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Abstract

Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical
stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important
goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable
control for long periods of time, and can be responsive to fluctuations in the decoder’s neural input space (e.g. neurons
appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding
algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning
architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can
maintain its performance over long time periods, and which does not require the user to produce specific kinetic or
kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to
successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial
conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding
whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system
throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of
the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space
was deliberately halved or doubled.
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Introduction

Brain-machine interface (BMI) research has made significant

advances in enabling human subjects to control computer and

robotic systems directly from their neural activity [1–6]. These

achievements have been supported by neural decoding studies that

have shown how functional mappings can be made between single

neuron activity, local field potentials (LFPs), and electrocortico-

grams (ECoG) and kinematics, kinetics, and muscle activation [7–

19]. Such research has revealed multiple factors that influence

neural decoding accuracy on even short timescales (hours to days).

For example, performance can be enhanced or degraded by the

quantity, type and stability of the neural signals acquired

[7,10,11,13,14,16,18,19], the effects of learning and plasticity

[8,10,17,18], availability of physical signals for training the neural

decoders [2,3,8], and duration of decoder use [7,12,17]. These

conditions create a dynamic substrate from which BMI designers

and users need to produce stable and robust BMI performance if

the systems are to be used for activities of daily living and increase

independence for the BMI users.

Two of the particularly significant challenges to BMI neural

decoders include how to create a decoder when a user is unable to

produce a measureable physical output to map to the neural

activity for training the decoder, and how to maintain perfor-

mance over both long and short timescales when neural

perturbations (inevitably) occur. For BMIs that use chronically

implanted microelectrode arrays in the brain, these perturbations

include the loss or addition of neurons to the electrode recordings,

failure of the electrodes themselves, and changes in neuron

behavior that affect the statistics of the BMI input firing patterns

over time.

The first challenge includes situations such as paralysis or limb

amputation, in which there is no explicit user-generated kinematic

output available to directly create a neural decoder. To address

this, some studies have utilized carefully structured training

paradigms that use desired target information and/or imagined

movements to calibrate the BMI controller [1–6,20–23]. Other

methods involve initializing the decoder with values based on

baseline neural activity, ipsilateral arm movements, or using

randomized past decoder parameters, and then refining the

decoder [23]. These methods all involve using supervised learning
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methods to adapt the decoder to the user’s neural activity until

effective BMI control has been achieved.

The second challenge involves adaptation. Adaptation of a

neural decoder after its initial calibration can lengthen a BMI’s

effective lifetime by compensating for gradual changes in the

behavior of the BMI inputs. Several studies that used linear

discriminant analysis of electroencephalogram (EEG) data, have

shown that unsupervised adaptive methods can be used to update

model aspects that do not depend on labeled training data [24–

26]. However, in most cases adaptive BMI systems have relied

purely on supervised adaptation. During supervised adaptation,

the training data that is used to calculate the decoder is

periodically updated using either additional kinematic data [27],

recent outputs of the decoder itself (the current decoder being

assumed effective enough to adequately infer the user’s desired

BMI output) [28–32], or inferred kinematics based on known

target information as new trials occur [20,21,23].

Rather than using supervised adaptation, we are developing a

new class of neural decoders based on Reinforcement Learning

(RL) [33,34]. RL is an interactive learning method designed to

allow systems to obtain reward by learning to interact with the

environment, and which has adaptation built into the algorithm

itself using an evaluative scalar feedback signal [35]. As with

supervised adaptation methods, these decoders can adapt their

parameters to respond to user performance. Unlike supervised

adaptation methods, they use a decoding framework that does not

rely on known (or inferred) targets or outputs (such as kinematics)

as a desired response for training or updating the decoder.

Therefore they can be used even when such information is

unavailable (as would be the case in highly unstructured BMI

environments), or when the output of the current BMI decoder is

random (e.g. an uncalibrated BMI system, or when a large change

has occurred within the decoder input space), because they use a

scalar qualitative feedback as a reinforcement signal to adapt the

decoder. Several studies have shown that RL can be used to

control basic BMI systems using EEG signals [36,37] and neuron

activity in rats [38,39]. We have recently introduced a new type of

RL neural decoder, based on the theory of Associative reinforce-

ment learning, that combines elements of supervised learning with

reinforcement based optimization [34]. In that work, we used

motor neuron recordings recorded during arm movements as well

as synthetic neural data, generated by a biomimetic computational

model, to show how the decoder could be used to solve simulated

neuroprosthetic tasks. These tasks involved both multiple targets

and required the controller to perform sequences of actions to

reach goal targets. The current study extends that work by

applying this new RL decoder to a real-time BMI task, and by

testing its performance in that task when large numbers of the

BMI inputs are lost or gained.

The RL neural decoder was evaluated under three basic

conditions: an absence of explicit kinetic or kinematic training

signals, large changes (i.e. perturbations) in the neural input space,

and control across long time periods. Two marmoset monkeys

used the Reinforcement Learning BMI (RLBMI) to control a

robot arm during a two-target reaching task. Only two robot

actions were used to emphasize the relationship between each

specific robot action, the feedback signal, perturbations, and the

resulting RLBMI adaptation. The RLBMI parameters were

initially seeded using random numbers, with the system only

requiring a simple ‘good/bad’ training signal to quickly provide

accurate control that could be extended throughout sessions

spanning multiple days. Furthermore, the RLBMI automatically

adapted and maintained performance despite very large pertur-

bations to the BMI input space. These perturbations included

either sudden large-scale losses or additions of neurons amongst

the neural recordings.

