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Breast cancer is a malignancy with the highest incidence and mortality in

women worldwide. Senescence is a model of arrest in the cell cycle, which

plays an important role in tumor progression, while the prognostic value of

cellular senescence-related genes (SRGs) in evaluating immune infiltration and

clinical outcomes of breast cancer needs further investigation. In the present

study, we identified two distinct molecular subtypes according to the

expression profiles of 278 SRGs. We further explored the dysregulated

pathways between the two subtypes and constructed a microenvironmental

landscape of breast cancer. Subsequently, we established a senescence-

related scoring signature based on the expression of four SRGs in the training

set (GSE21653) and validated its accuracy in two validation sets (GSE20685 and

GSE25055). In the training set, patients in the high-risk group had a worse

prognosis than patients in the low-risk group. Multivariate Cox regression

analysis showed that risk score was an independent prognostic indicator.

Receiver operating characteristic curve (ROC) analysis proved the predictive

accuracy of the signature. The prognostic value of this signature was further

confirmed in the validation sets. We also observed that a lower risk score was

associated with a higher pathological response rate in patients with

neoadjuvant chemotherapy. We next performed functional experiments to

validate the results above. Our study demonstrated that these cellular
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senescence patterns effectively grouped patients at low or high risk of disease

recurrence and revealed their potential roles in the tumor–immune–stromal

microenvironment. These findings enhanced our understanding of the tumor

immune microenvironment and provided new insights for improving the

prognosis of breast cancer patients.
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Introduction

Breast cancer is one of the most common cancers worldwide,

with 2.2 million cases (11.7% of all cancer cases) in 2020 (1).

Breast cancer is a heterogeneous disease with multiple molecular

features (2). Based on the expression of estrogen receptor (ER),

progesterone receptor (PR), and human epidermal growth factor

receptor 2(HER2), there are at least four molecular subtypes of

breast cancer: luminal, basal, human epidermal growth factor

receptor 2 (HER2)‐enriched, and normal‐like (3). With the

development of surgery, chemotherapy, endocrine therapy,

and targeted therapy, the prognosis of breast cancer patients

has been improved (1). However, due to the heterogeneity of

patients, the benefits of these treatments are limited. Therefore,

it is imperative to further understand the molecular mechanisms

underlying breast cancer progression and to explore more

effective strategies.

Senescence, a state of permanent cell cycle arrest in response

to mitogens and oncogenic transformation, is vital to aging

research and tumor progression (4–6). The occurrence of

senescence involves the engagement of DNA damage response

(DDR), the accumulation of cyclin-dependent kinase inhibitors

(CDKi), the alteration of metabolic rates, and the stress on the

endoplasmic reticulum (ER) (4, 7). Meanwhile, senescent cells

show structural changes, including the enlargement of the cell

body, the different compositions of the plasma membrane (PM),

the accumulation of lysosomes and mitochondria, and changes

within the nucleus (8). Senescent cells can secrete chemokines,

growth factors, inflammatory cytokines, and matrix
c curve; ER, estrogen

egative breast cancer;

kinase inhibitors; PM,

RFS, recurrence-free

mulative distribution

lopedia of Genes and

ast absolute shrinkage

02
metalloproteinases, which is called senescence-associated

secretory phenotype (SASP) (9, 10). Moreover, overexpression

of p16INK4A, p53, p21CIP1, and hypophosphorylated RB is used

as senescence biomarkers (6, 11). Considering its therapeutic

potential, cellular senescence has emerged as a potent tumor

suppression mechanism that restrains proliferation in cells at

risk for malignant transformation. Recent studies also revealed

the dual role of senescence in malignant transformations.

Senescence, glycolysis, and autophagy are a continuum of the

same biological spectrum, all generating a “fertile” tumor

microenvironment that sustains breast cancer tumor growth

(12). In the early stage of the lesion, higher levels of p53 and p16

and lower levels of Ki-67 are related to the upregulation of SA-b-
ga, a senescence biomarker, which suggested the protection

effects of senescence in the early stage of tumorigenesis (13).

