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Abstract
Urban Norway rats (Rattus norvegicus) carry several pathogens transmissible to peo-
ple. However, pathogen prevalence can vary across fine spatial scales (i.e., by city 
block). Using a population genomics approach, we sought to describe rat movement 
patterns across an urban landscape and to evaluate whether these patterns align 
with pathogen distributions. We genotyped 605 rats from a single neighborhood in 
Vancouver, Canada, and used 1,495 genome-wide single nucleotide polymorphisms 
to identify parent–offspring and sibling relationships using pedigree analysis. We re-
solved 1,246 pairs of relatives, of which only 1% of pairs were captured in different 
city blocks. Relatives were primarily caught within 33 meters of each other leading 
to a highly leptokurtic distribution of dispersal distances. Using binomial generalized 
linear mixed models, we evaluated whether family relationships influenced rat patho-
gen status with the bacterial pathogens Leptospira interrogans, Bartonella tribocorum, 
and Clostridium difficile, and found that an individual's pathogen status was not pre-
dicted any better by including disease status of related rats. The spatial clustering 
of related rats and their pathogens lends support to the hypothesis that spatially 
restricted movement promotes the heterogeneous patterns of pathogen prevalence 
evidenced in this population. Our findings also highlight the utility of evolutionary 
tools to understand movement and rat-associated health risks in urban landscapes.
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1  | INTRODUC TION

Norway rats (Rattus norvegicus) are carriers of a number of “zoo-
notic” pathogens (those transmissible between animals and hu-
mans) responsible for significant morbidity and mortality in cities 
globally (Himsworth, Parsons, et al., 2014). For example, the rat-as-
sociated pathogen Leptospira interrogans affects approximately one 
million people annually and can result in kidney failure or pulmonary 
hemorrhage (Costa, Hagan, et al., 2015; Guerra, 2009). Urban rats 
serve as reservoirs for numerous important pathogens including 
Yersinia pestis, Bartonella spp., Rickettsia typhi, and Seoul hantavirus 
(Easterbrook et al., 2007; Firth et al., 2014; Himsworth, Parsons, 
Jardine, & Patrick, 2013; Pépin, 2016). With the exception of Y. pes-
tis (the etiologic agent of plague), these pathogens are not known 
to cause any associated disease in rats (Himsworth, Parsons, et al., 
2013). In addition, rats can carry human-associated pathogens such 
as methicillin-resistant Staphylococcus aureus (MRSA) (Himsworth, 
Miller, et al., 2014) and Clostridium difficile (Himsworth, Patrick, 
et al., 2014), although whether their carriage contributes to human 
transmission is unknown. Rat-associated pathogens are spread 
among rats and to people in various ways, including through di-
rect contact with rats, via disease vectors (i.e., fleas and lice), and 
through environmental contamination with rat urine and/or feces 
(Himsworth, Parsons, et al., 2013). Understanding rat-pathogen 
dynamics is an increasingly important issue internationally given 
the global distribution of rats (Long, 2003) and rapid urbanization 
and densification of cities (United Nations, 2018) which is likely to 
intensify rat-associated impacts worldwide (Himsworth, Parsons, 
et al., 2013).

The prevalence of rat-associated pathogens is often spatially 
heterogeneous and may be driven by rat dispersal globally and 
locally. Differences in disease prevalence at regional scales (i.e., 
by city) are well established (Ellis et al., 1999; Kosoy & Bai, 2019; 
Peterson et al., 2017) and may arise through founder events, such 
that pathogen presence is dependent on the disease status of the 
individuals first introduced to an area. Indeed, the current global 
distribution of Norway rats has been attributed to multiple intro-
duction events, thought to have been facilitated by human migra-
tion (Feng & Himsworth, 2014; Puckett et al., 2016). Patterns of 
heterogeneous pathogen prevalence are also evident at fine spa-
tial scales (i.e., by city block) (Angley et al., 2018). For example, 
in Vancouver, Canada, the prevalence of the bacterial pathogen 
L. interrogans ranged from 0% to 66% by city block (Himsworth 
et al., 2015) (Figure 1a). Comparatively, the prevalence of Bartonella 
spp. varied from 10% to 85% by trapping location in New York 
City, and 0%–97% in New Orleans (Peterson et al., 2017). Similar 
to global movement patterns, at local scales pathogen distribu-
tions may be driven by rat dispersal and connectivity across the 
landscape.