Materials and Methods

Overview
We developed a closed-loop BMI that used an actor-critic RL

decoding architecture to allow two (PR and DU) marmoset

monkeys (Callithrix jacchus) to control a robot arm during a two-

choice reaching task. The BMI was highly accurate (,90%) both

when initialized from random decoder initial conditions at the

beginning of each experimental session and when tested across a

span of days to weeks. We tested the robustness of the decoder by

inducing large perturbations (50% loss or gain of neural inputs),

and the BMI was able to quickly adapt within 3–5 trials.

Ethics Statement
All animal care, surgical, and research procedures were

performed in accordance with the National Research Council

Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health. They were approved by the University of

Miami Institutional Animal Care and Use Committee (protocol:

10–191). The marmosets are housed in a climate controlled

environment, with their overall care closely supervised by the

University of Miami Division of Veterinary Services (DVR). The

animals are regularly inspected by DVR staff to verify healthy

behavior. In addition, the senior veterinary staff performs regular

checks that include physical examinations and blood tests. The

marmosets receive a daily diet that combines fresh fruits with dry

and wet species-specific feeds and have access to water ad libitum.

The marmosets are given environmental enrichments, which

include: toys, novelty food treats, and various privacy houses for

play and sleep to ensure animal welfare. Surgical procedures are

carried out under sterile conditions in a dedicated operating suite

under the supervision of the veterinary staff. Following surgical

procedures, lab personnel and DVR staff closely monitor subject

health during convalescence until they can be returned to the

standard (daily) observation schedule. After the completion of all

experiments, the brains are processed for histological evaluation of

the recording sites following transcardial perfusion under deep

anesthesia.

Microwire Electrode Array Implantation
Each monkey was implanted with a16-channel tungsten,

microelectrode array (Tucker Davis Technologies, Alachua FL)

in the motor cortex, targeting arm and hand areas. A craniotomy

was opened over the motor area, and the dura resected. The array

placement was made using stereotaxic coordinates [40–44] and

cortical mapping (DU motor implant) using a micropositioner

(Kopf Instruments, Tujunga, CA). The implant was secured using

anchoring screws, one of which served as reference and ground.

The craniotomies were sealed using Genta C,ment (EMCMBV,

Nijmegen, The Netherlands). Surgical anesthesia was maintained

using isoflurane (PR) or constant rate ketamine infusion (DU),

steroids (dexamethasone) were used to minimize brain edema and

swelling, and analgesics (buprenorphine) and antibiotics (cefazolin,

cephalexin) were administered postoperatively for 2 and 5 days,

respectively.

Neural Data Acquisition
Neural data were acquired using a Tucker Davis Technologies

RZ2 system (Tucker Davis Technologies, Alachua, FL). Each

array was re-referenced in real-time using a common average

reference (CAR) composed of that particular array’s 16 electrodes

Adaptive BMI Control Using Reinforcement Learning
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(if an electrode failed it was removed from the CAR) to improve

SNR [45]. Neural data were sampled at 24.414 kHz and bandpass

filtered (300 Hz-5 kHz). Action potential waveforms were dis-

criminated in real-time based on manually defined waveform

amplitudes and shapes. The recorded neural data included both

multineuron signals and well-isolated single neuron signals

(collectively referred to here as neural signals), which were used

equivalently in all real-time and offline tests. On average there

were 18.3+/23.1 (mean +/2 std) motor neural signals for DU

and 21.1+/20.4 for PR (10 signals for PR following a mechanical

connector failure in which half the electrodes were lost). Neural

signal firing rates were normalized (between 21 to 1) in real-time

by updating an estimate of the neural signals’ maximum firing

rates during each experimental trial.

Actor-critic Reinforcement Learning Brain-machine
Interface Control Architecture

The actor-critic RLBMI architecture used for these experiments

is described in detail in [34]. Briefly, actor-critic systems are

characterized by the actor and critic modules, Figure 1A. The

actor interacts with the environment by selecting system actions

given a specific input state (here neural states). The critic provides

an evaluative feedback regarding how successful the actions were

in terms of some measure of performance, and which is used to

refine the actor’s state to action mapping. The actor was a fully

connected 3-layer feedforward neural network, Figure 1B, that

used a Hebbian update structure [34]. The actor input (X) was a

vector (length n) of the spike counts for each of the n motor cortex

neural signals during a two second window following the go cue of

each trial. A parsimonious network was chosen for decoding, using

only 5 hidden nodes and two output nodes (one for each of the two

robot reaching movements). The output of each hidden node

(OutHi) was a probability of firing (21 to 1) computed using a

hyperbolic tangent function, and in which WHi is the synaptic

weights vector between node i and the n inputs (b is a bias term):

OutHi~ tanh X b½ � �WHið Þ ð1Þ

The output nodes determined the action values (AV) for each of

the j possible robot actions:

AVj~ tanh S OutHð Þ b½ � �WOj

� �
ð2Þ

S(OutH) is a sign function applied to the hidden layer outputs

(positive values become +1, negative values become 21), and WOj

is the weights matrix between output j and the hidden layer. The

robot action with the highest action value was implemented each

trial. The actor weights were initialized using random numbers,

which were updated (DW) using the critic feedback (f):

DWH~mH � f � X b½ �T� S OutHð Þ{OutHð Þ
� �

zmH � 1{fð Þ � X b½ �T� 1{S OutHð Þ{OutHð Þ
� � ð3Þ

DWO~mO � f � OutH b½ �T� S AVð Þ{AVð Þ
� �

zmO � 1{fð Þ � OutH b½ �T� 1{S AVð Þ{AVð Þ
� � ð4Þ

Feedback is +1 if the previous action selection is rewarded and

21 otherwise. This update equation is composed of two terms that

provide a balance between the effects of reward and punishment

on the network parameters. Under rewarding conditions, the first

term contributes to the changes in the synaptic weights, whereas in

the case of punishment both terms will affect the weight update.

