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Despite its devastating clinical and societal impact, approaches to treat delirium in older adults remain elusive, making it important to
identify factors that may confer resilience to this syndrome. Here, we investigated a cohort of 93 cognitively normal older patients
undergoing elective surgery recruited as part of the Successful Aging after Elective Surgery study. Each participant was classified either
as a SuperAger (n=19) or typically aging older adult (n= 74) based on neuropsychological criteria, where the former was defined as
those older adults whose memory function rivals that of young adults.We compared these subgroups to examine the role of preopera-
tive memory function in the incidence and severity of postoperative delirium. We additionally investigated the association between
indices of postoperative delirium symptoms and cortical thickness in functional networks implicated in SuperAging based on struc-
tural magnetic resonance imaging data that were collected preoperatively. We found that SuperAging confers the real-world benefit of
resilience to delirium, as shown by lower (i.e. zero) incidence of postoperative delirium and decreased severity scores compared with
typical older adults. Furthermore, greater baseline cortical thickness of the anterior mid-cingulate cortex—a key node of the brain’s
salience network that is also consistently implicated in SuperAging—predicted lower postoperative delirium severity scores in all pa-
tients. Taken together, these findings suggest that baseline memory function in older adults may be a useful predictor of postoperative
delirium risk and severity and that superior memory functionmay contribute to resilience to delirium. In particular, the integrity of the
anterior mid-cingulate cortex may be a potential biomarker of resilience to delirium, pointing to this region as a potential target for
preventive or therapeutic interventions designed to mitigate the risk or consequences of developing this prevalent clinical syndrome.
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Graphical Abstract

Introduction
Delirium is an acute state of confusionmarked by fluctuating
symptoms of disturbance in attention, other cognitive func-
tions, and often arousal.1 Postoperative delirium occurs in
11% to 51% of hospitalized older (age 65+) patients2 and
substantially increases their risk for death, institutionaliza-
tion, and dementia.3 Mortality rates among hospitalized pa-
tients who develop delirium are as high as those among
patients with myocardial infarction or sepsis.4 Delirium
costs more than $164 billion per year in the United States
for all hospitalized older adults5 and more than $33 billion
per year for older surgical patients,6 rivalling the costs asso-
ciated with cardiovascular disease and diabetes. Despite its
devastating clinical and societal impact, approaches to ef-
fectively treat delirium remain elusive. Major predisposing
and precipitating factors of delirium include medical condi-
tions that perturb brain homeostasis by altering cerebral
structure and/or function, such as dementia, cerebrovascular
disease, depression, infections, and psychoactive drugs.1,7 In
addition to minimizing these risk factors, it is equally

important to identify factors that may confer resilience to de-
lirium. Clarification of a potential biomarker associatedwith
resilience to delirium would be useful for appropriate target-
ing of interventions for this syndrome (e.g. via structural or
functional neural plasticity) and to minimize its associated
burden of downstream complications.

The pathogenesis of delirium is complex and likely reflects
multiple aetiologies based on both underlying predisposi-
tions and superimposed acute stressors.2,8 In high-risk indi-
viduals, delirium is thought to represent a failure of the
brain to show resilience to an acute stressor; this vulnerabil-
ity is thought to be associated with a multitude of processes,
including age-related impairment in brain network connect-
ivity and neurodegeneration.1 Consistent with this view, ac-
cumulating evidence suggests that several different sets of
interacting biological factors result in disruption of
large-scale neuronal networks in the brain, leading to acute
dysfunction in cognitive processes including attention, work-
ing memory, and executive functions.9 A recent
meta-analysis of neuroimaging studies suggests that delirium
is associated with pre-existing differences in some
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elements of brain structure and function, including local or
regional atrophy, as well as structural and functional
hypoconnectivity.10

A network-basedmodel of delirium posits that the conver-
gence of neurotransmitter changes, as well as neuroendo-
crine and inflammatory stressors on functional brain
networks disrupts bottom-up and top-down attentional con-
trol, with the dysfunction of the salience network being a
critical aspect of inattention in delirium.11 The salience net-
work has been implicated broadly in the orienting of atten-
tion, motivation, and visceromotor regulation.12–15 In
particular, the anterior mid-cingulate cortex (aMCC) is
thought to be critical for tenacity (persistence in the face of
challenge), likely owing to its role as a hub for domain-
general signal integration and network coordination in the
brain.16 This suggests the possibility that the integrity of
the salience network—especially that of the aMCC—may
be a critical component that supports resilience to delirium
in older adults.