Urban rats typically exhibit strong philopatry, remaining near 
their natal colony. Colonies of urban Norway rats can contain many 
individuals as the onset of sexual maturity may commence at 45 days 
old (Calhoun, 1963) and rats have been reported to give birth to 

litters of up to 11 individuals (Costa et al., 2016), although litter 
sizes can be larger (e.g., one litter of 21 offspring was documented 
by Glass, Klein, Norris, & Gardner, 2016). In some urban centers, 
reproduction can occur year-round although the number of juve-
niles may vary by season. For example, in Vancouver, Canada, rats 
were found to reproduce throughout the year, but the number of 
juveniles was greatest in the spring and summer (Himsworth, Miller, 
et al., 2014). These characteristics can lead to large families of rats, 
with individuals occupying small home ranges about the size of a 
city block (reviewed in Byers, Lee, Patrick, and Himsworth (2019)). 
This behavioral tendency to occupy small territories, in conjunction 
with barriers to rat dispersal, can result in genetic discontinuities of 
rats across the landscape (Brouat et al., 2013; Combs, Byers, et al., 
2018; Kajdacsi et al., 2013), thus potentially limiting the spread of 
pathogens. Indeed, such restricted connectivity has been linked to 
decreased spread of feline immunodeficiency virus among bobcats 
(Lynx rufus) (Kozakiewicz et al., 2020) and rabies virus among rac-
coons (Procyon lotor) (Biek, Henderson, Waller, Rupprecht, & Real, 
2007). Additionally, increased contact among closely related indi-
viduals may promote unequal transmission, such that relatives are 
more likely to share pathogens than nonrelatives (Grear, Samuel, 
Scribner, Weckworth, & Langenberg, 2010; Root, Black, Calisher, 
Wilson, & Beaty, 2004). Although rat dispersal and family relation-
ships may be important drivers of pathogen distributions, they re-
main understudied.

A lack of information regarding urban rat movement ecology is 
largely due to the challenges of tracking rats in real time. Traditional 
ecological approaches such as capture and re-capture of marked in-
dividuals are labor and time-intensive (Conroy & Carroll, 2009), and 
unequal trappability can bias movement estimates toward “trap-
happy” individuals (Byers, Lee, Bidulka, Patrick, & Himsworth, 2019). 
While other tools such as Global Positioning System tags enable 
fine-scale monitoring over time, they remain difficult to deploy on 
urban rats due to issues of tag obstruction and tag removal (Byers, 
Lee, Donovan, Patrick, & Himsworth, 2017). Population genetic 
methods afford an alternative to traditional approaches by identi-
fying closely related individuals, with accuracy improving with an in-
creased number of genetic markers (Foroughirad, Levengood, Mann, 
& Frère, 2019; Premachandra, Nguyen, & Knibb, 2019). The rela-
tive locations of related individuals can be used to infer movement 
events. In fact, genetic approaches tend to reveal greater travel 
distances than suggested through traditional methods (Byers, Lee, 
Patrick, et al., 2019), although these patterns vary by location and 
sampling effort (Combs, Byers, et al., 2018). For example, genetic 
approaches have identified rat movement distances of up to 11.5 km 
in Baltimore, Maryland (Gardner-Santana et al., 2009), and up to 
536 m in New York City (Combs, Richardson, & Munshi-South, 2018) 
although average movements are typically within 30–150 m (Combs, 
Richardson, et al., 2018; Gardner-Santana et al., 2009). Genomics-
based approaches have also demonstrated that differences in move-
ment can vary by sex, with males traveling further afield than females 
(Desvars-Larrive et al., 2017; Kajdacsi et al., 2013) in search of mates 
(Glass et al., 2016). And while natal dispersal of males is common in 
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many species of mammals (Greenwood, 1980), genetic approaches 
have not revealed this trend in urban Norway rats (Gardner-Santana 
et al., 2009). Together, these findings suggest that patterns of relat-
edness vary over space and that genetic methods can provide valu-
able insight into movement events involved in pathogen spread or 
clustering.

In this study, we combine previously published disease 
(Himsworth et al., 2015; Himsworth, Bidulka, et al., 2013; Himsworth, 
Parsons, et al., 2013) and population genomic data (Combs, Byers, 
et al., 2018) from rats in Vancouver, Canada, to explore the role of 
fine-scale genetic structure and movement in the distribution of 
rat-associated pathogens. Previously, our team demonstrated spa-
tial clustering of pathogens in this population of rats, with patho-
gen prevalence varying significantly by city block (Himsworth et al., 
2015; Himsworth, Bidulka, et al., 2013; Himsworth, Parsons, et al., 
2013) (Figure 1). While pathogen status was associated with factors 
such as weight, sexual maturity, and season, a significant amount 
of variation remained after controlling for clustering at the level of 
the city block (Himsworth et al., 2015; Himsworth, Bidulka, et al., 

2013; Himsworth, Parsons, et al., 2013). We also found that ge-
netic structuring varied across fine spatial scales, with some genetic 
clusters spanning one or several city blocks (Combs, Byers, et al., 
2018). Here, we combine these datasets and use a genomics-based 
pedigree inference approach to a) identify closely related individu-
als and infer movement events; b) compare patterns of relatedness 
and movement to prevalence data for pathogenic bacteria carried by 
rats; and c) explore the impact of family membership on an individ-
uals' pathogen status. We hypothesized that first- and second-or-
der relatives would reside within the same city block and that these 
patterns of relatedness would align with the spatial clustering of 
pathogens. Further, we chose to evaluate rat relatedness in relation 
to three pathogens of public health concern (L. interrogans, Bartonella 
tribocorum, and C. difficile) as we hypothesized that family member-
ship would contribute to pathogen status for pathogens transmitted 
through close contact (L. interrogans and B. tribocorum) but not for 
those environmentally acquired (C. difficile). Together, information 
from this study can be applied to urban rat management strategies 
aimed at mitigating human health risks.