After convergence to an effective control policy the output of the

node tends to the sign function and thus the adaptation will stop

automatically [34]. In the current work an ‘ideal’ critic was used

that always provided accurate feedback. However, such perfect

feedback is not intrinsically assumed by this RL architecture, and

there are many potential sources of the feedback in future BMI

applications (see Discussion). S() is again the sign function and

mH and mO are learning rates of the hidden (0.01) and output (0.05)

layers, respectively. The update equations are structured so that

the local input-output correlation in each node are reinforced

using a global evaluative feedback, hence Hebbian reinforcement

Figure 1. Brain-Machine Interface control architecture using
actor-critic reinforcement learning. (A) The architecture’s defining
characteristic is the interaction between the actor and critic modules.
The actor interacts with the environment by selecting actions given
input states (here the BMI Controller). The critic is responsible for
producing reward feedback that reflects the actions’ impact on the
environment, and which is used by the actor to improve its input to
action mapping capability (here the Adaptive Agent). (B) The actor used
here is a fully connected three layer feedforward neural network with
five hidden (Hi) and two output (AVi) nodes. The actor input (X) was the
normalized firing rates of each motor cortex neural signal. Each node
was a processing element which calculated spiking probabilities using a
tanh function, with the node emitting spikes for positive values.
doi:10.1371/journal.pone.0087253.g001
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learning. In the current work, the architecture is applied to a two

state problem, but this architecture and update equations 3 and 4

can be directly applied to multistep and multitarget problems,

even while still using a binary feedback signal [34].

Brain-machine Interface Robot Reaching Task
The BMI task required the monkeys to make reaching

movements with a robot arm to two different spatial locations in

order to receive food rewards, Figure 2A and Movie S1. The

monkeys initiated trials by placing their hand on a touch sensor for

a randomized hold period (700–1200 msec). The hold period was

followed by an audio go cue, which coincided with the robot arm

moving to the start position. Simultaneously to the robot

movement, an LED spatial target on either the monkeys’ left

(‘A’ trials) or right (‘B’ trials) was illuminated. Prior to the real-time

BMI experiments, the monkeys had been trained to manually

control the robot movements by either making or withholding arm

movements. During those training sessions, the monkeys moved

the robot to the A target by reaching and touching a second

sensor, and moved the robot to the B target by keeping their hand

motionless on the touchpad, and were rewarded for moving the

robot to the illuminated target. The differences in the neuron

firing rates shown by the rasters in Figure 2B illustrate how this

had trained the monkeys to associate changes in motor activity

with moving the robot to the A target, and static motor activity to

B target robot movements. In the real-time BMI experiments, the

robot movements were determined directly from the monkeys’

motor cortex activity using the actor-critic RL algorithm

previously described. A and B trials were presented in a pseudo-

random order of roughly equivalent proportions. The monkeys

were immediately given food rewards (waxworms/marshmallows)

at the end of trials only if they had moved the robot to the

illuminated LED target.

In these initial RLBMI tests, we controlled the experiment to

examine the basic adaptive capabilities of the RL architecture as a

state-based BMI controller, and thus only two robot action states

(‘move to target A’ or ‘move to target B’) were used. This allowed

us to highlight the relationship between each individual robot

action, the feedback training signal, and the resulting adaptive

modifications of the RLBMI parameters in a direct and

quantifiable manner. This was particularly useful when consider-

ing parameter adaptation from wide ranging, random initial

conditions, and when we introduced perturbations to the neural

input space.

To speed the initial adaptation of the RL algorithm, real time

‘epoching’ of the data was used. After each robot action, the

algorithm weights were updated (equations 3 and 4) using not only

the most recent trial’s data, but rather with a stored buffer of all

the previous trials from that session, with the buffered trials being

used to update the weights ten times following each action. The

RL was initialized using random numbers and therefore employed

random exploratory movements until more effective parameters

are learned, thus this epoching helped prevent the monkeys from

becoming frustrated at the beginning of sessions by moving the

system more rapidly away from purely random actions.

RLBMI Stability when Initialized from Random Initial
Conditions

During real-time closed loop robot control experiments the

parameter weights of the RLBMI were initialized with random

values, with the RLBMI learning effective action mappings

through experience (equations 3 and 4). Performance was

quantified as percentage of trials in which the target was achieved.

In addition to these closed-loop real-time experiments, we also ran

a large number of offline ‘open-loop’ Monte Carlo simulations to

exhaustively confirm that the RLBMI was robust in terms of its

initial conditions, i.e. that convergence of the actor weights to an

effective control state during the real-time experiments had not

been dependent on any specific subset of initialization values. For

the offline simulations, the neural data and corresponding trial

targets for the first 30 trials of several closed-loop BMI sessions

from both monkeys (10 sessions for DU and 7 for PR) were used to

build a database for open-loop simulations. During the simula-

tions, data from each session were re-run 100 times, and different

random initial conditions were used for each test.

Figure 2. Two target robot reaching task using the RLBMI. The
monkeys initiated each trial by placing their hand on a touch sensor for
a random hold period. A robot arm then moved out from behind an
opaque screen (position a) and presented its gripper to the monkey
(position b). A target LED on either monkey’s left (A trials) or right (B
trials) was illuminated to indicate the goal reach location. The RLBMI
system (Figure 1) used the monkeys’ motor cortex activity to either
move the robot to the A or B target (panel A). The monkeys received
food rewards only when the RLBMI moved the robot to the illuminated
target (position c), Movie S1. Panel B shows examples of the spike
rasters for all the neural signals used as inputs to the RLBMI during
experiments which tested the effects of neural signals being lost or
gained. Data is shown for trials 6–10 (which preceded the input
perturbation) and trials 11–15 (which followed the input perturbation).
For each trial, all the recorded neural signals are plotted as rows (thus
there are multiple rows for a given trial), with data from type A trials
being highlighted in red. Differences in firing patterns during the A and
B trials are evident both before and after the perturbation, although the
RLBMI still had to adapt to compensate for the considerable changes in
the overall population activity that resulted from the input perturba-
tions.
doi:10.1371/journal.pone.0087253.g002
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RLBMI Stability during Input Space Perturbations: Loss or
Gain of Neuron Recordings

For BMI systems to show truly stable performance, nonstatio-

narities or other changes in the input space should not adversely

affect performance. While some changes of the input space can be

beneficial, such as neurons changing their firing pattern to better

suit the BMI controller [8,10,17,18,46–48], large changes in the

firing patterns of the inputs that dramatically remove the input

space from that which the BMI had been constructed around are

significant problems for BMIs. Such perturbations can result from

neurons appearing or disappearing from the electrode recordings,

a common occurrence in electrophysiology recordings.

