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Abstract

Genetically-controlled plant resistance can reduce the damage caused by pathogens. How-

ever, pathogens have the ability to evolve and overcome such resistance. This often occurs

quickly after resistance is deployed, resulting in significant crop losses and a continuing

need to develop new resistant cultivars. To tackle this issue, several strategies have been

proposed to constrain the evolution of pathogen populations and thus increase genetic

resistance durability. These strategies mainly rely on varying different combinations of resis-

tance sources across time (crop rotations) and space. The spatial scale of deployment can

vary from multiple resistance sources occurring in a single cultivar (pyramiding), in different

cultivars within the same field (cultivar mixtures) or in different fields (mosaics). However,

experimental comparison of the efficiency (i.e. ability to reduce disease impact) and durabil-

ity (i.e. ability to limit pathogen evolution and delay resistance breakdown) of landscape-

scale deployment strategies presents major logistical challenges. Therefore, we developed

a spatially explicit stochastic model able to assess the epidemiological and evolutionary out-

comes of the four major deployment options described above, including both qualitative

resistance (i.e. major genes) and quantitative resistance traits against several components

of pathogen aggressiveness: infection rate, latent period duration, propagule production

rate, and infectious period duration. This model, implemented in the R package landsepi,

provides a new and useful tool to assess the performance of a wide range of deployment

options, and helps investigate the effect of landscape, epidemiological and evolutionary

parameters. This article describes the model and its parameterisation for rust diseases of

cereal crops, caused by fungi of the genus Puccinia. To illustrate the model, we use it to

assess the epidemiological and evolutionary potential of the combination of a major gene

and different traits of quantitative resistance. The comparison of the four major deployment

strategies described above will be the objective of future studies.
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Author summary

There are many recent examples which demonstrate the evolutionary potential of plant

pathogens to overcome the resistances deployed in agricultural landscapes to protect our

crops. Increasingly, it is recognised that how resistance is deployed spatially and tempo-

rally can impact on rates of pathogen evolution and resistance breakdown. Such deploy-

ment strategies are mainly based on the combination of several sources of resistance at

different spatiotemporal scales. However, comparison of these strategies in a predictive

sense is not an easy task, owing to the logistical difficulties associated with experiments

involving the spread of a pathogen at large spatio-temporal scales. Moreover, both the

durability of a strategy and the epidemiological protection it provides to crops must be

assessed since these evaluation criteria are not necessarily correlated. Surprisingly, no cur-

rent simulation model allows a thorough comparison of the different options. Here we

describe a spatio-temporal model able to simulate a wide range of deployment strategies

and resistance sources. This model, implemented in the R package landsepi, facilitates

assessment of both epidemiological and evolutionary outcomes across simulated scenar-

ios. In this work, the model is used to investigate the combination of different sources of

resistance against fungal diseases such as rusts of cereal crops.

Introduction

The deployment of resistant cultivars in agricultural landscapes aims to reduce the ability of

plant pathogens to cause disease on crops. However, the durability of plant resistance has often

been limited by evolutionary changes in pathogen populations [1]. Typically, there are two

main types of resistance. Although exceptions exist, qualitative (or ‘major gene’) resistance is

usually monogenic and complete, i.e. conferring full immunity [2–4]. In contrast, quantitative

resistance is mostly polygenic and partial, i.e. infection is still possible but pathogen develop-

ment is reduced to a greater or lesser extent. Consequently, quantitative resistance is often

described as affecting one or more components of pathogen aggressiveness (defined as the

quantitative ability to colonise and cause damage to the host): lower rate of infection, longer

latent period, reduced propagule production, shorter infectious period or lower toxin produc-

tion [5–8].

Regardless of the source of resistance, pathogens have the potential to evolve infectivity

(defined as the qualitative ability to infect the host) and aggressiveness in response to the selec-

tion posed by plant resistance [4, 9]. This adaptation of pathogens at the population level is

generally driven by mutations from non-adapted pathogen genotypes, changes in frequencies

of pre-existing adapted genotypes, or introductions via migration from distant areas [9–11].

Emergence of novel pathotypes can result in the breakdown of qualitative resistance or the ero-

sion of quantitative resistance, and consequently restoration of the infectivity or aggressiveness

of pathogen population. The economic costs induced by pathogen adaptation may be huge,

due firstly to the yield losses directly associated with an epidemic, and secondly because of the

significant research and breeding efforts required to identify new resistance sources and

develop new resistant cultivars [12]. Several deployment strategies have been proposed to

improve the cost-effectiveness of plant resistance and prevent the frequently documented

breakdown of major genes after their uniform deployment over large areas [3, 4, 9, 13, 14].

These strategies rely on the use of quantitative resistance, which is thought to be more durable

because it poses smaller selection pressure on pathogen populations [1], or on the manage-

ment of host genetic diversity [15–17]. This diversity can be introduced in time through crop
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rotations (e.g. recurring succession of different crops in the same field [18]). In space, different

crops can be combined in the same field in cultivar mixtures [19, 20] or in different fields of

the landscape as mosaics [3, 17]. Finally, several resistance sources can be stacked in the same

cultivar through pyramiding [21, 22].

Few empirical studies have directly compared the performance of these different strategies,

probably owing to the difficulty of implementing landscape scale experiments in practice (but

see [23] for a comparison of all these strategies, except mosaics, using plastic tunnels). Models

are not constrained by this difficulty, but surprisingly there are currently no published models

enabling a global comparison. Indeed, most models focus on a single strategy (e.g. crop rota-

tion [24, 25]; mixtures [26–28]; pyramiding [29, 30]; mosaics [31–42]) or a combination of

strategies (e.g. mixture and pyramiding: [43]; mosaic and pyramiding: [44, 45]). Only a few

studies explicitly compare two types of strategies [46–50] and only two studies evaluated more

than two strategies [51, 52]. As a result, a comprehensive evaluation of different deployment

schemes is complicated, and currently only feasible via pairwise comparisons [53, 54]. The sit-

uation for quantitative resistance is similar, since often only one [28, 34, 41, 42, 55], two [36,

37, 56], or a combination [26, 44, 49] of pathogen aggressiveness components are targeted,

although quantitative resistance can affect several life-history traits of the pathogen. As articu-

lated above, this current gap in our ability to predict which strategy will maximise our ability

to control disease epidemics as well as pathogen evolutionary potential (or indeed whether

these goals are compatible) emphasises the need for models that can compare different deploy-

ment schemes within the same framework, using standardised assumptions.

Comparison of different resistance deployment strategies requires the use of relevant evalu-

ation criteria, which may vary depending on stakeholder objectives, and thus have an impact

on the optimal strategy [39, 45]. Most published models focused only on one criterion, like

resistance durability (i.e. the duration from initial deployment to the time when resistance is

considered to have been overcome) (e.g. [30, 37, 47, 51, 52]), or epidemiological protection

(i.e. reduction in pathogen population size and consequently in the proportion of diseased

plants) (e.g. [26, 28, 32, 34–36, 43, 49, 50]). However, no correlation seems to exist between

durability and epidemiological protection [45, 57], and those objectives can even be incompat-

ible in severe epidemic contexts [33]. It is therefore essential to develop methods to assess

deployment strategies against multiple evolutionary and epidemiological criteria [3, 17, 58].

The present study describes a demo-genetic model (i.e. it includes pathogen population

demographic dynamics and its genetic evolution) which simulates the spread of a pathogen in a

spatially explicit agricultural landscape. The model is flexible and can simulate mosaics, mix-

tures, rotation, and pyramiding of different major genes and up to four traits for quantitative

resistance, acting on different components of pathogen aggressiveness (infection rate, latent

period, infectious period, reproduction rate). Performance of resistance deployment is evaluated

using several criteria from evolutionary (e.g. durability) or epidemiological (e.g. disease severity)

perspectives. Thus, the model enables direct comparison of a range of spatio-temporal deploy-

ment strategies, but also enables investigation of the effects of landscape, epidemiological and

evolutionary parameters on the ability of a given strategy to control disease. Although the main

purpose of this paper is to provide a comprehensive description of the simulation model, we

take advantage of the generality of the model and address three specific questions of interest to

the scientific community. These questions aim to assess the potential of the combination of

qualitative and quantitative resistance, given that the former prevents disease spread but is

prone to breakdown, whereas the latter allows some disease development but to a lesser extent:

1. What is the durability of a major gene alone or combined with another source of

resistance?
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2. What is the level and speed of erosion of quantitative resistance alone or combined with a

major gene?

3. What is the severity of epidemics in the landscape when qualitative and quantitative resis-

tances are deployed alone or in combination?

The model can be parameterised to simulate various pathogen life histories. Here, we inves-

tigate the above questions in the context of rust diseases of cereal crops, caused by fungi of the

genus Puccinia which can dramatically affect crop yields worldwide [59, 60]. Over the past

decades, breeders have been engaged in an arms race against these pathogens, which exhibit

high evolutionary potential in terms of their ability to overcome resistant crop cultivars follow-

ing deployment [45, 60–63].