F I G U R E  1   Spatial distribution of 
Norway rats (Rattus norvegicus) carrying 
pathogens across Vancouver's Downtown 
Eastside neighborhood. Rats were 
tested for carriage with: (a) Leptospira 
interrogans of which 11% (60/535) tested 
positive; (b) Bartonella tribocorum of which 
26% (90/349) tested positive; and (c) 
Clostridium difficile of which 13% (80/605) 
tested positive
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2  | METHODS

2.1 | Ethics

This study was approved by the University of British Columbia's 
Animal Care Committee (A11-0087) and adhered to national guide-
lines set out by the Canadian Council on Animal Care.

2.2 | Study site

Rats were trapped in the Downtown Eastside (DTES) neighborhood 
of Vancouver, Canada, an area where rats are abundant (Himsworth, 
Jardine, Parsons, Feng, & Patrick, 2014). In Vancouver's DTES, there 
is considerable contact between residents and rats due in part to 
issues of housing affordability and availability (Byers, Cox, Lam, & 
Himsworth, 2019). Further, many groups living in this area are con-
sidered to be more vulnerable to health risks than are residents of 
Vancouver generally (City of Vancouver, 2013), which makes this 
area of particular concern for rat-associated health risks. Vancouver 
has a moderate oceanic climate. Over this time period, the an-
nual mean temperature was 9.6°C and annual precipitation was 
81.44 mm, which were both slightly lower than the 10-year aver-
age from 2003 to 2013 (mean annual temperature: 10.56°C; annual 
precipitation: 96.38 mm). The study site encompassed 43 contigu-
ous city blocks and one site at the adjacent international shipping 
port on the neighborhood's northern border (N49°17′/ W123°6′). 
The neighborhood is densely populated with approximately 18,500 
people (City of Vancouver, 2013) and is comprised of residential, 
commercial, and industrial buildings, many of which are in disrepair 
(Smith, 2000).

2.3 | Trapping

Rats were trapped as part of a long-term study evaluating rat disease 
ecology; detailed trapping methods have been published elsewhere 
(Himsworth, Bidulka, et al., 2013). In brief, rats were trapped from 
September 2011–August 2012. Each city block and the international 
port site was assigned randomly to a three-week study period during 
the one year of trapping. We used Tomahawk Rigid Traps (Tomahawk 
Live Trap, Hazelhurst, USA) which were set in the alleyway bisect-
ing each city block. Traps were prebaited for one week prior to two 
weeks of active trapping. We recorded the date and location of each 
trapped rat.

Prior to euthanasia, we collected blood via intracardiac puncture 
under isoflurane anesthesia. Rats were humanely euthanized via in-
tracardiac injection with pentobarbital. At the international shipping 
port, rats were trapped by a collaborating pest control professional 
using lethal snap traps. All rats underwent a complete necropsy, 
with aseptic collection of the kidney, liver, and colon. Samples were 
stored at −80ºC prior to pathogen testing and DNA sequencing. We 
collected morphological data including sex, sexual maturity (scrotal 

testes for males, perforate vagina for females), weight (grams), and 
pregnancy.

For subsequent analyses, we used the von Bertalanffy (1938) 
growth curve equation to infer rat age in days from rat weight. This 
equation accounts for the nonlinear relationship between weight 
and age (Calhoun, 1963) and has been used previously to model rat 
age curves (Minter et al., 2017, 2019). Specifically: weight = a[1 – ex-
p{–r(age – c)}], where “a” is the asymptote, “r” indicates the constant 
growth rate, and “c” represents the age at which maximum growth 
occurs. We used parameters derived from Calhoun (1963) as in 
Minter et al. (2019), and for pregnant females, we adjusted weight 
by the average difference in weight between pregnant and nonpreg-
nant, sexually mature females (Minter et al., 2017).

2.4 | Disease testing

All pathogen testing was completed as part of a broader epidemio-
logical study evaluating the prevalence of rat-associated pathogens 
in the DTES. For this study, we included rats that were tested for 
the bacterial pathogens L. interrogans, Bartonella spp., and C. difficile.

For L. interrogans, DNA was extracted from rat kidney and 
analyzed using a real-time PCR that targets a 242 bp fragment 
of the LipL32 gene of pathogenic Leptospira species (Stoddard, 
Gee, Wilkins, McCaustland, & Hoffmaster, 2009) as outlined in 
Himsworth, Bidulka, et al. (2013).

For Bartonella spp., blood clots were cultured at the Bartonella & 
Rodent-Borne Disease Laboratory, Centers for Disease Control and 
Prevention, Fort Collins, CO as outlined by Himsworth et al. (2015). 
Bartonella spp. were identified based on colony morphology and 
confirmed by PCR amplification of the citrate synthase gene (gtlA) 
(Bai et al., 2007; Ying, Kosoy, Maupin, Tsuchiya, & Gage, 2002).

