of wavelet features in image compression and pre-
processing and use these features for classification [42–44]. Although no study has clearly
shown the wavelet features’ advantage over the remaining features, the aforementioned
advantages make wavelet features important in predicting based on medical imaging.

To the best of our knowledge, in the field of identifying the LGG 1p/19q codeletion
status, our XGBoost-7 was the first model that contained the least number of involved
radiomic features, and still yielded reasonable results against the training and external test
set. This appealing finding indicated a prospect, in which the physicians would be capable
of detecting the LGG with 1p/19q codeletion by T1- or T2-weighted MR images and only
seven radiomic features, without the need of invasive biopsy or tumor resection. Patients
would receive suitable management plans as quickly as possible, hence attenuating the
risks of treatment-induced adverse effects and unnecessary medical procedures.

However, some limitations still need to be addressed. First, the modest datasets
used for training and validating tasks conflicted with the real-world situations, as a large
number of LGG patients with known 1p/19q codeletion were not included. For the next
steps, data of LGG patients from medical centers would be included to our trained model
for evaluation. Second, the binary classification of LGG patients was insufficient, since
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this study lacked the crucial prognostic marker IDH 1 and 2 mutation [4,5]. In the future,
we would conduct the multiclassification to contribute to preoperative treatment plans.
Third, only MR images in the axial plane were considered. This unintendedly overlooked
some potential characteristics of the tumor. For the next project, the authors would try to
propose a model that is compatible with all MRI planes, thence comprehensively predict
the 3D shape of the tumor. Fourth, also a constraint of most studies, only a retrospective
database was considered; hence, the application on prospective cohorts would gauge the
robustness of our model more completely. Finally, despite the stability and promising
results of XGBoost algorithm towards the unbalanced database [45,46], and the given
result on the training and external validation cohort, the above citations implied that the
combination of the present model and deep learning algorithms [47] may significantly
enhance the outcomes in the future.

4. Materials and Methods

Our workflow (which was exhibited in Figure 4), from data extraction to the external
validation, comprised three main steps: (I) Data extraction from two public databases from
former articles [10,34]: one database was used for training and another one was used as the
external test set; (II) radiomic feature extraction and feature selection using SCC, XGBoost,
and SHAP analysis; (III) applying the ML algorithm on refined features to predict the
1p/19q codeletion status of LGG patients on the training and external test set.

1 
 

 

Figure 4. The workflow of our study. Firstly, data was extracted from two public database from
former articles, one database was used for training and another one was used as the external test
set; secondly, radiomic feature extraction and feature selection were performed using SCC, XGBoost,
and SHAP analysis; finally, machine learning algorithm XGBoost classifier was applied on refined
features to predict the 1p/19q codeletion status of LGG patients on training and external test set.

4.1. Patient Cohort

For the training database, we obtained 159 LGG patients (WHO Grade II and III)
with confirmed preoperative diagnosis, histopathological result of LGG, 1p/19q mutation
status, and complete region-of-interest (ROI) segmentation of tumors in three axial slices
in NiFTI format from the database published on The Cancer Imaging Archive (TCIA) by
Akkus et al. [10,48]. The National Biomedical Imaging Archive (NBIA) Retriever version 3.6,
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which is an open-source software for downloading medical images from TCIA, was used to
download and extract the data. There were 57 patients with non-deleted 1p/19q condition
and 102 co-deleted patients. Among the 102 co-deleted patients, there were 66 grade-II
and 36 grade-III patients, compared with 38 and 19 patients in the respective grades of the
non-deleted group. In terms of the tumor types, i.e., astrocytoma, oligo-astrocytoma, and
oligodendroglioma, the number of patients diagnosed with oligo-astrocytoma accounted
for the highest proportion of 61% regardless of the 1p/19q mutated condition, whereas
people suffering from astrocytoma made up only 10.7% of the total patients.

For the external test set, we recruited 65 LGG patients from the previous study by
Bakas et al. [34], which was published on TCIA [48]. The 1p/19q mutation status of all
patients was confirmed by histopathological samples. In detail, 6 of the 13 1p/19q-co-
deleted and 22 of the 52 1p/19q-non-deleted patients were WHO-Grade II LGGs, and all of
the 13 1p/19q-co-deleted LGGs were oligodendrogliomas. The external test cohort was
collected using the same steps as the training cohort with the support of the NBIA Retriever.
Detailed information of patients was shown in Table 5.