In several closed-loop BMI sessions, we deliberately altered the

BMI inputs to test the RLBMI’s ability to cope with large-scale

input perturbations. These perturbations were done following the

initial learning period so that the RLBMI had already adapted and

gained accurate control of the robot prior to the input

perturbation. During input loss tests, the real-time spike sorting

settings were adjusted (following the 10th trial) so that a random

50% of the neural signals were no longer being detected by the

RLBMI. During input gain tests, when the RLBMI was initialized

at the beginning of the experiment the real-time spike sorting

settings were configured so that the action potentials of a random

half of the available neural signals were not being acquired. Then,

following the initial adaptation of the RLBMI, the parameters

were updated so that the previously avoided signals suddenly

appeared as ‘new’ neural signals amongst the BMI inputs.

We verified the real-time input perturbation experimental

results with additional offline simulations and during several real-

time tests that spanned multiple days. The offline simulation tests

used the same Monte Carlo simulation database previously

described. For the offline input loss simulation tests, the firing

rates for a randomly chosen (during each simulation) half of the

neural signals were set to zero after 10 trials and the ability of the

RLBMI to compensate was evaluated. Similarly, for the ‘found

neuron’ simulations, for each simulation half the inputs were

randomly selected to have their firing rates set to zero for the first

10 trials. Finally, during several real-time RLBMI experiments

that spanned multiple days, we found that abrupt 50% input losses

only caused temporary performance drops even though the system

had been adapting for several days prior to the perturbation (see:

RLBMI stability over long time periods below).

We used the mutual information between the neuron data and

the robot task to quantify the impact of input perturbations on the

RLBMI input space. The mutual information (MI) between each

neural signal (x) and the target location (y) was determined [49]:

MI(X ; Y )~H(Y ){H(Y DX ) ð5Þ

where H is the entropy:

H(Y )~{
P
y[Y

p(y)log2p(y)

(H(Y) is 1 bit when A and B trials are equally likely)

H(Y DX )~{
X
x[X

X
y[Y

p(x,y)log2p(yDx)

We used Monte Carlo simulations in which different fractions of

the neural signals were randomly ‘lost’ (i.e. firing rate became zero)

and used the resulting relative change in the average mutual

information to gauge the effect of losing neural signal recordings

on the RLBMI input space.

RLBMI Stability Over Long Time Periods
We tested how well the RLBMI would perform when it was

applied in closed-loop mode across long time periods. These

contiguous multisession tests consisted of a series of robot reaching

experiments for each monkey. During the first session, the RLBMI

was initialized using a random set of initial conditions. During the

follow-up sessions, the RLBMI was initialized from weights that it

had learned from the prior session, and then continued to adapt

over time (equations 3 and 4).

We also tested the impact of input perturbations during the

contiguous multisession experiments. During the contiguous PR

tests, a failure in the implant connector resulted in half of the

neural signals inputs to the RLBMI being lost. We ran another

contiguous session in which the RLBMI successfully adapted to

this change to its inputs. This input loss was simulated in two of the

contiguous sessions with monkey DU. In those experiments, a

random half of the motor neural signals were selected (the same

signals in each test), and in those perturbation experiments the

firing rates of the selected inputs were set to zero. For comparison

purposes, in monkey DU two final contiguous session experiments

were also run in which the whole input space remained available

to the RLBMI system.

Results

Actor-Critic Reinforcement Learning Brain-Machine
Interface (RLBMI) Control of Robot Arm

The actor-critic RLBMI effectively controlled the robot

reaching movements. Figure 3 shows a typical closed loop RLBMI

experimental session (PR). Figure 3A shows that the algorithm

converged to an effective control state in less than 5 trials, after

which the robot consistently made successful movements. The

algorithm was initialized using small random numbers (between

+/2.075) for the parameter weights (equations 1 and 2). Figure 3B

shows the gradual adaptation of the weight values of the two

output nodes (equation 4) as the algorithm learned to map neural

states to robot actions (Figure 3C shows a similar adaptation

progression for the hidden layer weights). The weights initially

changed rapidly as the system moved away from random

explorations, followed by smooth adaptation and stabilization

when critic feedback consistently indicated good performance.

Larger adaptations occurred when the feedback indicated an error

had been made.

The RLBMI system was very stable over different closed loop

sessions, robustly finding an effective control policy regardless of

the parameter weights’ initial conditions. Figure 4 shows that

during the closed loop robot control experiments, the RLBMI

controller selected the correct target in approximately 90% of the

trials (blue bar: mean +/2 standard deviation; DU: 93%, 5

sessions; PR: 89%, 4 sessions, significantly above chance (0.5) for

both monkeys, p,.001, one sided t-test). Similarly, Figure 4 (red

bars) shows that the open-loop initial condition Monte Carlo

simulations (see Materials and Methods) yielded similar

accuracy as the closed loop experiments, confirming that the

system converged to an effective control state from a wide range of

initial conditions (DU: 1000 simulations, PR: 700, significantly

above chance (0.5) for both monkeys, p,.001, one sided t-test).