For C. difficile, colon contents were cultured and identified as 
outlined in Himsworth, Patrick, et al. (2014). Identification of C. dif-
ficile was made using colony morphology and odor, Gram staining, 
and the presence of L-proline aminopeptidase activity (Remel Inc., 
Lenexa, Kansas, USA).

2.5 | Genetic sequencing

We used a genome-wide single nucleotide polymorphism (SNP) 
dataset acquired through double digest restriction site-associated 
DNA sequencing (ddRADSeq) of DNA from rat liver samples. In brief, 
Combs, Byers, et al. (2018) used Stacks v. 1.35 (Catchen, Hohenlohe, 
Bassham, Amores, & Cresko, 2013) to demultiplex sequencing reads 
and align them to the RNOR v.6.0 reference genome for R. norvegi-
cus (Gibbs et al., 2004). Using these previously published reference-
aligned reads, Combs, Byers, et al. (2018) identified SNPs using the 
pstacks, cstacks, and sstacks pipeline from STACKS v1.35, retaining 
only a single SNP per RADtag. Because the parentage assignment 
software only requires (and allows) a limited number of loci per in-
dividual (see below), we derived a set of highly informative SNPs 
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based on coverage, removing sites with <20× and >50× coverage 
using VCFtools (Danecek et al., 2011). We used PLINK 1.9 (Chang 
et al., 2015) to prune SNPs on the basis of linkage disequilibrium. 
Sliding windows of 50 SNPs (with a step of 5) were thinned using 
a variance inflation factor of 2. Autosomal SNPs with a minor al-
lele frequency > 5% that were called in >85% of individuals were 
retained for further analysis. SNPs with excessive heterozygosity 
(>80%) were removed in PLINK 1.9. Our filtering criteria resulted in 
1,495 SNPs genotyped in 605 individuals.

2.6 | Pedigree inference

We identified related rats by running parentage assignment 
using the Sequoia v. 1.3.3 (Huisman, 2017) package in R (RStudio 
Team, 2016). Sequoia can be used effectively with relatively 
few loci (i.e., 500–800 SNPs; Huisman, 2019) and has been 
used for sibship assignment with up to 4,235 SNPs (Foroughirad 
et al., 2019). Simulation studies indicate that a few hundred SNPs 
can provide high assignment rates (99%) with low false-positive 
rates (<0.1%) (Huisman, 2017). Sequoia was developed for use 
with SNP data and is robust to unsampled individuals. Data in-
corporated into the parentage analysis also include the animal's 
sex and birth year. Birth year is used to assist in distinguishing 
among relationships such as parent–offspring and full-sibling pairs 
(Huisman, 2017). Given the rapid reproductive rate of rats (Feng 
& Himsworth, 2014) and that urban rats often live less than one 
year (Davis, 1953b), we defined birth years as follows: First, we 
estimated each rat's birth date by subtracting their computed age 
in days from the date of trapping. Second, based on the distri-
bution of ages, we estimated that rats in this population reached 
sexual maturity at as early as 39 days as there was a division in 
the distribution of weights of mature and sexually immature rats 
at 110 g (Figure S1). Although previous estimates suggest that 
rats approach sexual maturity within 45–75 days for females and 
45–95 days for males (Calhoun, 1963), time to maturity can vary 
based on resource availability (MacDonald, Mathews, & Berdoy, 
1999). Finally, we calculated the number of days from the earli-
est estimated birth date to the latest estimated birth date and 
separated this time frame into 11, 39-day intervals designated as 
“birth years.” Using these life history data, we identified first-order 
(parent–offspring and full-sibling) and second-order (half-sibling) 
relationships.

2.7 | Inferring geographic and genetic distances 
between relatives and by sex

To characterize distances traveled, we calculated the pairwise 
Euclidian distance between each member of a set of relatives and 
categorized distances within relationship type (i.e., parent–offspring, 
full-sibling, half-sibling). We mapped relationships spatially to visual-
ize patterns of relatedness and to identify instances where relatives 

were located within the same city block and in different blocks. 
Mapping was performed using ggplot2 in R using open-source shape 
files (https://vanco uver.ca/your-gover nment /open-data-catal ogue.
aspx) to create maps.

To identify evidence of sex-biased dispersal, we created cor-
relograms comparing matrices of geographic and genetic distances 
between pairs of male and female rats separately. Correlograms 
identify the extent of isolation-by-distance (i.e., spatial autocor-
relation) for pairs of individuals at different distance classes, where 
variation between sexes indicate differences in dispersal intensity or 
mechanism (Banks & Peakall, 2012). We used the ecodist package in 
R, specifying distance classes of 50 m and using 1,000 permutations 
(Goslee & Urban, 2007).