Consistent with this hypothesis, emerging research de-
monstrates that structural and functional preservation of
the aMCCmay be key to successful cognitive aging. Some in-
vestigators have focused on a remarkable subgroup of older
adults, called ‘SuperAgers’,17 whose performance on some
measures of episodic memory are statistically indistinguish-
able from those of middle-aged adults17–20 or even young
adults,21–23 despite their advanced age. Many of the most
pronounced neurobiological differences between
SuperAgers (SAs) and typically aging older adults involve
the structure and function of the aMCC. Anatomically, we
and others have shown, based on structural MRI data, that
the size of the aMCC in SAs is greater than typical older
adults (TOAs).17,19,20,22,24 More recently, we further de-
monstrated with functional MRI data collected at wakeful
rest that SAs also exhibited stronger intrinsic functional con-
nectivity between the aMCC and other major nodes of the
salience network when compared with TOAs.23 It is unclear
exactly why the structural and functional integrity of the
aMCC and other nodes of the salience network and many
other networks decline in normal aging.25 However, the rela-
tively few individuals who do not undergo these declines
seem to exhibit memory performance comparable with
that of young adults.

To the best of our knowledge, no study to date has inves-
tigated whether the preservation of key nodes of functional
networks such as the salience network may confer resilience
to delirium in older adults. Here, we sought to fill this gap
by investigating the association between preoperative cor-
tical thickness and the incidence and severity of post-
operative delirium in a cohort of cognitively normal older
patients undergoing elective surgery (for a detailed
description of the study design and protocol, see Schmitt
et al.26,27). Following closely the criteria used in previous
studies of SuperAging,17,20,22 we identified SAs and TOAs
within this cohort based on neuropsychological measures
collected preoperatively at baseline. Based on the rationale
described above, we hypothesized that (i) SAs would

show reduced incidence and severity of postoperative delir-
ium compared with TOAs, and that (ii) greater cortical
thickness in the aMCC and other regions within the salience
network at preoperative baseline would predict reduced inci-
dence and severity of postoperative delirium in all
participants.

Methods
Participants
Participants in this study were selected from the Successful
Aging after Elective Surgery (SAGES) study. The SAGES study
design and methods have been described in detail previous-
ly.26,27 Briefly, eligible participants were age 70 years and old-
er, English speaking, scheduled to undergo elective surgery at
one of two Harvard-affiliated academic medical centres, with
an anticipated length of stay of at least 3 days. Eligible surgical
procedures included: total hip or knee replacement; lumbar,
cervical, or sacral laminectomy; lower extremity arterial by-
pass; open abdominal aortic aneurysm repair; and open or lap-
aroscopic colectomy. Exclusion criteria included evidence of
dementia, delirium, or hospitalization within 3 months prior
to study participation, diagnosis of a terminal condition, legal
blindness, severe deafness, history of schizophrenia or psych-
osis, and history of alcohol abuse or withdrawal. A total of
560 patients met eligibility criteria and were enrolled between
18 June 2010 and 8 August 2013. Written informed consent
for study participation was obtained from all participants ac-
cording to procedures approved by the institutional review
boards of the two study hospitals [Beth Israel Deaconess
Medical Center (BIDMC) and Brigham and Women’s
Hospital], and the coordinating centre (Hebrew SeniorLife).
In this study, we examined MRI and neuropsychological
data acquired from the pool of 146 participants who had these
data collected preoperatively and completed at least 6 months
of postoperative follow-up.28Of this initial pool of patients, 53
were excluded due to abnormal neuropsychological profiles at
baseline (see Results and Fig. 1 below). This resulted in 93 pa-
tients (mean age: 75.8±4.1; 57F/36 M), each of whom was
classified as either a SA or TOA based on established neuro-
psychological criteria (see SuperAging definition below). One
participant was excluded from all analyses involving
Confusion Assessment Method-Severity (CAM-S) scores due
to extreme values (SD >3).

Neuropsychological testing
All participants completed an in-person battery of neuro-
psychological tests in their homes within 30 days before sur-
gery [median, 9 days; interquartile range (IQR): 5–17]29 that
included the following: Hopkins Verbal Learning
Test-Revised (HVLT-R);30 Trail Making Test Parts A &
B;31 digit span forwards and backwards (WAIS-III);32

Controlled Oral Word Association Test (F/A/S);33

Supermarket items;34 Boston Naming Test-15 (BNT-15);35

digit-symbol substitution test from the Repeatable Battery
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for the Assessment of Neuropsychological Status;36 and
Visual Search and Attention Test.37 A Global Cognitive
Performance (GCP) weighted composite was calculated for
each participant reflecting general neuropsychological func-
tion encompassing performance on the entire battery admi-
nistered and calibrated to the U.S. population.38