The accuracy results in Figure 4 correspond to trials 6–30 since the

first 5 trials were classified as an initial adaptation period and the

monkeys typically became satiated with food rewards and ceased

interacting with the task (e.g. went to sleep, began fidgeting in the

chair, otherwise ignore the robot) after 30 to 50 trials.

A surrogate data test was used to confirm that the RLBMI

decoder was using the monkeys’ brain activity to control the robot

Adaptive BMI Control Using Reinforcement Learning
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arm, and not some other aspect of the experimental design. These

tests involved additional open-loop simulations in which the order

of the different trial types recorded during the real-time

experiments was preserved while the order of the recorded motor

cortex neural data was randomly reshuffled, thus destroying any

consistent neural representations associated with the desired robot

movements. Despite the decoder’s adaptation capabilities, Figure 4

(black bars) shows that the RLBMI system was not able to perform

above chance levels under these conditions (DU: 1000 simulations,

PR: 700, p,1, one sided t-test), demonstrating that the RLBMI

was unable to accomplish the task without the direct connection

between the motor cortex command signals and the desired robot

actions that had been recorded during the real-time experiments.

RLBMI Stability during Input Space Perturbations: Loss or
Gain of Neuron Recordings

The RLBMI quickly adapted to compensate for large pertur-

bations to the neural input space (see Materials and Methods).

Figure 5 gives the accuracy (mean and standard deviation) of the

RLBMI decoder within a 5-trial sliding window across the trial

sequence of both closed-loop BMI experiments (DU: blue dashed

line and error bars, 4 sessions) and open-loop simulations (DU:

gray line and panel, 1000 simulations; PR: red line and panel, 700

simulations). Figure 5A shows the RLBMI performance when a

random 50% of the inputs were lost following trial 10 (vertical

black bar). By trial 10 the RLBMI had already achieved stable

control of the robot, and it had readapted to the perturbation

within 5 trials, restoring effective control of the robot to the

monkey. The inset panel in Figure 5A contrasts the mean results of

the RLBMI simulations (solid lines) against simulations in which a

static neural decoder (dashed lines, specifically a Wiener classifier)

was used to generate the robot action commands. The Wiener

classifier initially performed quite well, but the input perturbation

caused a permanent loss of performance. Figure 5B shows that the

RLBMI system effectively incorporate newly ‘found’ neural signals

into its input space. This input perturbation again occurred

following the 10th trial (vertical black bar), prior to that point a

random 50% of the RLBMI inputs had had their firing rate

information set to zero. In both the closed-loop BMI experiments

and open-loop simulations the system again had adapted to the

input perturbation within 5 trials. By comparison, a static decoder

(Wiener classifier) was not only unable to take advantage of the

newly available neural information, but in fact showed a

performance drop following the input perturbation (Figure 5B

inset panel, RLBMI: solid lines, static Wiener: dashed lines).

Both the losses of 50% of the recorded inputs and the abrupt

appearance of new information amongst half the recordings

represent significant shifts to the RLBMI input space. In Figure 6A,

we contrast the change in the available information between the

neural signals (equation 5) with losses of varying quantities of

neural signals (red boxes; DU: solid, PR: hollow). By the time 50%

of the inputs have been lost, over half of the information had been

lost as well. Abrupt input shifts of this magnitude would be

extremely difficult for any static neural decoder to overcome. It is

thus not unexpected that the static Wiener classifier (black circles;

DU: solid, PR: hollow) nears chance performance by this point,

any decoder that did not adapt to the change would show similar

performance drops. Figure 6B contrasts the average performance

Figure 3. The RLBMI accurately learned to control the robot
during closed loop BMI experiments. (A): stems indicate the
sequence of the different trials types (O = A trials, * = B trials) with the
stem height indicating whether the robot moved to the correct target
(taller stem) or not (shorter stem). The dashed line gives the
corresponding accuracy of the RLBMI performance within a five trial
sliding window. (B and C) show how throughout every trial the RLBMI
system gradually adapted each of the individual weights that
connected the hidden layer to the outputs (B) as well as all the
weights of the connections between the inputs and the hidden layer
(C), as the RLBMI learned to control the robot. The shape of these
weight trajectories indicate that the system had arrived at a consistent
mapping by the fifth trial: at that point the weight adaptation
progresses at a smooth rate and the robot is being moved effectively
to the correct targets. At trial 23 an improper robot movement resulted
in the weights being quickly adjusted to a modified, but still effective,
mapping.
doi:10.1371/journal.pone.0087253.g003

Figure 4. The RLBMI decoder accurately controlled the robot
arm for both monkeys. Shown is the accuracy of the decoder (mean
+/2 standard deviation) following the initial adaptation period (trials
6:30). Both monkeys had good control during closed loop sessions
(blue, DU: 93%, PR: 89%). The open loop simulations (red) confirmed
that system performance did not depend on the initial conditions (ICs)
of the algorithm weight parameters (DU: 94%, PR: 90%). Conversely,
open-loop simulations in which the structure of the neural data was
scrambled (black) confirmed that, despite its adaptation capabilities,
the RLBMI decoder needed real neural states to perform above chance
(50%) levels.
doi:10.1371/journal.pone.0087253.g004
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(trials 11 to 30) of the RLBMI following perturbations during both

closed loop experiments (neural signals lost: dark blue; new neural

signals appearing: dark red) and open loop simulations (neural

signals lost: light blue; new neural signals appearing: light red)

against the performance of the static Wiener classifier (hatched

bars; neural signals lost: blue; new neural signals appearing: red).

The RLBMI performance was significantly higher than the

nonadaptive Wiener classifier (1sided t-test, p,,.001, DU: 1000

simulations; PR: 700 simulations).