2.8 | Genetic relatedness and pathogen status

We used binomial generalized linear mixed models to evaluate 
whether rat family relationships influenced rat disease status. We 
designated a “family” as a group of full siblings as we hypothesized 
that full siblings would be most likely to have been in close prox-
imity through nest-sharing. This designation also prevented rat 
membership in multiple families (i.e., as would have occurred by 
including half-siblings). For each pathogen (L. interrogans, B. triboco-
rum, or C. difficile), we created a model where the response vari-
able was rat infection status (positive or negative), and we included 
rat morphometrics and capture characteristics as covariates if they 
were previously identified as predictors of pathogen status in this 
population (Himsworth et al., 2015; Himsworth, Bidulka, et al., 2013; 
Himsworth, Parsons, et al., 2013). As these pathogens were previ-
ously found to vary in prevalence by city block, we included city 
block of capture as a random effect in all models. To test whether 
“family” improved model fit, we included “family” as a random ef-
fect nested within city block and compared the relative fit of models 
with and without “family” using Akaike information criterion (AIC). 
Models were considered to be similarly supported if the difference 
between their AIC values was ≤2 (Burnham & Anderson, 2002). 
Modeling was performed using the package lme4 (Bates, Mächler, 
Bolker, & Walker, 2015) in R Studio. Additionally, we evaluated the 
predictive power of the “best fit” model based on AIC by calculating 
pseudo-R2 using the package MuMIn (Bartoń, 2019).

3  | RESULTS

3.1 | Population characteristics

A total of 685 Norway rats were trapped over the course of one year. 
Following filtering of genetic data, we retained 605 rats, of which 
332 (55%) were male (192 mature, 139 immature, one unknown), 261 
(43%) were female (129 mature, 132 immature), and 12 (2%) were of 
unknown sex and maturity. The number of rats tested for each rat-
associated pathogen varied. For L. interrogans, 535 rats were tested 

https://vancouver.ca/your-government/open-data-catalogue.aspx
https://vancouver.ca/your-government/open-data-catalogue.aspx
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of which 60 (11%) were positive. For B. tribocorum, 349 rats were 
tested of which 90 (26%) were positive. For C. difficile, all 605 rats 
were tested, of which 80 (13%) were positive.

3.2 | Pedigree inference

Among the 605 genotyped rats included in the parentage analysis, 
we resolved a total of 1,246 pairs of relatives (Figure 2), 713 of which 
were first-order and 533 of which were second-order relatives. Of 
the first-order relatives, we identified 68 parent–offspring pairs, 
including 11 dams assigned to 29 offspring and 20 sires assigned 
to 39 offspring (Figure 2a). Further, 72% (442/605) of rats were 
paired with at least one full-sibling (Figure 2b). We identified 645 
full-sibling pairs which were grouped into 155 distinct full-sibling 
“families.” These full-sibling “families” included anywhere from 2 to 
16 individuals (median = 2 individuals per family). Regarding second-
order relatives, we identified 533 half-sibling pairs which included 
314 pairs sharing a dam and 219 pairs sharing a sire (Figure 2c).

3.3 | Geographic and genetic distances between 
relatives and by sex

Figure 2 illustrates that the majority of rats were caught within 
the same city block as their relative. Of the 1,246 related pairs, 1% 
(13/1,246) were captured in different city blocks (one parent–off-
spring, nine full-sibling, and three half-sibling pairs). For the nine 
full-sibling pairs, one pair was comprised of two juveniles, three 
pairs were comprised of one juvenile and one mature individual, and 
five pairs were comprised of two mature individuals (note that four 
of these pairs were part of a five-full-sibling family). For the three 
half-sibling pairs, one pair was comprised of one juvenile and one 
mature individual, and the other two pairs were both comprised of 
mature individuals. Distances between related pairs ranged from 0 
to 330 m, with 25% of relatives caught within 7 m, 50% within 16 m, 
and 75% within 33 m (Figure 3). Full siblings were caught in closest 
proximity to each other with a median distance of 10 m between 
pairs, while parent–offspring (median = 15.4 m) and half-siblings 
(median = 22.5 m) were caught further apart. In our analysis of 

F I G U R E  2   Distribution of pairs of 
related Norway rats (Rattus norvegicus) 
across Vancouver's Downtown Eastside 
neighborhood. Of 1,246 related pairs, we 
resolved (a) 68 parent–offspring pairs; 
(b) 645 full-sibling pairs; and (c) 533 
half-sibling pairs. Thirteen pairs were 
associated across city blocks. Relatives 
captured in the same trap are identified 
with (•), and relatives trapped in different 
locations are connected by a curved 
line. Rats without identified relatives are 
indicated with (º)

Parent-Offspring

Full-Siblings

Half-Siblings

500 m

500 m

500 m

L
at

it
ud

e

Longitude
Relationship Maternal Parent Paternal Parent

(a)

(b)

(c)



204  |     BYERS Et al.

isolation-by-distance, we did not find any evidence that distance be-
tween pairs differed by sex. Patterns of isolation-by-distance were 
similar for both sexes across all distance classes (Figure 4).