Models

Overview of the model

The model is stochastic, spatially explicit (the basic spatial unit is an individual field), based on

a SEIR (‘susceptible-exposed-infectious-removed’) structure with a discrete time step. It simu-

lates the spread (through clonal reproduction and dispersal) and evolution (via mutation) of a

pathogen in an agricultural landscape, across cropping seasons split by host harvests which

represent potential bottlenecks to the pathogen. The model is based on the model described in

previous articles [40, 45], but has been considerably modified and extended to enable simula-

tion of a wide array of deployment strategies: mosaics, mixtures, rotations and pyramiding of

multiple major resistance genes which affect pathogen infectivity, and up to four quantitative

resistance traits. These traits target different aggressiveness components of the pathogen, i.e.

the infection rate, the duration of the latent period and the infectious period, and the propa-

gule production rate. Initially, the pathogen is not adapted to any source of resistance and is

only present on susceptible hosts. However, through mutation, it can evolve and may acquire

infectivity genes (which leads to breakdown of major resistance genes) or increase aggres-

siveness (which leads to the erosion of the relevant quantitative resistance traits). Evolution of

a pathogen toward infectivity or increased aggressiveness on a resistant host is often penalised

by a fitness cost on susceptible hosts [2, 64–66]. Consequently, in the present model, pathogens

carrying infectivity genes may have lower infection rates (cost of infectivity) on susceptible

hosts relative to pathogens that do not carry these genes. Similarly, a gain in pathogen aggres-

siveness on quantitatively resistant hosts is penalised by decreased aggressiveness on suscepti-

ble hosts, leading to a trade-off.

The evolutionary outcome of a deployment strategy is assessed by measuring the time until

the pathogen achieves the three steps to adapt to plant resistance: (d1) first appearance of

adapted mutants, (d2) initial migration to resistant hosts and infection (also referred as

‘arrival’ or ‘introduction’ in invasion biology), and (d3) broader establishment in the resistant

host population (i.e. the point at which extinction becomes unlikely). Epidemiological out-

comes are evaluated using the Green Leaf Area (GLA) as a proxy for yield, and the area under

the disease progress curve (AUDPC) to measure disease severity.

Landscape and resistance deployment strategies

In this study, a cropping landscape is represented by both its physical structure (defined as the

spatial arrangement of field boundaries) and its genetic composition (defined by the allocation

of crop cultivars within and among individual fields).

Landscape structure. Both real and simulated landscape structures can be used as input

to the model. In this study, the landscape structure is simulated using a T-tessellation
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algorithm [67] (see S1 Fig) in order to control specific features such as number, area and shape

of the fields, as described in previous studies [40, 45].

Allocation of crop cultivars. We used an algorithm based on latent Gaussian fields to

allocate two different crop cultivars across the simulated landscapes (e.g. a susceptible and a

resistant cultivar, denoted as SC and RC, respectively). This algorithm allows control of the

proportions of each cultivar in terms of surface coverage, and their level of spatial aggregation

(Fig 1). Briefly, a random vector of values is drawn from a multivariate normal distribution

with expectation 0 and a variance-covariance matrix which depends on the pairwise distances

between the centroids of the fields. Next, the crop cultivars are allocated to different fields

Fig 1. Allocation of two cultivars in the landscape. Firstly, a landscape structure is generated using T-tessellations. Secondly, the susceptible cultivar (SC,

white) and resistant cultivar (RC, grey) are allocated to fields. Both the proportions of the surface coverage (horizontal axis: 50% in A and B, 80% in C and

D) and level of spatial aggregation (vertical axis: high in A and C, low in B and D) for each cultivar are controlled via model input parameters.

https://doi.org/10.1371/journal.pcbi.1006067.g001
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depending on whether each value drawn from the multivariate normal distribution is above or

below a threshold. The proportion of each cultivar in the landscape is controlled by the value

of this threshold. The sequential use of this algorithm allows the allocation of more than two

crop cultivars (see S2 Fig). Therefore, deployment strategies involving two sources of resis-

tance can be simulated by: (1) running the allocation algorithm once to segregate the fields

where the susceptible cultivar is grown, and (2) applying one of the following deployment

strategies to the remaining candidate fields:

1. Mosaics: two resistant cultivars (RC1 and RC2, carrying the first and the second resistance

sources, respectively) are assigned to candidate fields by re-running the allocation

algorithm;

2. Mixtures: both RC1 and RC2 are allocated to all candidate fields;

3. Rotations: RC1 and RC2 are alternatively cultivated in candidate fields, depending on the

number of cropping seasons over which a given cultivar is grown before being rotated;

4. Pyramiding: all candidate fields are populated with RC12, a resistant cultivar carrying both

resistance sources.

Using this approach, a wide range of strategies can be simulated, noting that RC1 and RC2

are not necessarily deployed in balanced proportions or at a specific level of aggregation (i.e.

these can also be varied to explore their effects). The same approach can be used to deploy

more than two resistance sources. Alternatively, any crop allocation model (e.g. [68]) could be

used to provide a more realistic landscape composition.

Host-pathogen genetic interaction

All model parameters and values used in the simulations are listed in Table 1 (see S1 Text for

details on model parameterisation to rust pathogens).

Host genotype. A host genotype (indexed by v) is represented by a set of binary variables,

indicating the resistances it carries, denoted as mgg (g = 1,. . .,G) for major genes and qrw

(w = e,γ,r,Y, see also below) for quantitative resistance traits against the main components of

pathogen aggressiveness.

Pathogen genotype. A pathogen genotype (indexed by p) is represented by a set of binary

variables indicating whether it carries infectivity genes (variables igg) and four discrete vari-

ables giving the level of aggressiveness for each life-history trait (variables agw). All of these

infectivity genes and aggressiveness components are assumed to evolve independently from

each other.

Infectivity matrix. The interaction between potential major host resistance genes and

associated pathogen infectivity genes is represented by a multiplicative factor of the infection

rate of the pathogen. Thus, for major gene g, the possible interactions are summarised in an

infectivity matrix (denoted as INFg, Table 2).

In the infectivity matrix, ρg is the efficiency of major resistance gene g on a non-adapted

pathogen (ρg = 1 for a typical qualitative resistance gene conferring immunity [69], but ρg < 1

if a major gene is only partially expressed [3]), and θg is the cost of infectivity paid by an

adapted pathogen on a susceptible host (θg = 0 means absence of cost of infectivity, θg = 1

means loss of infectivity on the susceptible cultivar).

Aggressiveness matrix. As for the infectivity matrices, the four potential traits for quanti-

tative resistance (in the host) and the associated components for aggressiveness (in the patho-

gen) lead to four similar aggressiveness matrices (denoted as AGGw for component w,
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Table 1. Summary of the parameters used in the model and values for rust pathogens.

Notation Parameter Value(s) for rust pathogens used in the

simulations a

Simulation parameters

Y Number of simulated years 50 years

T Number of time steps in a cropping season 120 days.year-1

J Number of fields in the landscape {155; 154; 152; 153; 156} b

V Number of host cultivars 2

Initial conditions and seasonality

C0
v Plantation host density of cultivar v 0.1 m-2 c

Cmax
v Maximal host density of cultivar v 2 m-2 c

δv Host growth rate of cultivar v 0.1 day-1 c

ϕ Initial probability of infection 5.10−4

λ Off-season survival probability 10−4

Pathogen aggressiveness components

emax Maximal expected infection rate 0.40 spore-1

γmin Minimal expected latent period duration 10 days

γvar Variance of the latent period duration 9 days

Ymax Maximal expected infectious period duration 24 days

Yvar Variance of the infectious period duration 105 days

rmax Maximal expected propagule production rate 3.125 spores.day-1

Pathogen dispersal

g(.) Dispersal kernel Power-law function d

a Scale parameter 40

b Width of the tail 7

π(.) Contamination function Sigmoid curve

κ Related to position of the inflexion point 5.33 e

σ Related to position of the inflexion point 3 e

Host-pathogen genetic interaction

G Total number of major genes {1; 2}

τg Mutation probability for infectivity gene g f 10−4 g

τw Mutation probability for aggressiveness

component w f
10−4 g

Qw Number of pathotypes relative to aggressiveness

component w

6 g

ρg Efficiency of major gene g 1.0 g

ρw Efficiency of quantitative trait w 0.5 g

θg Cost of infectivity of infective gene g 0.5 g

θw Cost of aggressiveness for component w 0.5 g

βw Trade-off strength for aggressiveness component w 1.0 g

a model parameterisation is detailed in S1 Text.
b values for the five landscape structures.
c same value for all cultivars (no cost of resistance).

d g kz0 � zkð Þ ¼
ðb� 2Þðb� 1Þ

2:p:a2 : 1þ
kz0 � zk

a

� �� b
with kz0 − zk the Euclidian distance between locations z and z’ in fields i and

i’, respectively; the mean dispersal distance is given by: 2a
ðb� 3Þ
¼ 20 m.

e the position of the inflexion point of the sigmoid curve is given by the relation x0 ¼ ððs � 1Þ=ksÞ
1=s � 0:5

f probability for a propagule to change its infectivity or its aggressiveness on a resistant cultivar carrying major gene g

or quantitative resistance trait w.
g same value for all major genes, quantitative resistance traits, infectivity genes and aggressiveness components.

https://doi.org/10.1371/journal.pcbi.1006067.t001
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Table 3). These matrices summarise the multiplicative effect of this interaction on the infection

rate of the pathogen (w = e), the duration of the infectious period (w = Y) and the propagule

production rate (w = r), or the divisor effect on the duration of the latent period (w = γ).