SuperAging definition
We classified each participant as a SA or a TOA cross-
sectionally on the basis of their neuropsychological test
profiles, following prior work on SuperAging.19–24,39–41 In
addition to normal performance according to published nor-
mative data on all neuropsychological tests administered, SAs
were required to meet two additional psychometric criteria
similar to those used in previous studies.17,22 Specifically, par-
ticipants were required to perform at or above the mean
gender-adjusted value for young adults (age range: 16–29
years old) on the Long Delay Free Recall trial of the
HVLT-R. Participants were also required to perform no low-
er than 1 SD below the mean for their age and education
group on the Trail Making Test Part B.42 All other partici-
pants not meeting these criteria were considered to be typic-
ally aging, cognitively normal older adults, provided their
performance on all neuropsychological measures were within
1.5 SDs of published normative values for each neuropsycho-
logical instrument on the basis of age and education.

Assessment of delirium
Delirium incidence and severity scores were assessed using a
structured battery on each postoperative day throughout

hospitalization. Delirium incidence was diagnosed using the
Confusion Assessment Method (CAM)43,44 diagnostic algo-
rithm, supplemented with a validated chart review method45

to detect the presence or absence of delirium for each patient.
TheCAMwas rated based on information frompatient inter-
views performed once daily in the late morning or early after-
noonat approximately the same time eachday; these included
a brief cognitive screen (orientation, short-term recall, and
sustained attention), the Delirium Symptom Interview,46

and information related to acute changes in mental status
noted by nurses or family members.26 Study interviewers
underwent intensive training and standardization.27 The
CAMhas high sensitivity (94%) and specificity (89%) for de-
lirium44 and high inter-rater reliability (kappa statistic= 0.92
in 71 paired ratings in SAGES).29 The chart-based delirium
instrument has a sensitivity of 74% and specificity of
83%.45 The CAM plus chart combined approach is the pre-
ferredmethod for detecting delirium since it maximizes sensi-
tivity. Although the CAM detects the majority of delirium
cases, the additional chart review increases sensitivity by
identifying delirium throughout the 24 h period.47

Delirium severity scores were calculated using the CAM-S
long form, which is based on the 10 features from the full
CAM instrument to quantify the intensity of delirium fea-
tures.7 CAM-S demonstrates strong psychometric properties
and strong associations with important clinical outcomes.7

When inter-rater reliability for CAM-S long form in the
SAGES data was evaluated in 73 pairs, the overall agreement
was 97% and intraclass correlation coefficient was 0.88.7

Scores on the CAM-S long form range from 0 to 19, with
higher scores indicating more severe delirium. Delirium se-
verity scores were measured in the present study for each

SAGES cohort patients with MRI
data at baseline (N = 146)

SuperAgers (n = 19) Cognitively normal, typical older
adults (n = 74)

Delirious typical older adults
(n = 15*)

Non-delirious typical older
adults (n = 59)

Excluded due to abnormal
neuropsychological profiles at

baseline (n = 53)

Figure 1 Flow chart outlining the process of participant selection. *One delirious typical older adult was excluded from all analyses
involving CAM-S scores due to extreme values (SD> 3). All SA participants (n= 19) were postoperatively non-delirious.

4 | BRAIN COMMUNICATIONS 2022: Page 4 of 12 Y. Katsumi et al.



patient using both CAM-S peak (the highest single CAM-S
rating observed during hospitalization) and CAM-S sum
(the summed score across all hospital days), thereby captur-
ing both delirium intensity and duration.48,49 It is important
to note that CAM-S scores may be positive (>0) even in the
absence of meeting full delirium criteria by CAM, reflecting
either subsyndromal delirium or symptoms related to other
conditions (such as dementia).

MRI data acquisition and processing
We analyzed the magnetization-prepared fast gradient-echo
(MPRAGE) 3D anatomical T1-weighted images (TR:
7.9 ms, TE: 3.2 ms, 15° flip angle, 32 kHz bandwidth, 24×
19 cm field of view, 0.94 mm in-coronal plane resolution,
1.4 mm slices, preparation time of 1100 ms with repeated
saturation at the beginning of the saturation period, and an
adiabatic inversion pulse 500 ms before imaging) collected
at the BIDMC Radiology Department on a 3 T HDxt MRI
(General Electric Medical Systems) scanner using an 8-chan-
nel head coil.28 Each participant’sMPRAGEdata underwent
intensity normalization, skull stripping, and an automated

segmentation of cerebral white matter to locate the grey–
white boundary via FreeSurfer v6.0, which is documented
and freely available online for download (http://surfer.nmr.
mgh.harvard.edu). Defects in the surface topology were cor-
rected,50 and the grey/white boundary was deformed out-
ward using an algorithm designed to obtain an explicit
representation of the pial surface. Each participant’s cortical
surface reconstruction in their native spacewas registered to a
template surface space (fsaverage) for intersubject
comparisons.