3.4 | Genetic relatedness and pathogen status

Modeling was informed by previous work on this population of rats. 
Specifically, we included covariates identified as informative predic-
tors of rat pathogen status such as rat weight in the L. interrogans 
model (Himsworth, Bidulka, et al., 2013); sexual maturity and sea-
son in the B. tribocorum model (Himsworth et al., 2015); and weight 
in the C. difficile model (Himsworth, Patrick, et al., 2014). Table 1 
depicts the parameters for the best-fitting model for each disease. 
Incorporating “family” into infection models did not improve model 
fit. For all pathogens, models run with and without “family” as a ran-
dom effect were within 2 AIC (Table 1).

At the level of the block, we identified 8 pairs of blocks that 
shared a pair of relatives (Figure 2). Cases where both pairs of 
blocks share pathogen status (i.e., both blocks either possessed 
affected rats or did not) were greatest for L. interrogans (7/8 block 
pairs shared pathogen status), followed by B. tribocorum (6/8 pairs 
of blocks shared pathogen status), and C. difficile (5/8 blocks shared 
pathogen status).

4  | DISCUSSION

Understanding how rats move and interact within the urban environ-
ment is integral to informing control efforts aimed at mitigating rat-
associated impacts like the spread of zoonotic diseases. Our study is 

the largest parentage-based analysis of wild rats to date and reveals 
fine-scale spatial clustering of closely related individuals within 33 m 
of each other, with most relatives located within the same city block. 
These patterns of relatedness suggest very little movement and in-
teraction of rats between neighboring city blocks which may restrict 
opportunities for pathogen spread.

The distinct clustering of close relatives evidenced in this study 
may be attributed to a combination of social and environmental bar-
riers to movement. Urban rats are territorial (Barnett, 1963), occu-
pying home ranges as small as 30–45 m in diameter (Davis, 1953a; 
Davis, Emlen, & Stokes, 1948) which is approximately 1/3 the length 
of city blocks in this study. While urban rats occasionally move 
long distances (i.e., up to 11.5 km (Gardner-Santana et al., 2009)), 
long-distance movements are rare and may be facilitated by human 
transport (Berthier et al., 2016; Byers, Lee, Patrick, et al., 2019). Rats 
often stay within their home range (Gardner-Santana et al., 2009; 
Glass et al., 2016) and have been found to extend their home 
range and movement distances in relation to resource availability 
(Davis et al., 1948). It may be that rats in the DTES have little need 
to venture beyond their natal block due to an abundance of food 
and areas to burrow (Himsworth, Parsons, et al., 2014). In this re-
gard, changes to rat density that result in fewer rats and a greater 
abundance of resources could alter normal rat movement patterns. 
Yet, in a subsequent study involving the targeted removal of rats 
in some city blocks, we found that rat removal did not result in a 
significant change in rat movement between city blocks (Byers, Lee, 
Himsworth, Patrick, Whitlock; in prep). It is also important to note 
that beyond access to resources, immigrating to a new colony can 
have social consequences. The territoriality of Norway rats can im-
pede the successful integration of unknown individuals as they are 

F I G U R E  3   Distances between capture points of related Norway 
rats (Rattus norvegicus). Of 1,246 pairs of related rats, 75% of 
individuals were caught within 33 m of their relative, with 24 pairs 
of rats captured more than 100 m apart
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F I G U R E  4   Correlogram of genetic and geographic distance for 
pairs of rats. The Mantel r correlation is the strength of correlation 
between genetic and geographic distance between pairs of 
male (N = 332) and female (N = 261) rats. Correlation values are 
denoted within each distance class of 50 m. Filled circles indicate 
significantly nonrandom values (α = 0.05) and open circles indicate 
nonsignificant relationships at that distance class
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often ejected by resident rats (Calhoun, 1948). Although previous 
work suggests that some males will travel to neighboring blocks to 
mate with females of a different colony (Glass et al., 2016), males will 
also breed with related females. For example, in Salvador, Brazil, fe-
males were more related to the sires of their offspring than would be 
expected (Costa et al., 2016). Therefore, it is possible that the high 
population density of rats in this neighborhood may limit the need 
of males to travel in search of mates. Indeed, we identified only one 
instance where a sire was captured in a different block than its off-
spring, and just 1% of relatives were caught in different city blocks. 
And while this result strongly suggests that movement among city 
blocks is infrequent, it is important to note that this may be an un-
derestimate of rat movement as blocks were trapped at different 
times. This difference in trapping periods could bias estimates to-
ward finding more relatives within blocks than between blocks, par-
ticularly when adjacent city blocks were trapped at separate times. 
However, of the eight pairs of blocks sharing relatives in this study, 
five were trapped during different time periods (ranging from one 
to eight months apart). Indeed, the study site included a total of 17 
pairs of adjacent blocks that were trapped contemporaneously, and 
only three of these pairs shared cross-block relatives. These patterns 
suggest that, although movement among city blocks may be more 
frequent than can be captured by this study, the majority of relatives 
remain within the same city block.