RLBMI Stability Over Long Time Periods and Despite
Input Perturbations

The RLBMI maintained high performance when applied in a

contiguous fashion across experimental sessions spanning up to 17

days, Figure 7. The decoder weights started from random initial

conditions during the first session, and during subsequent sessions

the system was initialized from weights learned in the previous

session (from the 25th trial), and was then allowed to adapt as usual

(equations 3 and 4) without any new initializations or interventions

by the experimenters, this was done to approximate use of the

BMI over long time periods. The solid lines in Figure 5 give the

accuracy of the system during the first 25 trials (mean: DU: 86%;

PR: 93%) of each session when the inputs were consistent. For

monkey PR, half of the neural input signals were lost between day

9 and 16 (dashed line). However, the system was able to quickly

adapt and this loss resulted in only a slight dip in performance

(4%), despite the fact the RLBMI had been adapting its

parameters for several days to utilize the original set of inputs.

Likewise, the RLBMI controller maintained performance during

two DU sessions (day 8 and 13, dashed line) in which a similar

input loss was simulated (see Materials and Methods). In fact,

performance during those sessions was similar or better to DU tests

that continued to use all the available neural signals (days 14 and

17).

Discussion

Potential Benefits of using Reinforcement Learning
Algorithms for BMI Controllers

Adaptive and interactive algorithms based on reinforcement

learning offer several significant advantages as BMI controllers

over supervised learning decoders. First, they do not require an

explicit set of training data to be initialized, instead being

computationally optimized through experience. Second, RL

algorithms do not assume stationarity between neural inputs and

behavioral outputs, making them less sensitive to failures of

recording electrodes, neurons changing their firing patterns due to

learning or plasticity, neurons appearing or disappearing from

recordings, or other input space perturbations. These attributes

are important considerations if BMIs are to be used by humans

over long periods for activities of daily living.

The Reinforcement Learning BMI System does not
Require Explicit Training Data

The RLBMI architecture did not require an explicit set of

training data to create the robot controller. BMIs that use

supervised learning methods require neural data that can be

related to specific BMI behavioral outputs (i.e. the training data) to

Figure 5. The RLBMI quickly adapted to perturbations to the neural input space. These perturbations included both the loss of 50% of the
neural inputs (A), as well as when the number of neural signals detected by the neural recording system doubled (B). (A&B) show the RLBMI
performance accuracy within a five-trial sliding window (mean +/2 standard deviation). Both closed loop tests (DU: blue dashed line and error bars, 4
sessions) and offline open-loop simulations (DU: gray line and panel, 1000 sims; PR: red line and panel, 700 sims) were used to evaluate the RLBMI
response to input perturbations. (A) gives the results of 50% input loss perturbations. In both closed loop experiments and open-loop simulations,
the RLBMI had already adapted and achieved high performance by the 10th trial. Following the 10th trial (vertical black bar), 50% of the neural inputs
were abruptly lost, with RLBMI readapting to the loss within 5 trials. (B) shows that when the recording electrodes detected new neurons, the RLBMI
adaptation allowed the new information to be incorporated into the BMI without the emergence of new firing patterns degrading performance. In
these perturbation tests, a random 50% of the available neural signals were artificially silenced prior to the 10th trial (vertical black bar). The sudden
appearance of new input information caused only a small performance drop, with the RLBMI again readapting to the perturbation within 5 trials. The
inset panels in both (A) and (B) contrast the averaged results of the RLBMI open loop simulations (solid lines, DU: gray, PR: red) with the simulation
performance of a nonadaptive neural decoder (dashed lines, a Wiener classifier created using the first five trials of each simulation). In contrast to the
RLBMI, the nonadaptive decoder showed a permanent performance drop following perturbations in which neural signals were lost, as well as in the
tests in which new signals appeared.
doi:10.1371/journal.pone.0087253.g005
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calibrate the BMI. In many BMI experiments that have used

healthy nonhuman primate subjects, the training data outputs

were specific arm movements that accomplished the same task for

which the BMI would later be used [7–11,28,50–52]. While those

methods were effective, gaining access to this type of training data

is problematic when considering paralyzed BMI users. Other

studies have found that carefully structured paradigms that involve

a BMI user first observing (or mentally imagining) desired BMI

outputs, followed by a process of refinements that gradually turn

full BMI control of the system over to the user, can provide

training data without physical movements [1,6,22]. While these

methods were again effective, they require carefully structured

BMI paradigms so that assumed BMI outputs can be used for the

calibration. The RLBMI system shown here avoids such issues.

Calculating the parameters of the RLBMI architecture never

requires relating neural states to known (or inferred) system

outputs, but rather the system starts controlling the robot with

random parameters which are then gradually adapted given

feedback of current performance. Thus, the robot made random

movements when the system was initialized (as can be seen in

Figure 3A), but the RLBMI was able to quickly (typically within 2–

4 trials) adapt the parameters to give the monkeys accurate control

(,90%) of the robot arm. This adaption only required a simple

binary feedback. Importantly, the same RLBMI architecture

utilized here can be directly applied to tasks that involve more than

two action decisions, while still using the exact same weight update

equations. This means that the system can be readily extended to

more sophisticated BMI tasks while still only requiring the same

type of binary training feedback [34], this opens numerous

opportunities for RLBMI deployment with paralyzed users.

Finally, not relying on explicit training data helped make the

RLBMI system stable over long time periods (,2 weeks), since the

architecture continually refined its parameters based on the user’s

performance to maintain control of the robot arm, as shown in

Figure 7.