Here, ρw is the efficiency of quantitative resistance with respect to aggressiveness compo-

nent w for a non-adapted pathogen, θw the aggressiveness cost paid by adapted pathogens on

susceptible hosts, and Qw the number of possible pathotypes (thus, quantitative resistance trait

w is completely eroded in Qw-1 steps). For non-adapted pathogens, every gain in aggres-

siveness on resistant hosts is penalised by a cost on susceptible hosts, according to the relation-

ship [70]:

cost ¼ 1 � 1 � gain
1

bw

� �bw
ð1Þ

with βw the strength of the trade-off for aggressiveness component w (Fig 2). βw<1 means a

weak trade-off (gain higher than cost), βw>1 means a strong trade-off (gain lower than cost)

and βw = 1 represents a linear trade-off (gain equals cost). Thus, the aggressiveness associated

with a pathogen genotype can be described by: (1 − ρw) + gain × ρw on resistant hosts; and by:

1 − cost × θw on susceptible hosts.

Note, there are Qw different pathotypes relative to aggressiveness component w, whereas

there are only two pathotypes relative to each of the major infectivity genes. Thus the total

number of pathogen genotypes is P = 2G × ∏w = e,γ,Y,r Qw. It is also noteworthy that the infectiv-

ity matrix (Table 2) shown here is a specific case of the more general aggressiveness matrix

(Table 3 with Qw = 2).

Host and pathogen demo-genetic dynamics

The demo-genetic dynamics of the host-pathogen interaction are based on a SEIR structure.

However, to avoid any confusion with the ‘susceptible’ cultivar, we have labelled this structure

HLIR for ‘healthy-latent-infectious-removed’. Thus, in the following, Hi,v,t, Li,v,p,t, Ii,v,p,t, Ri,v,p,t,

and Pri,p,t respectively denote the number of healthy, latent, infectious and removed indivi-

duals (in this model, an ‘individual’ is a given amount of plant tissue, and is referred to as a

‘host’ hereafter for simplicity), and pathogen propagules, in field i (i = 1,. . .,J), for cultivar v

(v = 1,. . .,V), pathogen genotype p (p = 1,. . .,P) at time step t (t = 1,. . .,TxY). T is the number

of time steps in a cropping season and Y the number of simulated years (i.e. cropping seasons).

Since the host is cultivated, we assume there is no host reproduction, dispersal or natural

Table 2. Infectivity matrix.

Infectivity matrix for major gene g (INFg) Host genotype v

Susceptible (SC) mgg(v) = 0 Resistant (RC) mgg(v) = 1

Pathogen genotype p Non-infective igg(p) = 0 1 1 –ρg

Infective igg(p) = 1 1 - θg 1

https://doi.org/10.1371/journal.pcbi.1006067.t002

Table 3. Aggressiveness matrix.

Aggressiveness matrix for component w (AGGw) Host genotype v

Susceptible (SC) qrw(v) = 0 Resistant (RC) qrw(v) = 1

Pathogen genotype p Non-aggressive agw(p) = 1 1 1 - ρw

. . . . . . . . .

. . . . . . . . .

Fully aggressive agw(p) = Qw 1 - θw 1

https://doi.org/10.1371/journal.pcbi.1006067.t003
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mortality (leaf senescence near the end of the cropping season is considered as part of host har-

vest). Fig 3 gives a schematic representation of the model structure.

Host growth. Only healthy hosts (denoted as Hi,v,t) are assumed to contribute to growth

of the crop (note, the model is flexible enough to relax this assumption; see Discussion). Thus,

at each step t during a cropping season, the plant cover of cultivar v in field i increases as a

Fig 2. Trade-off relationship. Levels of pathogen aggressiveness on resistant (RC) and susceptible (SC) cultivars are

linked by a linear (solid curve, β = 1), a strong (dashed curve, β = 1.5 in this example), or a weak (dotted curve, β = 0.5)

trade-off. The blue vertical line is related to resistance efficiency (ρw = 0.9) and the red horizontal line is related to the

cost of aggressiveness (θw = 0.7).

https://doi.org/10.1371/journal.pcbi.1006067.g002

Fig 3. Architecture of the simulation model. Healthy hosts can be contaminated by propagules and may become infected. Following a latent period, infectious

hosts start producing new propagules which may mutate and disperse across the landscape. At the end of the infectious period, infected hosts become

epidemiologically inactive. Qualitative resistance usually prevents transition to the infected state, whereas quantitative resistance can affect several steps of the

epidemic cycle but does not completely prevent infection. Green boxes indicate healthy hosts which contribute to crop yield and host growth, in contrast to

diseased plants (i.e. symptomatic, red boxes) or those with latent infections (dark blue box).

https://doi.org/10.1371/journal.pcbi.1006067.g003
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logistic function, and the new amount of healthy plant tissue is:

Hi;v;tþ1 ¼ Hi;v;t 1þ dv � 1 �
Ni;v;t

Ki;v

 !" #

ð2Þ

with δv the growth rate of cultivar v (possibly, although not necessarily, lower for resistant cul-

tivars due to fitness costs of resistance [71]); Ni;v;t ¼ Hi;v;t þ
PP

p¼1
fLi;v;p;t þ Ii;v;p;t þ Ri;v;p;tg the

total number of hosts in field i for cultivar v and at time t; and Ki;v ¼ Ai � Cmax
v the carrying

capacity of cultivar v in field i, which depends on Ai, the area of the field, and Cmax
v , the maxi-

mal density for cultivar v. Note that when a mixture of several cultivars is present in the same

field, decreased growth due to susceptible plants being diseased is not compensated by

increased growth of resistant plants.

Contamination of healthy hosts. The healthy compartment (H) is composed of hosts

which are free of pathogen propagules (H1), as well as hosts contaminated (but not yet

infected) by the arrival of such propagules (H2). At the beginning of each step, all healthy hosts

are considered free of propagules (H1). Then, as described in a previous modelling study [42],

at time t in field i and for cultivar v, the number of contaminable hosts (i.e. accessible to patho-

gen propagules, denoted as Hcontaminable
i;v;t ) depends on the proportion of healthy hosts (H1

i;v;t) in

the host population (Ni,v,t):

Hcontaminable
i;v;t � Binomial H1

i;v;t; p
H1

i;v;t

Ni;v;t

 ! !

ð3Þ

with p xð Þ ¼ 1� e� k:xs

1� e� k , a sigmoid function with π(0) = 0 and π(1) = 1, giving the probability for a

healthy host to be contaminated. Here, we assume that healthy hosts are not equally likely to

be contacted by propagules, for instance because of plant architecture. Moreover, as the local

severity of disease increases, eventually the probability for a single propagule to contaminate a

healthy host declines due to the decreased availability of host tissue.

Following the arrival of propagules of pathogen genotype p in field i at time t (denoted as

Pr4
i;p;t, see below), susceptible hosts become contaminated. The pathogen genotypes of these

propagules are distributed among contaminable hosts according to their proportional repre-

sentation in the total pool of propagules. Thus, for cultivar v, the vector describing the maxi-

mum number of contaminated hosts by each pathogen genotype (denoted as ½HmaxConta
i;v;t �p¼1;...;P)

is given by a multinomial draw:

½HmaxConta
i;v;t �p¼1;...;P � Multinomial Hcontaminable

i;v;t ;
Pr4

i;p;t
PP

p¼1
Pr4

i;p;t

" #

p¼1;...;P

0

@

1

A ð4Þ

However, the number of deposited propagules (Pr4
i;p;t) may be smaller than the maximal

number of contaminated hosts (HmaxConta
i;v;p;t ). Thus, the true number of hosts of cultivar v, con-

taminated by pathogen genotype p in field i at t (denoted as H2
i;v;p;t) is given by:

½H1

i;v;t ! H2

i;v;p;t� ¼ minðHmaxConta
i;v;p;t ; Pr4

i;p;tÞ ð5Þ

Infection. Between t and t+1, in field i, contaminated hosts (H2
i;v;p;t) become infected (state

L) with probability ev,p, which depends on the maximum expected infection efficiency, emax,

Assessing the performance of resistance deployment strategies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006067 April 12, 2018 10 / 33

https://doi.org/10.1371/journal.pcbi.1006067


and the interaction between host (v) and pathogen (p) genotypes:

½H2

i;v;p;t ! Li;v;p;tþ1� � BinomialðH2

i;v;p;t; ; ev;pÞ ð6Þ

ev;p ¼ emax � AGG
e
ageðpÞ;qreðvÞ

�
QG

g¼1
INFgigg ðpÞ;mgg ðvÞ ð7Þ

Latent period. Infected hosts become infectious (state I) after a latent period (LI) drawn

from a Gamma distribution (a flexible continuous distribution from which durations in the

interval [0; +1[ can be drawn) parameterised with an expected value, γexp v,p, and variance,

γvar. The expected duration of the latent period depends on the minimal expected duration,

γmin, and the interaction between host (v) and pathogen (p) genotypes:

ðLIÞv;p � Gammaðgexpv;p ; gvarÞ ð8Þ

gexpv;p ¼
gmin

AGGg

aggðpÞ;qrgðvÞ
ð9Þ

Note, the usual shape and scale parameters of a Gamma distribution, β1 and β2, can be cal-

culated from the expectation and variance, exp and var, with: b1 ¼
exp2

var and b2 ¼
var
exp,

respectively.