4.2. Feature Extraction

We used 3D Slicer software [35] (version 4.10.2; released on 10 October 2012; last
updated on May 17, 2019) to extract radiomic features from the MR images with ROI
segmentations. We installed seven 3D Slicer extensions for the radiomic feature extractions,
including SlicerRadiomics (https://github.com/AIM-Harvard/SlicerRadiomics, accessed
on 20 March 2021) integrates PyRadiomics library [49] in 3D Slicer, supports calculation and
extraction of radiomic features, DCMQI [50], PETDICOMExtension [51], QuantitativeRe-
porting [50] (https://github.com/QIICR/QuantitativeReporting, accessed on 20 March
2021), SlicerDevelopmentToolbox (https://github.com/QIICR/SlicerDevelopmentToolbox,
accessed on 20 March 2021), and SlicerRT [52].

Initially, the MR records were orderly imported to 3D Slicer for radiomic feature
extraction. A total of 851 features derived from each record were afterwards stored in
.tsv-formatted files. The features were classified into nine categories, e.g., original, wavelet
high-high-high (HHH), wavelet high-high-low (HHL), wavelet HLH, wavelet HLL, wavelet
LHH, wavelet LHL, wavelet LLH, and wavelet LLL. Each category comprised six sub-
categories, namely first-order, Gray Level Co-occurrence Matrix (GLCM), Gray Level
Size Zone (GLSZM), Gray Level Run Length Matrix (GLRLM), Neighbouring Gray Tone
Difference Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM), except for the
original radiomics category with one sub-category (Shape) more than the others. However,
in this study, we classified the features into four categories according to Aerts et al. [9],
including Tumor Shape (containing 14 original shape features), Tumor Intensity (containing
18 original first-order features), Textures (containing 75 GLCM, GLSZM, GLRLM, NGTDM,
and GLDM features), and 744 Wavelet features. The information about the radiomics
classes was concretely described by Zwanenburg et al. [53] and Van Griethuysen et al. [49]

4.3. Data Mining
4.3.1. Determining the Ground-Truth Labels

After the feature extraction step, our training database contained 159 samples with
851 features. For the ground-truth labels, we labelled “n/n” (i.e., 1p/19q non-codeletion
status) as “0”, and “d/d” (i.e., 1p/19q codeletion status) as “1”.

4.3.2. Select the Baseline Machine Learning Models

To evaluate which algorithms worked well on these radiomics features, we applied five
ML algorithms to the training database. The ML algorithms included Logistic Regression
(LR), k-Nearest Neighbors (kNN), Random Forest (RF), Adaptive Boosting (AdaBoost),
and eXtreme Gradient Boosting (XGBoost). All ML algorithms were implemented using
scikit-learn package in Python. All five algorithms were used inside grid search techniques
(GridSearchCV method) to find the optimal parameters for preliminary assessment.

https://github.com/AIM-Harvard/SlicerRadiomics
https://github.com/QIICR/QuantitativeReporting
https://github.com/QIICR/SlicerDevelopmentToolbox
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LR

LR is described as an algorithm used for calculating the correlations between inde-
pendent variables toward one dependent variable, and the trendy prediction of related
dependent values based on known independent inputs [40]. This algorithm can be divided
into simple (SLR) and multiple LR (MLR). In this study, we applied MLR analysis to find
whether there is a linear correlation between radiomic features and corresponding 1p/19q
deletion status.

The following pattern exhibits the SLR equation:

y = βo + β1X1 + β2X2 + . . . + βnXn + ε

y, βo, β1 . . . βn, X1 . . . Xn, and ε are denoted as the dependent variable, the intercept
constant, the slope (also known as the regression coefficient), the independent variables
(the radiomic features), and the random error, respectively.

kNN

Evelyn Fix and Joseph Hodges introduced an algorithm called “k-Nearest Neighbors”
in 1951 [54]. Its main principle based on the intuitive assumption that nearby cases usually
have many similarities. In this study, kNN was used as a supervised ML classifier. It
appraised which class each neighbor was in and calculated the most preferred class within
k neighbors of the concerned observation. Further details about kNN could be found
at [55].