Statistical analysis
We performed a series of independent sample t-tests to stat-
istically compare neuropsychological test performance be-
tween patients classified as SAs and TOAs, following
previous studies of SuperAging. Similar analyses were per-
formed to compare CAM-S sum and CAM-S peak scores be-
tween the two groups. The association between SA status
and delirium incidence was assessed via a Chi-square test
of independence. This analysis revealed that all of the pa-
tients who developed delirium postoperatively were TOAs
(see Results). Therefore, we performed a series of one-way
analysis of variance (ANOVA) to compare neuropsycho-
logical performance across the three groups: SAs, postopera-
tively delirious TOAs (D-TOAs), and non-delirious TOAs
(ND-TOAs). Turning to the analysis of cortical thickness
data, to identify regions of the cerebral cortex whose thick-
ness is associated with delirium incidence and severity across
all participants, we created a vertex-wise general linear mod-
el (GLM) in FreeSurfer. Given our a priori hypotheses re-
garding the salience network, we restricted our analysis
within the boundaries of this network using an established
parcellation of the cerebral cortex (the ‘ventral attention’
network; Yeo et al.51). Statistical significance was assessed
using an uncorrected vertex-wise threshold of P< 0.05 with-
in this network mask, following similar approaches em-
ployed in prior work on SuperAging.22,23 This analysis
revealed areas of the cerebral cortex where cortical thickness
was associated with CAM-S sum and/or peak scores across
all patients regardless of postoperative delirium status. To
ensure the specificity of our results, we also performed a
whole-cortex GLM analysis without any network masks.
Finally, we conducted a one-way ANOVA, as well as t-tests
to perform a post hoc group comparison of the mean aMCC
cortical thickness based on the significant clusters identified
from our vertex-wise analysis described above. Analyses
were conducted using the mri_glmfit function in
FreeSurfer, with additional group-level statistical tests per-
formed using SPSS Statistics v27 (IBM Corp.); statistical sig-
nificance was assessed at P< 0.05.

Data availability
The data that support the findings of this study are available
from the corresponding authors, upon reasonable request.

Table 1 Demographic and neuropsychological
characteristics of SAs and TOAs

Neuropsychological measure SuperAger
Typical

older adult

n 19 74
Sex (% female) 74 58
Age (years) 75.5 (4.5) 75.9 (4.0)
Education (years) 16.1 (3.0) 15.2 (2.7)
Trail Making Test A (s) 31.3 (6.9)** 36.9 (10.6)
Trail Making Test B (s) 62.1 (14.0)** 100.8 (38.3)
HVLT-R Trial 1 (12) 7.9 (1.9)** 6.1 (1.4)
HVLT-R Trial 3 (12) 11.4 (0.8)** 9.4 (1.6)
HVLT-R total learning (36) 29.7 (3.2)** 23.9 (4.0)
HVLT-II Delayed Recall (12) 11.4 (0.5)** 8.1 (1.5)
HVLT-R % retention [(Delayed recall/
Higher score of Trials 2 and 3) x
100]

99.9 (7.3)** 85.0 (12.5)

HVLT-R Recognition (true positives) 11.9 (0.3)** 11.3 (0.9)
HVLT-R Recognition Discrimination
Index (Total true positives – total
false positive)

11.4 (0.8)** 10.6 (1.3)

VSAT (# correct) 47.1 (10.4) 47.9 (8.8)
Digit span forward 7.1 (1.4) 6.6 (1.2)
Digit span backward 5.5 (1.4)* 4.8 (1.1)
Digit-symbol substitution (# correct) 44.4 (7.4)** 38.5 (9.1)
Controlled Oral Word Association
Test (F/A/S)

46.2 (8.7)** 38.1 (10.5)

Category fluency (supermarket items) 26.9 (5.6)* 23.5 (5.3)
Boston Naming Test-15 14.5 (1.0) 13.9 (1.3)
MMSE 27.6 (0.8)* 26.5 (1.2)
GCP 66.5 (4.6)* 59.8 (5.1)