Infectious period. Finally, infectious hosts become epidemiologically inactive (i.e. they no

longer produce propagules, thus are in state R, ‘removed’) after an infectious period (IR)

drawn from a Gamma distribution parameterised with expected value, Yexp v,p and variance,

Yvar, similar to the latent period. The expected duration of the infectious period depends on

the maximal expected duration, Ymax, and the interaction between host (v) and pathogen (p)

genotypes:

ðIRÞv;p � GammaðY expv;p;YvarÞ ð10Þ

Yexpv;p ¼ Ymax � AGG
Y
agY ðpÞ;qrY ðvÞ

ð11Þ

Pathogen reproduction. In field i at time t, infectious hosts associated with pathogen

genotype p produce a total number of propagules (denoted as Pr1
i;p;t), drawn from a Poisson

distribution whose expectation, rexp v,p, depends on the maximal expected number of propa-

gules produced by a single infectious host per time step, rmax, and the interaction between host

(v) and pathogen (p) genotypes:

Pr1

i;p;t � Poissonð
PV

v¼1
rexpv;pÞ ð12Þ

rexpv;p ¼ rmax � AGG
r
agrðpÞ;qrrðvÞ

� Ii;v;p;t ð13Þ

Pathogen mutation. The following algorithm is repeated independently for every poten-

tial infectivity gene g:

1. the pathotype (i.e. the level of adaptation with regard to major gene g, indexed by q;

q = 1,. . .,Qg; with Qg = 2 since the pathotype is either infective, or non-infective) of the

pathogen propagules is retrieved from their genotype p;
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2. propagules can mutate from pathotype q to pathotype q’ with probability mg
qq0 such as

mg
qq0 ¼ tg if q’6¼q (hence mg

qq ¼ 1 � tg since Qg = 2). Thus, in field i at time t, the vector of

the number of propagules of each pathotype arising from pathotype q (denoted as

½Mg
i;q;q0 ;t�q0¼1;...;Qg

) is given by a multinomial draw:

½Mg
i;q;q0;t�q0¼1;...;Qg

� Multinomial ðPr1

i;p;t; ½m
g
qq0 �q0¼1;...;Qg

Þ ð14Þ

3. the total number of propagules belonging to pathotype q’ and produced in field i at time t

(denoted as Pr2
i;q0 ;t) is:

Pr2

i;q0 ;t ¼
PQg

q¼1M
g
i;q;q0 ;t ð15Þ

4. the new propagule genotype p’ is retrieved from its new pathotype (q’), and the number of

propagules is incremented using a variable denoted as Pr3
i;p0;t .

The same algorithm is also repeated independently for every potential aggressiveness com-

ponent w. In this case, τg is replaced by τw and Qg by Qw. In addition, pathogen evolution is

assumed to be stepwise, i.e. in a single step, a given pathotype can only mutate to a closely

related pathotype (with regard to aggressiveness component w). Thus, we have mw
qðq� 1Þ

¼

mw
qðqþ1Þ

¼ tw=2
and mw

qq ¼ 1 � tw. The exceptions are pathotypes fully adapted to either the sus-

ceptible host or the resistant host. These mutate towards less specialised pathotypes with a

probability of τw to ensure their overall mutation probability is equivalent to that of other

genotypes. In this model, it should be noted that the mutation probability τg (or τw) is not the

classic ‘mutation rate’ (i.e. the number of genetic mutations per generation per base pair), but

the probability for a propagule to change its infectivity (or aggressiveness) on a resistant culti-

var carrying major gene g (or quantitative resistance trait w). This probability depends on the

classic mutation rate, the number and nature of the specific genetic mutations required to

overcome major gene g (or improve aggressiveness component w), and the potential depen-

dency between these mutations.

Pathogen dispersal. Propagules can migrate from field i (whose area is Ai) to field i’

(whose area is Ai’) with probability μii’, computed from:

mii0 ¼

R

Ai

R

Ai0
gðkz0 � zkÞdzdz0

Ai
ð16Þ

with kz0 − zk the Euclidian distance between locations z and z’ in fields i and i’, respectively,

and g(.) the two-dimensional dispersal kernel of the propagules. The computation of this prob-

ability is performed using the CaliFloPP algorithm [72]. Thus, at time t, the vector of the num-

ber of propagules of genotype p migrating from field i to each field i’ (denoted as ½Di;i0 ;p;t�i0¼1;...;J)

is:

½Di;i0 ;p;t�i0¼1;...;J � MultinomialðPr3

i;p;t; ½mii0 �i0¼1;...;JÞ ð17Þ

and the total number of propagules arriving in field i’ at time t (denoted as Pr4
i0;p;t) is:

Pr4

i0 ;p;t ¼
PJ

i¼1
Di;i0 ;p;t ð18Þ

Assessing the performance of resistance deployment strategies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006067 April 12, 2018 12 / 33

https://doi.org/10.1371/journal.pcbi.1006067


We consider that propagules landing outside the boundaries of the simulated landscape are

lost (absorbing boundary condition), and there are no propagule sources external to the simu-

lated landscape.

Seasonality. Let t0(y) and tf(y) denote the first and last days of cropping season y

(y = 1,. . .,Y), respectively. The plant cover in field i for cultivar v at the beginning of cropping

season y is set at Hi;v;t0ðyÞ ¼ Ai � C0
v � IVðiÞ¼v, with C0

v the plantation density of cultivar v and

IVðiÞ an indicative variable set at 1 when field i is cultivated with cultivar v and 0 otherwise. At

the end of a cropping season, the host is harvested. We assume that the pathogen needs a

green bridge to survive the off-season. This green bridge could, for example, be a wild reservoir

or volunteer plants remaining in the field (e.g. owing to incomplete harvest or seedlings). The

size of this reservoir imposes a bottleneck for the pathogen population. The number of remain-

ing infected hosts in field i for cultivar v and pathogen genotype p (denoted by I�i;v;p;tf ðyÞ) at the

end of the off-season is given by:

I�i;v;p;tf ðyÞ � BinomialðLi;v;p;tf ðyÞ þ Ii;v;p;tf ðyÞ; lÞ ð19Þ

with λ the survival probability of infected hosts. Depending on host (v) and pathogen (p) geno-

types, the number of propagules produced by the remaining hosts during their whole infec-

tious period (denoted by Pr�i;p;tf ðyÞ) is drawn from a Poisson distribution:

Pr�i;p;tf ðyÞ � Poisson ð
PV

v¼1
frmax � AGG

r
agrðpÞ;qrrðvÞ

� Ymax � AGG
Y
agY ðpÞ;qrY ðvÞ

� I�i;v;p;tf ðyÞgÞ ð20Þ

These propagules can mutate and disperse exactly as happens during the cropping season,

and constitute the initial inoculum for the next cropping season.

Initial conditions. At the beginning of a simulation, healthy hosts are planted in each

field as previously described. The initial pathogen population is assumed to be totally non-

adapted to the resistance host cultivars, and is only present in susceptible fields with probabil-

ity ϕ. Then the initial number of infectious hosts in these fields is: Ii,v = 1,p = 1,t = 1 = Binomial
(Hi,v = 1,t = 1; ϕ).

The model utilises multiple criteria to enable the assessment of different deployment strate-

gies with regard to both evolutionary and epidemiological outcomes.

Evolutionary outputs

Durability of qualitative resistance. For a given major gene, several computations are

performed: (d1) time to first appearance of a pathogen mutant; (d2) time to first true infection

of a resistant host by such mutants; and (d3) time when the number of infections of resistant

hosts by these mutants reaches a threshold above which mutant pathogens are unlikely to go

extinct. These metrics characterise the three critical steps to the breakdown of qualitative resis-

tance: mutation toward infectivity, immigration (or introduction) on resistant hosts through

dispersal, and subsequent broader establishment in the resistant host population.