For all inferred movement events, it is impossible to say which in-
dividual in a pair moved, when that movement occurred, or whether 
gene flow is due to movement of a parent not sampled in this study. 
Indeed, we are only able to make inference about movements of the 
“trappable” population of rats, as there may be many more rats living 
in the sampling site that did not enter traps. Based on these find-
ings, in at least one instance, movement occurred by a juvenile rat 
(i.e., both full siblings caught in different blocks were juveniles at 
the time of capture). In other instances of movement, it is difficult 
to determine both which individual moved and when they moved, as 
mature individuals, simply by the fact that they are older, have had 
more time to disperse. As approximately half of the individuals in 
this study are mature, a greater proportion of mature individuals may 

have revealed greater levels of gene flow. Our results suggest that 
males and females contribute similarly to gene flow, with little evi-
dence for sex-biased dispersal. These findings align with studies in 
Baltimore and New York City, USA (Combs, Richardson, et al., 2018; 
Gardner-Santana et al., 2009), although sex-biased dispersal has 
been reported in both Salvador, Brazil and Hauts-de-Seine, France 
(Desvars-Larrive, Baldi, Walter, Zink, & Walzer, 2018; Kajdacsi 
et al., 2013). Beyond social barriers, environmental features may 
also impede rat movement. Landscape features such as high-traf-
fic roadways, waterways, and areas with fewer resources have been 
found to align with restricted gene flow, suggesting that these envi-
ronmental characteristics can pose a barrier to movement (Combs, 
Byers, et al., 2018; Richardson et al., 2017). In fact, Combs, Byers, 
et al. (2018) indicated that roadways in this study were likely barriers 
to dispersal, although in some nonurban contexts roads may facili-
tate movement through commercial transport (Berthier et al., 2016). 
Overall, the minimal connectivity of rats among city blocks explains 
the high levels of inbreeding previously reported in this population 
(FIS ranging from 0.06–0.28) (Combs, Byers, et al., 2018). As urban 
centers densify and land use changes (i.e., through emphasis on 
“greening” city spaces (i.e., Goddard, Dougill, and Benton (2010); 
Lovell and Taylor (2013)), these patterns are likely to change in re-
sponse to altered segregation of rat colonies with implications for 
pathogen spread.

The patterns of limited connectivity among city blocks in 
Vancouver align with heterogeneous patterns of pathogen prev-
alence (Himsworth et al., 2015; Himsworth, Bidulka, et al., 2013; 
Himsworth, Parsons, et al., 2013). We find that in instances where 
there were cross-block relatives, these pairs of blocks often shared 
pathogen status (i.e., blocks either both had affected rats, or they did 
not). These patterns were most striking for L. interrogans and B. tri-
bocorum, where seven of eight pairs of connected blocks and six of 
eight pairs of connected blocks shared pathogen status respectively. 
While it is difficult to ascertain whether these patterns are driven by 
rat movement, connectivity through movement may allow for the 
spread of some pathogens due to aggressive interactions between 
the immigrating individual and members of the established colony 

TA B L E  1   Comparison of models containing predictors of pathogen status of urban Norway rats (Rattus norvegicus) with and without 
“family” membership included as a random factor

Model Model Includes “Family” Random Effect
Model Excludes “Family” 
Random Effect

Model 
Comparison

Pathogen Covariates AIC

Family 
Variance (Std 
Dev)

Block Variance 
(Std Dev) AIC

Block Variance 
(Std Dev) Δ AIC

Leptospira interrogans Weight 219.3 0.00 (0.00) 4.99 (2.26) 217.3a  4.99 (2.24) 2

Bartonella tribocorum Maturity Season 323.2 0.42 (0.65) 1.19 (1.09) 322b  1.08 (1.04) 1.2

Clostridium difficile Weight 452.9 0.52 (0.72) 0.56 (0.75) 452.8c  0.56 (0.75) 0.1

Note: Pseudo-R2 for best-fitting models:
a0.71; 
b0.40; 
c0.20. 
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(Calhoun, 1948). These interactions would be particularly important 
for facilitating transmission of pathogens such as L. interrogans and 
B. tribocorum, as they are transmitted through contact with rats and 
their parasites. Similar trends might be excepted for other rat-asso-
ciated pathogens transmitted through biting and aggressive interac-
tions (i.e., Streptobacillus moniliformis) close contact with urine and 
feces (i.e., Seoul hantavirus) and vectors such as fleas (i.e., R. typhi) 
(Himsworth, Parsons, et al., 2013) yet these relationships remain to 
be studied. Importantly, these rat-associated pathogens are not as-
sociated with illness in rats (Himsworth, Parsons, et al., 2013) and 
therefore are not known to differentially impact rat movement. 
However, one study evaluating whether infection with L. interrogans 
influenced rat trappability (which could in turn affect movement 
estimates) found no association between L. interrogans carriage and 
trappability (Byers, Lee, Bidulka, et al., 2019). Therefore, links be-
tween movement and pathogen distributions will be highly depen-
dent on pathogen ecology.