Values represent means and standard deviations (in parentheses) for each
neuropsychological measure. HVLT total learning= sum of word recalled across all
encoding trials. Values in parentheses in the leftmost column indicate maximum score
unless otherwise specified. Bolded measures were used to classify each patient as either
a SA or TOA. s= seconds; SD= standard deviation. Asterisks denote statistically
significant differences from TOAs at *P≤ 0.05 or **P≤ 0.01.
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Results
Figure 1 describes the process of participant selection. Of the
initial pool of 146 patients, 53 of them were excluded due to
scoring 1.5 SD or lower relative to the published normative
value for at least one of the neuropsychological instruments
adjusted for age and education. Demographic and neuro-
psychological characteristics of the remaining 93 patients
in our study sample are summarized below in Table 1.
Nineteen (20%) of the 93 patients were classified as SAs
based on their performance on the HVLT-R delayed recall
measure and TrailMaking Test Part B, relative to the gender-
adjusted mean value for young adults (see Methods), while
the remaining 74 patients were considered TOAs. All
TOAs performed within the normative values for their age
and sex on at least the HVLT-R and Trail Making Test
Part B, if not across all other neuropsychological tests admi-
nistered as part of the battery. In addition to the HVLT-R
and Trail Making Test Part B, SAs performed better on mea-
sures of processing speed, most tests of executive functions,
and other measures of episodic memory. We found no
statistically significant differences between groups in age
(P≤0.71), education (P≤ 0.28), or the distribution of sexes
(P≤0.21).

Incidence and severity of
postoperative delirium between
SuperAgers and typical older adults
A χ2 test of independence revealed a significant association
between SuperAger status and delirium incidence: x2≥
4.59, P≤ 0.032. Specifically, 15 patients developed delirium
postoperatively during hospitalization, all of whom were
TOAs (Fig. 2). Neuropsychological characteristics of SAs,
postoperatively D-TOAs, and ND-TOAs are summarized
in Table 2. Overall, SAs performed better than both
D-TOAs and ND-TOAs in most aspects of episodic memory
function as measured by the HVLT-R. Turning to delirium
severity scores, we found that SAs on average showed lower
CAM-S ratings than TOAs, both in terms of CAM-S sum (in-
tensity×duration) (SAs: M=3.16, SD= 2.63 versus TOAs:

M= 7.21, SD= 6.75; t(90)=2.56, P≤0.012) and peak
(highest intensity) (SAs: M= 1.74, SD= 0.87 versus TOAs:
M= 3.52, SD=2.82; t(90)=2.71, P≤ 0.009) scores (Fig. 3).

Greater baseline cortical thickness of
the aMCC is associated with reduced
postoperative delirium severity
A vertex-wise GLM analysis revealed that the severity of
postoperative delirium, as measured by CAM-S sum and
peak scores, was negatively associated with the thickness
of cortical regionswithin the salience network at baseline, in-
cluding bilateral aMCC and smaller, unilateral clusters part
of the dorsal anterior insula, anterior middle frontal gyrus,
and the supramarginal gyrus (Fig. 4). An independent
GLM in which sex, age, and GCP of each participant were
included as covariates of no interest revealed very similar re-
sults (Supplementary Fig. 1). To assess the specificity of the
observed effect to the salience network, we performed a simi-
lar GLM analysis but without any masking of the results.
This whole-cortex analysis revealed few clusters outside
the boundaries of the salience network, with bilateral
aMCC still showing the most significant effect
(Supplementary Fig. 2). These results suggest that the
aMCC, a key node of the salience network, may play a
uniquely protective role against postoperative delirium in
surgical patients, consistent with its role in successful cogni-
tive aging. In addition, we computed for each participant the
mean cortical thickness of the significant aMCC clusters, and
statistically compared it across SAs, D-TOAs and
ND-TOAs. A one-way ANOVA revealed a trend-level effect:
F(2,89)= 3.09, P≤ 0.0503. Post hoc tests identified greater
aMCC thickness in SAs (M= 2.62, SD= 0.27) than
D-TOAs (M= 2.37, SD=0.29) (t(31)=2.47, P≤ 0.019,
Cohen’s d= 0.89), with no difference in thickness when
compared with ND-TOAs (M= 2.59, SD= 0.32) (t(76)=
0.72, P≤ 0.72, d=0.10). Greater aMCC thickness was
also observed for ND-TOAs compared with D-TOAs
(t(71)= 2.26, P≤ 0.27, d=0.72) (Supplementary Fig. 3).

Discussion
Because of the expected increase in the older population over
the coming decades52 and a burgeoning number of older per-
sons undergoing major surgery,53,54 substantial numbers of
people are at elevated risk for developing postoperative delir-
ium, as well as longer-term cognitive decline.29,55 Since vari-
ous types of brain structural and functional decline play a
prominent role in delirium pathophysiology,1 there is an ur-
gent need to advance our understanding of the mechanistic
underpinnings of resilience to delirium. Here, we show that
SuperAging—so-defined using straightforward neuro-
psychological measures—confers the real-world benefit of
resilience to delirium in older adults undergoing elective sur-
gery: None of the SAs demonstrated full clinical delirium by
CAM criteria. Furthermore, greater pre-surgical cortical

Figure 2 Incidence of postoperative delirium in (A) SAs
versus (B) TOAs.
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thickness of the aMCC—a key node of the brain’s salience
and frontoparietal networks reliably implicated in
SuperAging—was associated with reduced postoperative de-
lirium severity scores. This suggests that superior memory

function in older adults22–24 may predict reduced risk and se-
verity of postoperative delirium, possibly via a protective ef-
fect of the structural integrity of the aMCC. Given that the
aMCC exhibits high neural plasticity and its structure and
function can be improved with training,56,57 this brain re-
gion may be one potential ‘target’ biomarker to engage in
intervention strategies aiming to prevent delirium.