The Reinforcement Learning BMI System Remained
Stable Despite Perturbations to the Neural Input Space

It is important that changes in a BMI’s neural input space do

not diminish the user’s control, especially when considering longer

time periods where such shifts are inevitable [53–57]. For

example, losses and gains of neurons are very common with

electrophysiology recordings using chronically implanted micro-

electrode arrays: electrodes fail entirely, small relative motions

between the brain and the electrodes cause neurons to appear and

disappear, and even the longest lasting recording arrays show

gradual losses of neurons over time from either tissue encapsula-

tion of the electrodes or from the gradual degradation of the

electrode material [58,59]. While some changes in neural input

behavior can be beneficial, such as neurons gradually adopting

new firing patterns to provide a BMI user greater control of the

system [8,10,17,18,46–48], large and/or sudden changes in

neuron firing patterns will almost always reduce a BMI user’s

control if the system cannot compensate, as can be seen in

performance drop of the static Wiener decoder in Figures 5 and 6.

While input losses may be an obvious adverse perturbation to

BMI systems (as shown in Figure 6), the appearance of new

Figure 6. The input perturbations caused significant performance drops without adaptation. (A) displays the effect of different fractions
of neural signals being lost on the performance of a nonadaptive neural decoder (Wiener classifier), relative to the average information available from
the neural inputs (DU: 1000 simulations; PR: 700 simulations). The average mutual information (equation 5) between the neural signals and the two-
target robot task (red boxes; DU: solid, PR: hollow) reflects the magnitude of the input perturbation caused by varying numbers of random neural
signals being lost. Losing 50% of the inputs unsurprisingly resulted in a large input shift, with about half the available information similarly being lost
by that point for each monkey. It is unsurprising that the cross-validation performance of a nonadaptive neural decoder (black circles; DU: solid, PR:
hollow) that had been created prior to the perturbation (Figure 5) thus similarly approached chance performance for such large input losses
(performance was quantified as classification accuracy for trials 11 to 30 with the perturbation occurring following trial 10). (B) shows how the RLBMI
adapted (Figure 5) to large input perturbations (50% loss of neural signals and doubling of neural signals) during both closed loop experiments
(signals lost: dark blue; new signals appear: dark red; 4 experiments) and the offline simulations (signals lost: light blue; new signals appear: light red;
DU: 1000 simulations; PR: 700 simulations), resulting in higher performance than the nonadaptive Wiener classifier (hatched boxes, 1sided t-test,
p,,.001).
doi:10.1371/journal.pone.0087253.g006
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neurons is also a significant input perturbation: when the

representations of new neurons overlap with neurons that were

already being used as BMI inputs, this causes the previous inputs

to appear to have acquired new firing patterns, thus perturbing the

BMI’s input space. Such appearances could be a particular issue in

BMI systems that rely on action potential threshold crossings on a

per electrode basis to detect input activity [21,52,60]. Finally,

BMIs that cannot take advantage of new sources of information

lose the opportunity to compensate for losses of other neurons.

Currently, most BMI experiments avoid the issue of large

changes in input neurons on BMI performance since the

experimenters reinitialize the systems on, at least, a daily basis

[1–3,6,21–23]. However, it is important for practical BMI systems

to have a straightforward method of dealing with neural input

space perturbations that are not a burden on the BMI user and do

not require such daily recalibrations. The RLBMI controller

shown here does not require the intervention of an external

technician (such as an engineer or caregiver) to recalibrate the

BMI following changes in the input space. Rather, it automatically

compensates for input losses, as demonstrated in Figure 5 in which

the RLBMI adapted and suffered only a transient drop in

performance despite neural signals disappearing from the input

space. Similarly, Figures 5 and 6 show how the RLBMI

automatically incorporated newly available neural information

into the input space. Figure 5 shows that the RLBMI did display

greater variation in performance following the addition of new

inputs compared to its performance following input losses. This

may reflect the variability to which the RLBMI algorithm had

learned to ignore initially silent channels, combined with the

variation in the magnitude of the firing activity of the neural

signals once they were ‘found’. In situations in which the algorithm

had set the silent channel parameter weights very close to zero, or

in which the activity of the new channels was relatively low, the

addition of the new neural signals would have had little impact on

performance until the RLBMI controller reweighted the perturbed

inputs appropriately to effectively use them. Conversely, during

the input loss tests there would be a higher probability that

dropped inputs had had significant weight parameters previously

attached to their activity, resulting in a more obvious impact on

overall performance when those neural signals were lost. Finally,

since the RLBMI constantly revises which neural signals, and by

extension which electrodes, to use and which to ignore as BMI

inputs, engineers or caregivers initializing RLBMI systems would

not to spend time evaluating which electrodes or neurons should

be used as BMI inputs.

The RLBMI architecture is intended to balance the adaptive

nature of the decoder with the brain’s learning processes.

Understanding the intricacies of these dynamics will be an

important focus of future work for the study of brain function

and BMI development. Numerous studies have shown that

neurons can adapt to better control BMIs [8,10,17,18,46–48].

RL adaptation is designed so that it does not confound these

natural learning processes. RL adaption occurs primarily when

natural neuron adaptation is insufficient, such as during initiali-

zation of the BMI system or in response to large input space

perturbations. Figures 3 and 5 show the current RLBMI

architecture offers smooth adaptation and stable control under

both such conditions. In the current experiments, the speed and

accuracy of the RLBMI balanced any adaptation by the recorded

motor cortex neurons themselves. Further research that combines

studies of natural neuron learning capabilities with more

complicated BMI tasks will be necessary though to develop

RLBMI architectures that can provide mutual optimal adaptation

of both the brain and the neural decoder, and thus offer highly

effective and robust BMI controllers.

Obtaining and using Feedback for Reinforcement
Learning BMI Adaptation

The ability of the RLBMI system to appropriately adapt itself

depends on the system receiving useful feedback regarding its

current performance. Thus both how accurate the critic feedback

is and how often it is available directly impacts the RLBMI’s

performance. The current experimental setup assumed an ideal

case in which completely accurate feedback was available

immediately following each robot action. While such a situation

is unlikely in everyday life, it is not essential for RL that feedback

always be available and/or correct, and there are many potential

methods by which feedback information can be obtained.