Within city blocks, fine spatial structuring appears to be less 
important in determining pathogen status than block-level associ-
ations. As full siblings share a nest until they begin free-roaming at 
as early as 25 days old (Calhoun, 1963), we hypothesized that full 
siblings would be more likely to share pathogen status. However, 
membership in a full-sibling “family” did not appear to explain patho-
gen status. While this result was expected for C. difficile, a patho-
gen thought to be transmitted among rats through environmental 
contamination (Himsworth, Patrick, et al., 2014), this result was un-
expected for B. tribocorum and L. interrogans carriage. Specifically, 
because Bartonella spp. is transmitted among rats through contact 
with their fleas, which reside both on rodents and in their nests 
(Krasnov, Khokhlova, & Shenbrot, 2004), where rats regularly main-
tain close physical contact (Barnett, 1963), we expected family mem-
bership to account for some of the variation in B. tribocorum, status. 
However, as multiple paternity is common in Norway rats (Costa 
et al., 2016; Glass et al., 2016), individuals are also likely to share the 
nest with half-siblings. Therefore, a more extensive designation of 
“family” which includes half-siblings may better elucidate the role of 
nest-sharing in B. tribocorum status. We also hypothesized that “fam-
ily” would in part explain L. interrogans carriage as it is transmitted 
through contact with affected rat urine (Costa, Wunder, et al., 2015) 
and may also be transmitted through social interactions such as bit-
ing (Minter et al., 2019). As previous work suggests that most rats in 
this area acquire L. interrogans after leaving the nest (Minter et al., 
2019), contact with urine-contaminated water in alleyways may be 
a more important source of infection than contact with urine near 
the nest. Importantly, these trends will vary by city. By comparison, 
rats in Salvador, Brazil, were found to acquire L. interrogans prior 
to leaving the nest, suggesting that variations between these two 
urban environment alter patterns and timing of pathogen acquisition 
(Minter et al., 2019). Further, as biting often occurs through fighting 
and contests for dominance (Barnett, 1963), it is possible that these 
interactions occur at a similar frequency among closely and more 
distantly related rats. To ascertain the social interactions of urban 
rats, further rat behavioral work is necessary, with the last in-depth 

studies on urban rat behavior occurring over 50 years ago (i.e., Davis 
and Christian (1956); Calhoun (1963)). Overall, our results suggest 
that block-level associations are more powerful for explaining pat-
terns of pathogen prevalence than are closer full-sibling relation-
ships; however, a more extensive consideration of how rats interact 
with each other within and between colonies is needed to resolve 
these dynamics.

The relationship between rat genetic structure and pathogen 
prevalence provides an opportunity for pest control professionals 
seeking to mitigate rat-associated health risks. First, the clustering 
of close relatives within city blocks suggests that, in the short term, 
the “city block” may serve as an appropriate eradication unit with 
barriers such as roadways serving as natural borders to manage-
ment (Combs, Byers, Himsworth, & Munshi-South, 2019). Second, 
the highly heterogeneous distributions of rat-associated pathogens 
such as L. interrogans and B. tribocorum can allow management ap-
proaches to prioritize blocks with high pathogen prevalence. Such 
targeting can be used to address disease prevention. However, it is 
important to note that even within a neighborhood, connectivity 
among city blocks can vary. Indeed, we find more inferred move-
ment events in the northern area of the study site, while previous 
work has demonstrated that genetic clusters of closely related in-
dividuals can span several city blocks (Combs, Byers, et al., 2018). 
Further, underground infrastructure such as sewers may provide 
opportunities for movement among blocks otherwise segregated by 
roadways, and therefore, these avenues of connectivity and patho-
gen spread must also be considered. The potential for the reinva-
sion of managed areas (Davis, 1953b; Hansen, Hughes, Byrom, & 
Banks, 2020) in combination with population rebounds attributed to 
the survival and reproduction of rats following an eradication cam-
paign (Barnett & Bathard, 1953; Hacker et al., 2016), necessitates 
more broadly applied, long-term approaches to address neighbor-
hood-level infestation. To support long-term population reduction, 
an increasing number of studies articulate the need to target the 
underlying habitat features which promote rat infestations such as 
access to food and areas to burrow (Corrigan, 2011; Lambert, Quy, 
Smith, & Cowan, 2008; Singleton, Leirs, Hinds, & Zhang, 1999).

5  | CONCLUSIONS

Despite their infamy as long-distance travelers, we contribute to 
the growing evidence that urban Norway rat movement is highly 
localized. We demonstrate that even within city blocks, related 
rats are aggregated often within 33 m. These clusters of closely 
related individuals align with heterogenous patterns of pathogen 
prevalence, particularly for pathogens transmitted through close 
contact with rat excreta and ectoparasites such as L. interrogans 
and B. tribocorum. Management approaches, particularly those 
facing resource limitation, may benefit from targeting city blocks 
with high pathogen prevalence in order to address the most per-
tinent public health issues. In instances where the scope of man-
agement efforts is applied to at least the level of the city block, it 



     |  207BYERS Et al.

may minimize pathogen spread among remaining rats and between 
blocks.
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