Erosion of quantitative resistance. Since pathogen adaptation to quantitative resistance

is gradual, the three measures described above are computed for every step towards complete

erosion of resistance (i.e. Qw-1 levels). This allows us to characterise the point in time when

quantitative resistance starts to erode, the final level of erosion, and the speed of erosion (i.e.

the percentage of erosion per time unit from the time when quantitative resistance begins to

erode).

Durability of a deployment strategy. A simulation run is divided into three periods: (1)

the initial short-term period when all resistance sources are at their highest potential; (2) a

transitory period during which a given deployment strategy is only partially effective; and (3) a
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longer-term period when all the resistances have been overcome or completely eroded. To

assess the end of the short-term period, the time to establishment (durability measure (d3))

is computed for every major gene, and every quantitative trait at the first level of erosion

(agw(p) = 2). The minimal value of these measures, denoted by D1, delimitates short-term and

transitory periods. Similarly, the time to establishment is computed for every major gene, and

for every quantitative trait at the highest level of erosion (agw(p) = Qw). The maximal value of

these measures, termed D2, delimits transitory and long-term periods. Fig 4 provides an exam-

ple of a simulation run and the delimitation of these periods.

Epidemiological outputs

The epidemiological impact of pathogen spread is evaluated by two different measures. Firstly,

we use a measure termed Green Leaf Area (GLA), based on the Healthy Area Duration initially

developed by Waggoner et al. [73]. The GLA represents the average number of productive

hosts per time step and per surface unit, and is considered as a proxy for crop yield [74]. Sec-

ondly, we use the area under the disease progress curve (AUDPC), which is the average pro-

portion of diseased hosts relative to the carrying capacity and represents disease severity [74].

We assume only heathy hosts (state H) contribute to crop production (Fig 3). Thus, for cultivar

v during year y:

GLAv;y ¼

Ptf ðyÞ
t¼t0ðyÞ

PJ
i¼1
Hi;v;t

T �
PJ

i¼1
Ai

ð21Þ

AUDPCv;y ¼

Ptf ðyÞ
t¼t0ðyÞ

PJ
i¼1

PP
p¼1
fIi;v;p;t þ Ri;v;p;tg

Ptf ðyÞ
t¼t0ðyÞ

PJ
i¼1
Ki;v

ð22Þ

Fig 4. Computation of output variables in a simulated example. Two major resistance genes are deployed as a mosaic composed of a susceptible cultivar (solid curve)

and two resistant cultivars (dotted and dashed curves) carrying the two major genes. The dynamics of the proportion of healthy (A) or diseased (B) hosts is integrated

every year into the Green Leaf Area (GLA) or the area under disease progress curve (AUDPC), respectively. The vertical blue lines mark the times to breakdown of the

first (dotted line) and the second (dashed line) major genes. These time points delimit the short-term (green zone), transitory (grey) and long-term (red) phases of

resistance breakdown.

https://doi.org/10.1371/journal.pcbi.1006067.g004
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Global epidemiological control. The GLA and AUDPC of every cultivar (GLAv and

AUDPCv) as well as the whole landscape (GLATOT and AUDPCTOT) are averaged across the

whole simulation run, to measure the global epidemiological performance of a deployment

strategy.

Short-term epidemiological control. The average GLA and AUDPC of the susceptible

cultivar is computed on whole cropping seasons from the beginning of the simulation until the

end of the season preceding D1 (see ‘Evolutionary outputs’ for the computation of D1 and D2),

and denoted as GLAST and AUDPCST, respectively (Fig 4, green zone). These outputs cannot

be computed if a resistance is overcome or starts to erode before the end of the first cropping

season.

Epidemiological control during the transitory period. The average GLA and AUDPC of

the susceptible cultivar is computed on whole seasons from the beginning of the season follow-

ing D1 to the end of the season preceding D2, and denoted as GLATP and AUDPCTP, respec-

tively (Fig 4, grey zone). These outputs cannot be computed if there is not at least one

complete season between D1 and D2.

Long-term epidemiological control. The average GLA and AUDPC of the whole land-

scape is computed on whole seasons from the beginning of the season following D2 to the end

of the simulation, and denoted as GLALT and AUDPCLT, respectively (Fig 4, red zone). These

outputs cannot be computed if at least one of the resistances is not overcome or completely

eroded by the end of the simulation.

Application case: Durability and efficiency of combinations of different

resistance sources

In this section, ten scenarios are simulated using the model to assess the evolutionary and epi-

demiological outcomes of deploying different pyramided combinations of qualitative and

quantitative resistances. In this context, the model was parameterised to approximate bio-

trophic foliar fungal diseases as typified by rusts of cereal crops, caused by fungi of the genus

Puccinia.

Model parameterisation for rust diseases. Within these pathosystems, propagules (called

‘spores’) are produced by sporulating lesions which develop on the leaves of infected hosts

after a latent period of a few days, following which they are dispersed by wind. Thus, in this

case, an ‘individual host’ in the model can be considered as a foliar site where a spore can land

and potentially trigger the development of a localised infection. The parameter values associ-

ated with pathogen aggressiveness components (infection rate, latent period duration, sporula-

tion duration, sporulation rate) were estimated using available data from the literature [29, 30,

33, 37, 39–42, 45, 50, 55, 56, 60, 65, 75–116]; other parameters were arbitrarily fixed (see

Table 1 for parameter values and S1 Text for details). In addition, the time step was set at one

day and simulations were run over 50 cropping seasons of 120 days per year. Given this para-

meterisation, the threshold for mutant pathogen establishment (and thus resistance break-

down) was set at 50,000 infections. Above this threshold, the probability of extinction of a

pathogen genotype is below 1% (see S2 Text for details of how the threshold was calculated).

Simulated scenarios. A set of five landscape structures of about 150 fields within a total

area of 2x2 km2 was generated (see S1 Fig). Areas of the simulated fields ranged from 0.36 to

5.38 ha (mean: 2.60 ha). Of these fields, 80% were cultivated with a resistant cultivar, and the

remaining 20% with a susceptible cultivar, with a low level of spatial aggregation (landscape

typified by Fig 1D). In the first five simulated scenarios, the resistant cultivar carried a single

resistance source: either a major gene (conferring complete immunity against non-infective

pathogens, ρg = 1, as typically described in gene-for-gene scenarios for many rusts [62]), or
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one of the four traits for quantitative resistance (against infection rate, latent period duration,

sporulation rate, or sporulation duration). The efficiency of quantitative resistance traits was

set at ρw = 0.5, meaning that infection rate, sporulation rate or the duration of the sporulation

period of non-aggressive pathogens on resistant hosts was reduced by 50%. Similarly, the latent

period duration was increased in such a way that the number of epidemic cycles of a non-

aggressive pathogen in a cropping season was reduced by 50% on resistant hosts. In the next

five scenarios, the previous resistance sources (a major gene or one of the four quantitative

resistance traits) were combined with a major gene to represent a single pyramided cultivar. In

all scenarios, the mutation probabilities were set at τg = τw = 10−4 in such way that a cultivar

carrying a single major gene would be overcome in less than one year. Each scenario was simu-

lated ten times on all five landscape structures, resulting in 50 replicates per scenario, and a

total of 500 simulations.

The model is written using the C and R languages, and is available via the R package land-

sepi (v0.0.2, [117]). Within the R software (v3.4.0, [118]) landscape structures were generated

using the package RLiTe (http://kien-kieu.github.io/lite/rlite.html). The cultivar allocation

algorithm used positive definite matrices generated with the Exponential function of the pack-

age fields (v8.10, [119]) and the nearPD function of the package Matrix (v1.2–11, [120]). The

CaliFloPP algorithm was performed using the package RCALI (v0.2–18, [72]). Depending on

the number of resistance sources, one simulation run takes 60 to 180 seconds on a standard

desktop computer (2 cores, 2.30 GHz). Simulation results are available in supporting informa-

tion (S1 File).

Results

Several different scenarios were simulated to investigate three specific questions relative to the

evolutionary and epidemiological outcomes of deploying combinations of qualitative and

quantitative resistances against rust diseases of cereal crops. In this context, we varied land-

scape structure (i.e. spatial arrangement of field boundaries, see S1 Fig) but not its composition

(i.e. proportion and spatial aggregation of the resistant cultivar). Landscape structure was

never significant, thus in what follows we consider that every scenario was replicated 50 times.

What is the durability of a major gene alone or combined with another

source of resistance?

To assess the durability of a single major gene, the time period from the beginning of the simu-

lation to appearance of mutants able to overcome the major gene (d1), first infection of the

resistant cultivar (d2), and broader establishment on the resistant cultivar (d3) were used.

Under the simulated conditions, mutants always appeared, dispersed across the landscape and

established on a resistant cultivar carrying one major gene in less than one year (Fig 5A,

‘MG1’). When the resistant cultivar carried a second major gene (i.e. as a pyramid with two

major genes), the first infection of a resistant host was delayed to 8.3 years (90% central range,

CR90: 0.4–23.4) on average, and the pathogen population was not established before, on aver-

age, 20.7 years (CR90: 0.9–50.0) (Fig 5A, ‘MG2’).