A systematic review of published delirium risk prediction
models revealed that cognitive impairment was second only
to age as the most commonly replicated predictor of delir-
ium.58 Consistent with this evidence, we previously showed
that a baseline measure of general cognitive performance as-
sessed preoperatively comprising a variety of domains (e.g.
attention, executive function, memory, language, visuo-
spatial processing) is the dominant predictor of delirium
risk in a larger (N= 500+) sample of older adults.59

Similarly, another study showed that greater participation
in cognitive activities (e.g. reading, writing, playing games)
in general was associated with reduced incidence and sever-
ity of postoperative delirium in a sample of older adults
undergoing elective orthopaedic surgery.60 Here, we extend
these findings by demonstrating that, when undergoing elect-
ive surgery, older adults with verbal memory performance
comparable with that of young adults are more likely to be
protected against the development and prolongation of

Table 2 Demographic and neuropsychological characteristics of SAs, postoperatively D-TOAs and ND-TOAs

Neuropsychological measure
SuperAger

(SA)
Delirious (D)

typical older adults
Non-delirious (ND)
typical older adults

Group
differences

N 19 15 59 -
Sex (% female) 74 60 58 -
Age (years) 75.5 (4.5) 75.7 (4.3) 76.0 (4.0) -
Education (years) 16.1 (3.0) 14.9 (2.5) 15.3 (2.7) -
Trail Making Test A (s) 31.3 (6.9) 38.1 (10.7) 36.6 (10.7) SA < NDa

Trail Making Test B (s) 62.1 (14.0) 106.1 (47.1) 99.4 (36.1) SA < ND=Db

HVLT-R Trial 1 (12) 7.9 (1.9) 6.1 (1.3) 6.2 (1.4) SA > ND=Db

HVLT-R Trial 3 (12) 11.4 (0.8) 9.3 (1.3) 9.4 (1.6) SA > ND=Db

HVLT-R total learning (36) 29.7 (3.2) 23.9 (3.3) 23.9 (4.1) SA > ND=Db

HVLT-II Delayed Recall (12) 11.4 (0.5) 8.1 (1.4) 8.1 (1.5) SA > ND=Db

HVLT-R % retention [(Delayed recall/Higher score of
Trials 2 and 3) x 100]

99.9 (7.3) 85.1 (11.9) 85.0 (12.7) SA > ND=Db

HVLT-R Recognition (true positives) 11.9 (0.3) 11.3 (0.8) 11.2 (0.9) SA > NDb; SA > Dc

HVLT-R Recognition Discrimination Index
(Total true positives – total false positive)

11.4 (0.8) 10.7 (0.9) 10.5 (1.4) SA > NDb

VSAT (# correct) 47.1 (10.4) 51.1 (7.9) 47.0 (8.9) -
Digit span forward 7.1 (1.4) 6.7 (1.3) 6.6 (1.2) -
Digit span backward 5.5 (1.4) 5.0 (1.2) 4.7 (1.1) -
Digit-symbol substitution (# correct) 44.4 (7.4) 43.4 (8.4) 37.3 (8.9) D > NDa

Controlled Oral Word Association Test (F/A/S) 46.2 (8.7) 40.0 (10.2) 37.7 (10.6) SA > NDb

Category fluency (supermarket items) 26.9 (5.6) 24.4 (4.6) 23.3 (5.5) SA > NDa

Boston Naming Test-15 14.5 (1.0) 14.1 (1.6) 13.9 (1.2) -
MMSEd 27.6 (0.8) 26.7 (1.1) 26.5 (1.3) SA > NDb; SA > Da

GCP 66.5 (4.6) 61.7 (5.2) 59.3 (5.9) SA > NDb; SA > Da

Values represent means and standard deviations (in parentheses) for each neuropsychological measure. HVLT total learning= sum of word recalled across all encoding trials. Values in
parentheses in the leftmost column indicate maximum score unless otherwise specified. Bolded measures were used to classify each patient as either a SA or TOA. s= seconds; SD=
standard deviation.
aP≤ 0.05
bP≤ 0.01
cP≤ 0.054
dMMSE score calculated from 3MS measured at baseline.