RF

The RF classifier algorithm is the combination of various decision trees where each
tree would play a role in voting for the most popular class. Eventually, each separated
input data would be classified into its relative class [56]. This algorithm, specifically,
could be sufficiently used in different tasks including multiple or binary classification, and
regression analysis. RF, in this study, was used to solve the binary classification problem
on detecting 1p/19q mutation.

AdaBoost

AdaBoost is a boosting algorithm, which integrates the downgrade components into
one robust model. The weight assignations to each training sample and classifier are
implemented, i.e., the weaker the item and the stronger the classifier, the higher weight is
added, to make it contribute more significantly to the outcome. A systematic review by
Ying et al. [43] revealed more information about AdaBoost, its contribution and drawbacks
in the field of high-yield ML. Recently, numerous projects have exploited AdaBoost and
other boosting algorithms to build models used for radiomics prediction.

XGBoost

Similar to AdaBoost, XGBoost is the application of a sufficient gradient boosting
algorithm, and hence, it becomes a favored choice in the midst of boosting techniques for
its superior predictive performance, exact classification, and the capacity of administering
imbalanced data. To be more particular, L1 and L2 regularization are also included in
this algorithm, which are responsible for handling sparseness and attenuating overfitting.
Moreover, the clinical records, e.g., the database of LGG patients used in this project,
usually experience discrepancy data, which can be addressed using XGBoost. The detailed
equation of XGBoost and its applications could be found in [33,57].

4.4. Handling the Imbalance between Two Classes and Features Selection Using the Spearman’s
Correlation Coefficient (SCC) and SHAP Analysis

Prior to features selection, it was necessary to address the data imbalance. We used the
Synthetic Minority Over-sampling Technique (SMOTE) [36]. SMOTE helps select minority
instances from each class from the dataset and generate a synthetic point between the
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instances to make the classes more balanced [36]. In this study, SMOTE can address the
low specificity on the training set.

We implemented the first step of radiomic feature selection by using the SCC. The
pair-wise correlation coefficient between each pair of radiomic features was calculated. In
this experiment, 0.8 was the threshold for determining if one feature would be excluded or
included. Every pair, of which the SCC exceeded 0.8, was retained, whereas the SCCs of
below 0.8 were prone to the exclusion. From 851 features, 68 features were filtered out, and
leaving 783 features for further considerations. Moreover, SHAP analysis and RFE were
integrated to find out the optimal 7 features. Our 7 features can be found in Table 2 for
reproducing the methods.

4.5. Statistical Analysis

Statistical analysis was performed using Python. Our model is trained using 5-fold
cross validation method, and then it is applied on an external validation set. Measurement
metrics included Sensitivity, Specificity, Accuracy, ROC curve, and AUC.

Sensitivity is defined as the percentage of the 1p/19q co-deleted patients correctly
predicted by the model on total patients with 1p/19q codeletion.

Sensitivity =
True Positive

True Positive + False Negative

Specificity is calculated by the ratio of patients with 1p/19q non-deleted patients
recognized by the model and all 1p/19q non-deleted patients.

Specificity =
True Negative

True Negative + False Positive

Accuracy of a model is validated by the number of its correct predictions dividing by
the whole number of involved patients.

Accuracy =
True Positive + True Negative

Total patients

The ROC–AUC and precision–recall (PR) curves for each fold in five-fold cross valida-
tion were plotted to visualize the overall performances of each algorithm.

5. Conclusions

We proposed an XGBoost-based model with solely seven wavelet radiomic features, to
implement the classification of LGG 1p/19q codeletion status in the cohort of LGG patients,
which was believed to contribute to the non-invasive diagnosis, individual cancer therapy,
and long-term management for patients diagnosed with LGG. In the future, we intend to
apply the model to multicenter data with many patients to evaluate the predictive power
of the model. Additionally, we plan to conduct our experiments with auto-segmentation,
using the state-of-the-art deep learning (convolutional neural networks, recurrent neural
networks, etc.). Hopefully, our future work can contribute more to the early diagnosis of
LGG cancer with 1p/19q codeletion mutation in clinical practice.
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