In contrast, when a major gene was combined with a quantitative resistance with a 50% effi-

ciency, the breakdown of the major gene was nearly as quick as if the major gene was alone,

regardless of the pathogen life-history trait targeted by the quantitative resistance (Fig 5A, col-

umn 3 to 6, and inset). This conclusion is consistent with the results of an experimental study

on pepper resistance against root-knot nematode [121], but differs from those of other studies

carried out on different pathosystems, showing that a quantitative resistant background can

significantly increase the durability of a cultivar carrying a major gene for resistance [122–
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124]. In order to test if this difference could be due to our assumption that quantitative resis-

tance has a 50% efficiency, we replicated the numerical experiment with higher efficiencies

(ρw = 60%, 70%, 80%, 90%). The results of these new simulations indicated that when quan-

titative resistance efficiency is higher than 80%, durability of the major gene is improved in

combination with quantitative resistance, especially if latent period is targeted (time to estab-

lishment delayed to 5.2 years, CR90: 1.7–10.8, see S3A Fig). Furthermore, above 90% efficiency,

quantitative resistance can increase the durability of the major gene compared to pyramiding

of two major genes (average time to establishment between 11.0 and 30.9 years depending on

the targeted trait, Fig 5B).

What is the level and speed of erosion of quantitative resistance alone or

combined with a major gene?

When deployed alone, quantitative resistance was on average eroded by 26.4% (CR90: 20–40),

20.8% (CR90: 0–40), 22.0% (CR90: 0–40), and 19.2% (CR90: 0–40) by the end of the simulation,

for resistances targeting respectively infection rate, duration of the latent period, sporulation

rate and duration of the sporulation period (Fig 6). The associated average speeds of erosion

were 2.16, 0.78, 1.44 and 1.02% per year, respectively. The targeted pathogen life-history trait

appeared to have a significant effect on the final level (Kruskal Wallis χ2 tests with 3 degrees of

freedom, p = 8.10−9) and speed (p = 6.10−5) of resistance erosion. The combination with a

major gene significantly affected the final level (Kruskal Wallis χ2 test with 1 df, p = 8.10−3),

but not the speed (p = 0.85) of erosion.

It is important to remember that the speed of erosion was computed from the time point

when quantitative resistance started to erode (hence, following breakdown of the major gene)

and not from the beginning of simulations. Assessing the average speed of erosion from the

beginning of the simulations would greatly impact the results if the major gene was durable for

several years. As previously described, this is not the case with a 50% efficiency of quantitative

Fig 5. Evolutionary outcomes for Puccinia rusts after 50 years: Durability of the major gene. Time to appearance of mutants carrying the associated infectivity gene

(white segment of bars), to first infection (light grey) or to establish (dark grey) on resistant hosts. The resistant cultivar carries a single major gene (MG1, efficiency ρ1 =

100%), a combination of two major genes (MG2, efficiency ρ2 = 100%) or the single major gene is combined with one of several quantitative resistance traits (columns 3

to 6, efficiency ρw = 50% in A and ρw = 90% in B). Inset: enlargement of scenarios showing short durability. Every scenario is replicated 50 times. Vertical bars represent

the 90% central range (represented in grey for the time to first infection, for legibility).

https://doi.org/10.1371/journal.pcbi.1006067.g005
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resistance. However, with a 90% efficiency, the average speed of erosion of quantitative resis-

tance from the beginning of the simulation was 2.5 to 3.0% per year when deployed alone, and

only 0.7 to 1.7% per year when combined with a major gene. In this context, the combination

of quantitative resistance with a major gene significantly delayed the start of quantitative resis-

tance erosion (Kruskal Wallis χ2 test with 1 df, p<10−15).

What is the severity of epidemics when qualitative and quantitative

resistances are deployed alone or in combination?

The AUDPC of the susceptible cultivar (AUDPCSC), the resistant cultivar (AUDPCRC) and

across the entire cropping landscape (AUDPCTOT) averaged across the whole simulation

period were used as indicators of the severity of epidemics in the simulated scenarios (see S4

Fig for examples). As expected, regardless of the cultivar or the deployment scenario, disease

severity in a landscape where a resistant cultivar is deployed was lower than in a fully suscepti-

ble landscape (dashed line in Fig 7).

When only a single resistance source was incorporated into the resistant cultivar, the most

effective source was quantitative resistance against duration of the latent period (AUDPCRC =

0.25), followed by quantitative resistance against infection rate, sporulation rate and duration

of the sporulation period (AUDPCRC = 0.32, 0.33 and 0.34, respectively), and finally major

gene resistance (AUDPCRC = 0.37). When a major gene was combined with one of these

Fig 6. Evolutionary outcomes for Puccinia rusts after 50 years: Final level of erosion of quantitative resistance

traits. Quantitative resistance (efficiency ρw = 50%) is deployed alone (top row) or in combination with a major

resistance gene (bottom row). The red shading indicates the average speed of erosion from the time when quantitative

erosion starts to erode to the time when the final level of erosion is reached, with darker shades representing faster

erosion rates. Lower case letters indicate statistically different groups for final level (black) and speed (white) of

erosion, according to pairwise comparison tests (Dunn’s test with Holm correction). Every scenario is replicated 50

times. Vertical bars represent the 90% central range.

https://doi.org/10.1371/journal.pcbi.1006067.g006
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resistance sources, the combination of two major genes became the most efficient strategy

(AUDPCRC = 0.22) but also the most variable (CR90: 0.00–0.37). Below this, were combina-

tions including quantitative resistance traits in the same order as above and with similar effi-

ciencies (AUDPCRC = 0.24, 0.31, 0.32, and 0.33 against latent period, infection rate,

sporulation rate and sporulation duration, respectively).

For the susceptible cultivar, disease severity was less variable between scenarios than for the

resistant cultivar. The average AUDPCSC was 0.33, 0.37, 0.37, 0.36 and 0.36, respectively when

a major gene or a quantitative resistance trait against infection rate, latent period, sporulation

rate or duration of the sporulation period was deployed alone. However, when a major gene

was combined with these sources, AUDPCSC was smaller (0.28, 0.30, 0.29, 0.29 and 0.30,

respectively).

Globally, across the whole landscape, disease severity (AUDPCTOT), was very similar to lev-

els of disease severity seen in the resistant cultivar (AUDPCRC), since this cultivar constituted

a high proportion of the area being cropped (80%, see Fig 1D for an example). The global

severity of disease could also be assessed using the GLA (focusing on healthy hosts) instead of

the AUDPC (focusing on diseased hosts). In our context, GLATOT was highly negatively corre-

lated with AUDPCTOT (Pearson correlation coefficient of -0.92, p<10−15).

Fig 7. Epidemiological outcomes for Puccinia rusts after 50 years. Average area under disease progress curve

(AUDPC) for a susceptible (white bars) and a resistant (dark grey bars, cropping ratio: 80%) cultivar, as well as for the

whole landscape (light grey bars). The top row represents situations where the resistant cultivar carries a single major

gene (MG, efficiency ρ1 = 100%) or a single quantitative resistance trait (columns 2 to 5, efficiency ρw = 50%). The

bottom row shows results when a major resistance gene was added to each of the single resistance scenarios (e.g. the

leftmost set of bars on the bottom row shows results for two major genes in combination; the rightmost set is when a

major gene was combined with quantitative resistance against sporulation duration). Each scenario was replicated 50

times. The horizontal dashed line represents the average AUDPC in a fully susceptible landscape. Vertical bars

represent the 90% central range.

https://doi.org/10.1371/journal.pcbi.1006067.g007
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Discussion

This article describes the first spatiotemporal model with the ability to flexibly simulate the

evolution of a plant pathogen in a cropping landscape, following the deployment of resistance

within the four main categories of deployment strategies: mosaics, mixtures, rotations and pyr-

amiding. In addition, the model includes every possible combination of different major genes

(qualitative resistance conferring immunity to the plant) and traits for quantitative resistance

against the main aggressiveness components of the pathogen (infection rate, latent period,

infectious period, and reproduction rate). Because of its flexible parameterisation and ability

to simulate an explicit landscape, the model offers the possibility to vary the number and type

of deployed resistance sources, their relative proportion in surface coverage across the land-

scape and their level of spatial (or temporal) aggregation, as well as the epidemiology and the

evolutionary potential of the pathogen. In addition, although the present study used a simu-

lated landscape in order to control particular features of the fields, the model also permits the

use of real landscapes to match more specific applied contexts. This model is implemented in

the package landsepi [117] for the statistical computing environment R. Consequently, it pro-

vides a new and useful tool to assess the performance of a wide range of deployment options.

In particular, it was used here to evaluate the combination of different sources of resistance,

and it will be used in future studies to explore different spatio-temporal deployment strategies.