The RLBMI architecture presented here does not intrinsically

assume perpetually available feedback, but rather only needs

feedback when necessary and/or convenient. If no feedback

information is available, then the update equations are simply not

implemented and the current system parameters remain un-

changed. Since feedback information does not depend on any

particular preprogrammed training paradigm, but rather simply

involves the user contributing good/bad information during

whatever task for which they are currently using the BMI, this

makes the system straightforward to update by the user whenever

is convenient and they feel the RLBMI performance has degraded.

Finally, other RL algorithms are designed specifically to take

advantage of only infrequently available feedback by relating it to

multiple earlier actions that were taken by the system and which

ultimately lead to the feedback [61].

Figure 7. The RLBMI consistently maintained performance
across long time periods. The RLBMI was applied in a contiguous
fashion across closed loop experimental sessions spanning up to two
weeks, and accurately controlled the robot across the sessions
(performance defined as accuracy of robot movements during the first
25 trials of each session; O: solid lines). During the first session, the
system was initialized with random parameters, and during each
subsequent session the system was initialized using parameter weights
it had learned previously. This approximates deploying the RLBMI
across long time periods since it never has the opportunity to reset the
weights and start over, but rather must maintain performance by
working with a single continuous progression of parameter weight
adaptations. Additionally, despite working with the same sequence of
weights for multiple days, the RLBMI was still able to quickly adapt
when necessary. A mechanical connector failure caused a loss of 50% of
the inputs for PR between day 9 and 16 (X: black dashed line), but the
RLBMI adapted quickly and only a small performance drop resulted.
This input loss was simulated in two sessions with DU (X: red dashed
line), and the system again adapted and maintained performance.
Notably, the RLBMI performance during those perturbation sessions
was similar or better than in two final DU tests in which no input loss
was simulated (in the day 14 session the parameter weights were reset
to those learned on day 6).
doi:10.1371/journal.pone.0087253.g007
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When considering possible sources of feedback information, it is

important to consider how the critic accuracy impacts on the

RLBMI’s overall performance. We thus ran a several closed loop

experiments and offline simulations in which we tested how well

the RLBMI algorithm was able to classify trials from the closed

loop BMI experiments when the accuracy of the critic feedback

varied. Figure 8 shows how the RLBMI performance can be

limited by the accuracy of the feedback. Thus for the current

RLBMI architecture it may be better to only use feedback

information when the confidence in its accuracy is high, even if

that means feedback is obtained less frequently.

There are a wide variety of potential options for the RLBMI

user to provide critic feedback to the system, including using

reward or error information encoded in the brain itself. While

assuming that ideal feedback is available following each action

may not be practical for real BMI systems, the fact that the

necessary training feedback is just a binary ‘good/bad’ signal (even

when the system is expanded to include more than two output

actions) that only needs to be provided when the user feels the

BMI performance needs to be updated, leaves many options for

how even a user suffering from extreme paralysis could learn to

provide critic feedback. For example, the user could use a breath

puff system, vocal cues, or any sort of small residual movement or

EMG signal that can be reliably evoked. Furthermore, error

related signals characteristic to EEG, ECoG, or other recording

methods could be employed as well [32,62–67]. An exciting option

that would place the smallest burden on the BMI user would be to

automatically decode feedback information regarding the BMI’s

performance directly from the brain itself, perhaps from learning

or reward centers such as the nucleus accumbens, anterior

cingulate cortex, prefrontal cortex etc. [68]. More research will

be necessary to investigate potential sources of feedback informa-

tion that the BMI user could easily provide, as well as how to best

and how frequently to use that feedback for effective adaptation by

the RLBMI architecture. Giving the BMI user access to a

straightforward method of providing feedback will enable them to

use the BMI system effectively over long periods of time without

outside interventions by engineers or caregivers despite inevitable

changes to the inputs. This will greatly increase the practicality of

BMI systems by increasing user independence.

Conclusions

These experiments highlight several of the advantages offered

by reinforcement learning algorithms when used as BMI

controllers: the system can learn to control a device without

needing an explicit set of training data, the system can robustly

adapt and maintain control despite large perturbations in the input

signal space, and control can be maintained across long time

periods. Two marmoset monkeys used an actor-critic Reinforce-

ment Learning BMI to control a robot arm during a reaching task.

The RLBMI system was initialized using random initial condi-

tions, and then used a binary training feedback signal to learn how

to accurately map the monkeys’ neural states to robot actions. The

system achieved 90% successful control of the arm after only 2–4

trials, and could maintain control of the arm across sessions

spanning days to weeks. Furthermore, because the RLBMI

continuously adapted its parameters, it was quickly (within 4 to

5 trials) able to regain control of the robot when half the BMI

input neural signals were abruptly lost, or when half the neural

signals suddenly acquired new activity patterns. The advantages of

the adaptive algorithm illustrated here offer a means for future

BMI systems to control more complicated systems with a reduced

need for recalibration or other outside inventions by external

agents such as engineers or caregivers, which would greatly

increase independence to the BMI user.

Supporting Information

Movie S1 RLBMI control of the robot arm during a 50% loss of

inputs. This movie was recorded during a session in which the

monkey used the RLBMI to move the robot between two targets.

Shown are trials 1–4 and 11–16. The RLBMI learned an effective

mapping of the neuronal inputs to the desired robot actions within

the first few trials. After the tenth trial, the system was perturbed

by dropping 50% of the neuronal inputs, forcing the RLBMI to

automatically adapt in order to restore effective control of the

robot to the monkey.
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