Figure 3 Postoperative delirium severity by group. Severity
scores of postoperative delirium in SAs versus TOAs expressed as
(A) intensity× duration and (B) highest intensity. P-values are
associated with paired samples t-tests. Error bars denote 95%
confidence intervals. Coloured circles represent individual subjects
in the sample. SA= SuperAgers, TOAs= typical older adults.
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postoperative delirium. This suggests that it may be possible
to select a succinct battery of tests that could be used in pre-
operative cognitive risk assessment. This is consistent with
the growing literature demonstrating the utility of relatively
brief and inexpensive cognitive testing in predicting the de-
gree of adverse outcomes in hospitalized older patients.61–63

Consistent with prior results,17,20,22–24 we found that the
aMCC is a key brain region relevant to successful aging. In
the current sample, the older adults who were classified as
SAs had greater cortical thickness in the aMCC than TOAs
who developed delirium postoperatively. This group differ-
ence in aMCC thickness of ∼0.25 mm on average is consist-
ent with the findings of prior work on SAs.22,24 Cortical
thickness in the aMCC did not differ when SAs were com-
pared with TOAs who did not develop delirium postopera-
tively, a finding that may be driven by a few factors. One
possibility, for instance, is that TOAs who did not develop
delirium postoperatively in the current sample were higher-
functioning than TOAs examined in other studies.
Consistent with this speculation, general cognitive perform-
ance in the SAGES sample as a whole has been shown to be
on average 0.8 SDs above the population mean in the U.S.26

Relatively high cognitive function across domains, therefore,
might be another factor associated with greater cortical
thickness in the aMCC. This idea fits with meta-analytic ob-
servations that the aMCC and other regions of the salience
network are consistently activated during a variety of

cognitive tasks.64 This is also consistent with the current
finding that SAs’ superior cognitive performance was not
specific to delayed recall but was more general across mul-
tiple cognitive domains, as has been observed in prior studies
of SuperAging.19,24,39 We also previously identified a similar
pattern of associations across different neuropsychological
measures in a sample of post-surgical patients.38

Alternatively, it is also possible that the lack of differences
in aMCC thickness is driven by the unequal size of subsam-
ples. In the present study, the majority of its participants
were classified as ND-TOAs, with similar numbers of the re-
maining participants classified as SAs or D-TOAs. Higher
precision estimates of brain structure could help shed light
on this possibility.65 Nonetheless, our finding lends support
to the growing body of evidence that the aMCC is an import-
ant region of the circuitry underlying successful
aging.16,19,20,22–24

Our findings also revealed that structural integrity of the
aMCC is an important predictor of postoperative delirium
severity scores. Although delirium appears to be associated
with differences in some features of brain structure (e.g. glo-
bal/local atrophy, white matter hyperintensity) and function
(e.g. reduced cerebral blood flow, alterations in functional
connectivity), a recent meta-analysis identified mixed re-
sults.10 The mixed results may be due to the heterogeneous
nature of delirium, as well as variability in study designs, im-
aging data modalities and analytical procedures. Prior work

Figure 4 Greater cortical thickness in the anterior mid-cingulate cortex at baseline is associated with reduced delirium
severity scores followingmajor elective surgery.Coloured vertices on the cortical surface maps indicate areas within the salience network
(represented with solid line borders), where cortical thickness was negatively associated with (A) CAM-S sum and (C) peak scores. Scatter plots
on depict the relationship between mean cortical thickness extracted from bilateral aMCC clusters within the respective surface maps and
(B) CAM-S sum and (D) peak scores. Coloured crosses (SAs) and circles (TOAs) represent individual participants. Spearman’s rank correlation
coefficients revealed similarly significant associations for CAM-S Sum (r= -0.27, P≤ 0.009) and peak (r= -0.33, P≤ 0.0013) scores.
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from our group showed that cortical thickness calculated in a
specific set of regions known to exhibit atrophy in
Alzheimer’s disease66–69 was associated with delirium inci-
dence and severity.70 White matter degradation in related
areas (e.g. frontal cortex, hippocampus) was also associated
with delirium severity.71 In contrast, measures of global
brain atrophy were not related to delirium, suggesting the
need formore targeted approaches to specific networks or re-
gions of interest.28

The role of the aMCC in resilience to delirium likely re-
lates to its central role in signal integration in the brain, as
well as regulation of the body’s internal systems. Owing to
its position at the intersection of multiple intrinsic brain net-
works, the aMCC is a major hub that allows efficient func-
tional communication across spatially distributed brain
regions.72–76 It is therefore not surprising that its role has
been implicated in various aspects of cognitive and affective
functions, including attention, executive function, emotion,
and motivation.16 Even more generally, the aMCC is a key
component of brain systems responsible for issuing viscero-
motor control signals to maintain the body’s internal milieu
(e.g. the autonomic nervous system, the immune system, the
endocrine system) and to coordinate skeletomotor move-
ments, all in the service of predictively managing the body’s
energy resources.13,77 Therefore, structural integrity of the
aMCC may be important for reducing the likelihood of de-
veloping symptoms including arousal and psychomotor dis-
turbance and metabolic dysfunction, both of which have
been shown to characterize subtypes of delirium.78,79 More
research is needed to explicate the link between structural
and functional properties of the aMCC and the pathophysi-
ology of delirium.