With respect to criteria used to evaluate the performance of different deployment strategies,

these may vary depending on needs of different stakeholder groups (e.g. breeders and grow-

ers). Thus, the model generates a panel of outputs describing the epidemiological (i.e. the abil-

ity of different resistance sources to reduce the severity of epidemics and consequently their

impact on crops) and the evolutionary (relative to the durability of these resistance sources)

outcomes of a given deployment strategy.

Owing to similar epidemiological and evolutionary concepts, there are interesting parallels

between the deployment of plant resistance to pathogens and the application of pesticides (for

plants) or vaccines (for animals, including humans). Indeed, the proportion of resistant fields in

our study is equivalent to the proportion of fields treated with a pesticide [29] or the proportion

of vaccinated individuals in an animal population [125]. The efficiency of plant resistance is

similar to pesticide dose [46], and the type of resistance may be compared to the type of pesti-

cide or vaccine. For instance, quantitative resistance traits against pathogen infection rate, latent

period and sporulation rate are analogous to imperfect vaccines with anti-infection, anti-growth

or anti-transmission modes of action, respectively [126]. It is noteworthy that spatio-temporal

deployment strategies for plant resistance have counterparts in the application of pesticides.

Thus, mosaics of different resistant crops are analogous to mosaics of fields treated with differ-

ent pesticides, rotations of resistant crops to periodic application of different pesticides, and

crop mixtures and pyramids of resistance genes to combinations of pesticide molecules [53, 54].

The model is flexible enough to facilitate investigation of a wide range of host-pathogen sys-

tems. Although our application case focused on biotrophic rust fungi of cereal crops, other

pathogens transmitted by wind, rain or vector insects (e.g. many fungi, bacteria and viruses),

can be simulated by modifying in particular the dispersal kernel and the value of parameters

associated with pathogen aggressiveness components (see for example how to parameterise the

model to necrotrophic fungal pathogens in S1 Text). Nevertheless, some fixed features of the

model (e.g. clonal reproduction of the pathogen) may need to be modified if sexual reproduc-

tion (or recombination for viruses) significantly contribute to pathogen genetic diversity and

dynamics. In addition, modelling vector-borne bacteria and viruses transmitted in a persistent

manner may require incorporation of vector dynamics and behaviour into the model frame-

work. Future work on the model is planned to address some of these current limitations.
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A spatially explicit stochastic model of pathogen evolution

Three main properties distinguish models simulating the deployment of resistance and the

interpretation of their results: whether they are demographic or demo-genetic, whether they

are deterministic or stochastic, and whether they are spatial or not.

In contrast with purely demographic models, our model includes the genetic evolution of

the pathogen in addition to pathogen population dynamics and host growth during a cropping

season. This enables the explicit simulation of the appearance of new genotypes through muta-

tion [29, 30, 46, 48], which represents the first step towards resistance breakdown or erosion

(i.e. prior to migration to and broader establishment onto resistant hosts). The time required

for the achievement of this first step can be the main determinant of the durability of some

deployment strategies, like pyramiding [51]. This step is thus essential to comprehensively

assess the relative performance of different deployment strategies.

We further note that the present model is stochastic, i.e. it relies on probabilistic computa-

tions of simulated biological processes. It is consequently well able to account for biologically

realistic random events [127]. As illustrated by Lo Iacono et al. [35], who used a stochastic ver-

sion of the model developed by van den Bosch et al. [39], the likelihood of extinction events in

pathogen populations can considerably impact the performance of a deployment strategy.

Finally, because our model is able to simulate explicit landscapes, it accounts for spatial het-

erogeneity, which affects landscape connectivity and consequently the ability of the pathogen

to disperse. Pathogen dispersal, in addition to being one of the unavoidable steps of adaptation

to plant resistance, strongly shapes pathogen evolutionary dynamics [12, 41, 128]. Moreover,

the spatial nature of this model enables a wide range of deployment options to be considered

at different spatial scales, particularly given the possibility to vary deployment parameters like

the proportion of the landscape across which resistant cultivars are planted [32, 51], as well as

the level of spatial aggregation [28, 45, 48, 49, 129, 130].

Computation of epidemiological and evolutionary outputs

Resistance durability (i.e. the period of time from initial deployment of a resistant cultivar to

when resistance is considered to have been overcome) is a typical evolutionary target of resis-

tance deployment strategies, but its computation in a model is not obvious. Proposed methods

include targeting the point in time when the first adapted pathogens appear [29, 30, 39], when

their prevalence [37, 48, 55, 131] or frequency in pathogen population [39, 51, 52] exceeds a

threshold, or when productivity of the resistant cultivar drops below an arbitrary threshold

[45].

Since different measures give different information, the present model includes several

measures of durability: the time until first appearance of mutants, the time until first infection

of a resistant host by such mutant, and the time until the prevalence of these mutants exceeds a

threshold. The first measure assesses the ability of deployment strategies to reduce the proba-

bility of appearance of mutants by reducing pathogen population size. The difference between

the first and the second measure provides information on the potential to hinder pathogen

migration to resistant hosts, and the difference between the second and the last measure is

related to the rate of establishment on resistant cultivars as a result of the balance between

selection and genetic drift (occurring between seasons in this model). With respect to the

establishment process, it is interesting to note that different stages of invasion can be targeted

by changing the value of the threshold. Importantly, we considered that time to establishment

was best computed using a prevalence threshold (i.e. total number of resistant hosts infected

by adapted pathogens) as opposed to using a frequency-dependent threshold in the pathogen

population (i.e. the proportion of adapted pathogens in the global pathogen population). This
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is because the frequency of adapted pathogens may never (or always) exceed a threshold sim-

ply as a result of a very low (or very high) proportion of resistant hosts in the landscape relative

to susceptible hosts.

As pointed out in the introduction, evolutionary and epidemiological outcomes are not

necessarily correlated. In this context, several epidemiological outputs are used in this study to

characterise the level of protection provided by a deployment strategy against the potential

damage caused by an epidemic. Some previous studies focused on the final state of the simula-

tions or on the point at which a stable evolutionary equilibrium is reached, thus proposing cri-

teria related to the final proportion of healthy [43, 44] or infected [26, 49, 129] hosts. However,

in addition to long-term measures related to stable equilibria, short-term and transitory peri-

ods measures are important because severe epidemics responsible for heavy losses may occur

during these stages [125, 132]. These periods can be accounted for by averaging the number of

healthy hosts over the whole simulation run using an analogy of our Green Leaf Area [35–37,

40, 42, 133] or the number of infected hosts using the area under disease progress curve

(AUDPC) [28, 32, 33, 48, 50]. Interestingly, these measures offer the possibility to concentrate

on different evolutionary phases, for example the short-term period following resistance

deployment until resistance breakdown, and the long-term period once resistance is overcome

[45].

In the present study, the proposed outputs are based on both GLA and AUDPC, computed

not only for the whole simulation run to have a global snapshot of the epidemiological out-

come, but also for different time periods: from initial resistance deployment until the first

resistance is overcome, from the time when all resistances are overcome until the end of the

simulation as well as during the transitory period. The performance of various deployment

strategies can differ during these three periods, since they are associated with different epide-

miological contexts. Thus, it is important to consider these different measures together. More-

over, the objectives of different stakeholders define whether such criteria should be computed

from the AUDPC or from the GLA. Indeed, if the objective is to limit the amount of disease,

the use of AUDPC-based variables may be more appropriate, since they target infected hosts.

In contrast, GLA-based variables represent the amount of healthy hosts which generally repre-

sent the largest contribution to crop yield. Thus, this variable can be useful when considering

the impact of a given deployment strategy on productivity, especially when resistance costs,

different planting densities, or different host species are involved. It is interesting to note that

here, only healthy hosts were assumed to participate in host growth and contribute to final

yield, considering that the infection by a pathogen consumes host resources. For rust patho-

gens of cereal crops, this assumption seems reasonable since it has been shown that manual

defoliation of wheat leaves decreases yield less than infection by Puccinia striiformis [73]. Nev-

ertheless, this assumption can easily be changed by including hosts at different sanitary stages

(e.g. latently infected but not yet diseased) in the logistic equation of host growth and in com-

putation of the GLA.

Combining different sources of resistances

In this study, we present an initial exploration of the model where we evaluate the potential of

combining qualitative and quantitative resistance to control rust of cereal crops. We note that

in this exploration some parameters (in particular mutation probabilities, see S1 Text) were

arbitrarily fixed to study a simple and theoretical situation where a resistant cultivar carrying a

single major gene would be rapidly overcome following deployment. This is because our intent

in this case was to compare different resistance combinations rather than provide an absolute

prediction of the durability and efficiency of a particular strategy. Regardless, altering the
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mutation probabilities, as long as they are the same for all infectivity genes and aggressiveness

components, changes our results quantitatively but not qualitatively (see S1 Text and the

results of simulation performed with smaller mutation probabilities in S5 Fig).