A few limitations of this study are noteworthy. First, using
a prospective cohort design, the present sample included dis-
proportionately fewer postoperatively delirious patients
than ND-TOA patients. The current sample also consisted
of disproportionate numbers of SA and TOA participants,
although the number of SAs was similar to those of previous
studies.22,24 Future work with larger overall samples would
be warranted, so that the observed effects can be tested with
greater numbers of delirious cases and SAs. It would also be
important to evaluate these effects with the implementation
of correction for multiple statistical comparisons in future
confirmatory studies. Second, while the internal validity of
the study is not compromised, the generalizability of our
findingsmay be limited, given that the current subject sample
consisted of participants with a high mean educational level.
Future studies should examine other populations including
adults hospitalized for reasons other than surgery (or differ-
ent types of surgery than those studied herein) and those who
develop delirium unrelated to surgery. Greater diversity in
geographical, cultural, and socioeconomic characteristics
would also be warranted. Finally, despite our use of a well-
validated approach for detection, we acknowledge that
delirium is a fluctuating condition and any measurement
approach may have false negatives, contributing to potential
measurement error.

Notwithstanding these potential limitations, the new
evidence identified in the present study sheds light on the pos-
sible neural mechanisms underlying resilience to post-
operative delirium in aging by highlighting the key role of
the aMCC. Future studies should look beyond this region
by examining aspects of functional and structural connectiv-
ity of the aMCC and their potential association with delir-
ium. This line of work is warranted by our prior findings
showing that diffusion imaging biomarkers assessed at base-
line are associated with postoperative delirium incidence and
severity.71 A connectivity-based approach would be useful in
clarifying the extent to which the effect of delirium is loca-
lized to the aMCC or can be better characterized with the in-
volvement of a broader network of brain regions. In
addition, although our findings did not appear to be influ-
enced by the effect of sex, SAs in this sample clearly had a
more dominant female presence (70+%), a pattern consistent
with previous studies of SuperAging.17,22,24 Future neuroi-
maging studies might examine the interaction of
SuperAging and sex, given that females on average exhibit
greater cortical thickness across widespread regions of the
cerebral cortex thanmales, whereasmales exhibit greater vo-
lumes and surface areas than females.80 Furthermore, be-
cause we identified SAs cross-sectionally in this study, it
remains unclear whether they have always showed higher
performance than their typically aging counterparts across
the lifespan (while showing cognitive decline at the same
rate) or aremore resistant or resilient to age-related cognitive
decline. More work is needed to better characterize the tra-
jectory of neural and cognitive changes in SAs, as current
longitudinal evidence testing these possibilities is
mixed.18,24,39,81

Future work should also examine the possibility of minim-
izing the risk of developing delirium through interventions
targeting neural plasticity (both structurally and functional-
ly) of the aMCC. There is evidence showing that protein re-
ceptors important for synaptic plasticity (e.g. CaMKII,
NR2B, NMDA) are highly expressed in this region.82–84

These protein receptors are thought to be activated during
long-term potentiation of synaptic strength that occurs
with experience (e.g. learning) and to contribute to the sub-
sequent enlargement and strengthening of the synapse.85,86

Furthermore, consistent with its role in coordinating the vis-
ceromotor and skeletomotor systems, the aMCC appears to
be sensitive to aerobic exercise interventions in older adults,
showing an increase in grey matter volume after 6 months of
training56,57 with concomitant improvement in episodic
memory function.57 These findings point to the role of the
aMCC as one potential biomarker of resilience to delirium
to be targeted by preventive or therapeutic intervention pro-
grammes designed tomitigate the risk or consequences of de-
veloping postoperative delirium. Such strategies might
involve exercise interventions or non-invasive brain stimula-
tion (e.g. repetitive transcranial magnetic stimulation) that
has been shown to induce neuroplasticity through modula-
tion of receptor expressions.87 Ultimately, we hope that
this and other biomarkers related to risk for or resilience to
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delirium could be used to identify older adults for ‘pre-
habilitation’ interventions to maximize their ability to toler-
ate the stresses of elective surgery or other medical
treatments.
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