Durability of qualitative resistance. We found greater durability of a major resistance

gene when combined with another major gene than when combined with a quantitative resis-

tance trait exhibiting moderate efficiency. The high durability of pyramided major genes is

often explained by the low probability of the pathogen simultaneously acquiring the required

mutations to infect the resistant cultivar, added to the severe fitness costs associated with these

mutations [64]. In the scenario we evaluated, it seems that this probability was not low enough

to prevent the rapid appearance of adapted mutants (Fig 5A, ‘MG2’, durability measure (d1)).

On the other hand, the great difference between durability measures (d1) and (d2) indicates

that a long time passed before these mutants were able to disperse to resistant fields and infect

a resistant host. This delay can be explained by the low probability that a spore simultaneously

mutates and disperses to a resistant field, added to the severe fitness costs imposed on mutant

pathogens in susceptible fields (note, in our simulations the infection rate of a pathogen carry-

ing two infectivity genes is reduced by 75% on susceptible hosts). Furthermore, the great dif-

ference between durability measures (d2) and (d3) suggests that many extinction events

impeded mutant establishment on the resistant cultivar, likely due to bottlenecks between

cropping seasons.

Conversely, the combination of a major resistance gene with a highly efficient source of

quantitative resistance can considerably increase the durability of the major gene. It is note-

worthy that the durability of the major gene becomes also more variable (compare the 90%

central ranges in Fig 5 and S3A Fig). This is mainly attributed to an increasing proportion of

simulations where the major gene has a very long durability or is still not overcome by the end

of the 50-year simulated period (e.g. in 42% of the simulations performed with a major gene

combined with a quantitative resistance targeting pathogen latent period; see Fig 5B ‘Latent

period’).

Durability of quantitative resistance. Our results show that the presence of a major gene

in plant genotype does not greatly affect pathogen adaptation to a moderately effective quanti-

tative resistance. However, highly effective quantitative resistance delays the breakdown of the

major gene which at the same time delays the start of quantitative resistance erosion. Once

quantitative resistance begins to erode, one would expect complete erosion over time, as

observed in experimental serial passages performed with a plant virus [134]. In our results,

quantitative resistance was not completely eroded by the end of the simulations. This was not

due to the number of simulated years, since a speed of erosion of about 2% per year should

enable complete erosion within 50 years of simulation. Moreover, it is interesting to note that

quantitative resistance was eroded by approximately 25% when the initial resistance efficiency

was 50%, and eroded by about 50% when the initial efficiency was 90% (Fig 6 and S3C Fig).

This suggests that, in our simulations, pathogen adaptation always converged towards the

same level of aggressiveness, which is likely a fitness optimum, given the fitness costs associ-

ated with pathogen adaptation, the shape of the trade-off function, and the proportion of the

resistant cultivar in the landscape.

Epidemiological outcomes for combined qualitative and quantitative resistances.

Complementing a moderately efficient quantitative resistance with a major gene seems to have

a greater effect on disease severity on the susceptible cultivar than on the resistant cultivar.

This is probably because under these conditions the major gene has a very short durability (see

above and Fig 5A), and only slightly delays the erosion of quantitative resistance (see above

and Fig 6). On the other hand, pathogen evolution towards increased infectivity and aggres-

siveness on the resistant cultivar (which is strongly favoured in our simulations since 80% of
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the landscape is grown with a resistant cultivar) triggers a stronger fitness cost on the suscepti-

ble cultivar, than for situations when only the evolution of increased aggressiveness is neces-

sary to adapt to host resistance. This results in decreased severity on the susceptible cultivar

and consequently across the whole landscape. Our results also suggest that quantitative resis-

tance against the duration of the latent period has the best potential to limit disease severity,

especially when the resistance is highly efficient (see S6B Fig). This is in agreement with previ-

ous studies [8, 93, 135], which highlighted the key role of the number of epidemic cycles within

a cropping season.

General conclusions. As expected, the combination of multiple resistance sources in a

resistant cultivar results in improved evolutionary and epidemiological outcomes relative to

the deployment of a single resistance. In addition to the greater evolutionary barrier this repre-

sents, such combinations are more likely to trigger high fitness costs for the pathogen, thus

constraining its ability to be simultaneously well adapted to different cultivars. Our simula-

tions indicate that the pyramiding of two major genes is highly durable and effective, because

this completely blocks the infection of resistant hosts by non-adapted pathogens, and requires

the simultaneous acquisition of two costly infectivity genes to be overcome. Nevertheless,

despite its partial efficiency, quantitative resistance may provide good epidemiological control

if it has a sufficiently high efficiency (see S6 Fig) and especially if it is complemented by a

major gene, which can significantly delay the time when quantitative resistance starts to erode.

In turn, quantitative resistance helps reduce disease severity once the major gene is overcome.

Using a demographic model, Pietravalle et al. [37] found that quantitative resistance against

the infection rate or the propagule production rate of the pathogen are equally efficient. How-

ever, in a demo-genetic version of a similar model, Lo Iacono et al. [36] found a greater effect

of quantitative resistance against pathogen infection rate. Our results are consistent with this

second study. However, our model includes for the first time the four main pathogen aggres-

siveness components. According to our simulation results, the most promising trait for quanti-

tative resistance is against the duration of the latent period, owing to its influence on the

number of epidemic cycles the pathogen can complete during a growing season. Consequently,

quantitative resistance targeting pathogen latent period could effectively supplement the use of

major genes in breeding programs. Thus, latent periods of rust pathogens could be measured

on different host cultivars, and quantitative trait loci (QTL) associated with longer latent peri-

ods could be identified through genome-wide association studies, and subsequently selected

for in marker-assisted selection programs [136]. S1 Video illustrates the potential of the

deployment of a cultivar combining a major gene and a quantitative trait against latent period.

It is important to remember that, based on our model assumptions and the values chosen

for parameters associated with pathogen evolution, the scenario we simulated here was a rela-

tively simple one. For example, we considered that the different quantitative traits evolve inde-

pendently from each other by assuming that: (i) mutations are independent from each other;

(ii) when a quantitative resistance trait is deployed, only the targeted aggressiveness compo-

nent of the pathogen can evolve; and (iii) a fitness cost is paid on the susceptible cultivar on

the same aggressiveness component. Nevertheless, there is considerable evidence that different

pathogen aggressiveness components often vary in association with each other [8, 83], suggest-

ing that they do not necessarily evolve independently. Several trade-offs between aggres-

siveness components have been described [6, 7], and such trade-offs may considerably impact

the performance of a particular deployment strategy [56]. In addition, some aggressiveness

component(s) not directly targeted by host resistance could counterbalance the affected com-

ponent(s), like a compensation phenomenon (as simulated in some modelling studies [137,

138]), and the fitness cost on the susceptible cultivar could be paid on an aggressiveness com-

ponent different from the evolving component. These aspects could be captured through the
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use of statistical estimates of the genetic variance and covariance of pathogen life-history traits,

issued from phenotype values (G-matrix [139]). In addition, even in the case of well docu-

mented pathosystems like rusts of cereal crops, calibration of some parameters can be chal-

lenging (e.g. effective sporulation rate and dispersal kernel, see S1 Text), either because data

obtained in laboratory experiments may not be representative of what happens in the field, or

simply because data are missing. To fill this gap and help calibrate simulation models, estima-

tion models built with exactly the same parameters can be useful to estimate poorly known

parameters from field data [140–142].

Future research directions

In a recent review dealing with the combination of qualitative and quantitative resistances,

Pilet-Nayel et al. [143] wrote “There is still a need to adequately choose resistance QTLs to cre-

ate optimal combinations and limit QTL erosion”. The present work highlights that longer

latent periods may be one promising target. Nevertheless, the general features of the model

could be used to test if our conclusions hold in different contexts. Our simulations showed

that the efficiency of quantitative resistance (ρw) has a strong impact on the durability and epi-

demiological control of plant resistance. Therefore, in future studies we plan to assess the influ-

ence of the efficiency of qualitative resistance by including partially effective major genes

(ρg<1, [3]). We also envisage varying the mutation probabilities (τg and τw), cost of infectivity

(θg), cost of aggressiveness (θw), and number of steps to erode a trait for quantitative resistance

(Qw), to simulate various possible choices of major genes and traits for quantitative resistance.

It would also be of interest to simulate and investigate the potential for combinations of several

sources of quantitative resistance, whose performance on disease severity has been experimen-

tally demonstrated [144]. Finally, we will also explore different spatiotemporal strategies to

deploy plant resistance to pathogens. In particular, we plan to compare mosaics, mixtures,

rotations and pyramids of genetic resistances with respect to their epidemiological and evolu-

tionary outcomes. The challenge is to identify strategies for a given host-pathogen interaction

that are not only durable and efficient, but also feasible and likely to be adopted. In this con-

text, promising strategies identified with the simulation model could be experimentally tested

in the field. In addition, broader consideration of the economic context will also help maximise

the chances that identified strategies are considered for real deployment.
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