Therefore, compounds that stimulate the growth inhibition

effects of senescence while limiting its detrimental effects are

believed to have great clinical potential (14). SASP factors can

promote angiogenesis, proliferation, and epithelial–

mesenchymal transition of tumors through paracrine or

autocrine mechanisms. However, SASP can also have

antitumor effects by inducing the senescence of surrounding

tumor cells (15). Although the main role of senescence is

thought to be related to tumor suppression, detailed studies

are needed to characterize the exact role of senescence in cancer.

The tumor microenvironment (TME) consists of innate

immune cells, including macrophages, neutrophils, dendritic

cells, innate lymphoid cells, myeloid-derived suppressor cells

(MDSCs), natural killer cells, and adaptive immune cells

including T cells and B cells (16). The TME influences tumor

initiation and invasion and plays a vital role in therapeutic

efficacy (17). Growing evidence also shows the interaction

between senescence and TME. Senescent cells are proven to be

cleared by the humoral immune system and various immune

cells, including natural killer cells (NKs), macrophages, and

T cells (18). Meanwhile, DNA damage responses caused by

Treg cells and tumor cells result in cell cycle arrest and

senescence (19). Moreover, senescent T cells possess

suppressive activity, boosting the immune suppression in the
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TME (20). SASP-driven secondary senescence induced by other

senescent cells within the TME can promote the development of

senescence in immune cells (18). Zhao et al. found that high

levels of p16INK4a in T cells indicate the worst prognosis,

suggesting that the correlation between the TME and

senescence benefits the prognostic indicator (21). Therefore, a

detailed understanding of senescence may provide profound

insights into the tumorigenesis of breast cancer and improve the

response to immunotherapy.

To systematically assess the correlations between senescence

and the prognosis of breast cancer, we evaluated the profiles of

senescence-related genes (SRGs) and obtained a comprehensive

overview of the immune landscape. Firstly, 252 breast cancer

patients from GSE21653 were divided into two subtypes

according to the expression profiles of 279 SRGs. We then

established a scoring system to predict relapse-free survival (RFS)

and characterized the immune landscape of breast cancer, which

may be beneficial for personalized therapeutic strategies.
Methods

Data processing

Gene expression and the related prognostic and clinical

information of GSE21653, GSE20685, and GSE25055 were

obtained from the Gene Expression Omnibus (GEO).

GSE21653 contained 266 early breast cancer patients who

underwent initial surgery, and the gene expression data of 266

breast cancers were quantified by using whole-genome DNA

microarrays (HG-U133 plus 2.0, Affymetrix Santa Clara, USA).

GSE20685 contained 327 breast cancer samples; 268 patients

underwent adjuvant chemotherapy and 91 patients had a

relapse. GSE25055 contained 310 HER2-negative breast cancer

cases treated with taxane–anthracycline chemotherapy

preoperatively and endocrine therapy if ER-positive. The

patients with complete survival information were included in

our analysis. Raw microarray cell intensity files were

preprocessed using the Robust Multichip Average package in

R. The RNA expression data were scaled with a standard

deviation of 1. A manually curated gene list including 278

cellular senescence-related genes was extracted from the

CellAge database (https://genomics.senescence.info/cells/,

Supplementary Table 1).
Consensus clustering analysis of
senescence-related genes

We performed a consensus unsupervised clustering analysis of

senescence-related genes by the R package “ConsensusClusterPlus”

and classified patients into distinct molecular subtypes. This

clustering was performed according to the following criteria:
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firstly, the cumulative distribution function (CDF) curve

increased gradually and smoothly. Secondly, each group had a

suitable sample size. Lastly, the intragroup correlation grew in

number through clustering, while the correlation of intergroup

declined. Principal component analysis (PCA) was conducted using

the prcomp command of the R statistical software.
Enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis for cellular senescence-related genes

were performed using the R package “clusterProfiler.” To

calculate the relevance of senescence-related genes and the

activity of oncogenic pathway activity in breast cancer, the

well-defined 50 cancer hallmark-related pathways gene sets

were collected from the Molecular Signature Database of Gene

Set Enrichment Analysis (hallmark gene sets, http://www.gsea-

msigdb.org/gsea/msigdb). Gene set variation analysis (GSVA)

was also performed with the R package “GSVA” to calculate the

enrichment score of each pathway. The gene sets of

“h.all.v7.2.symbols” downloaded in MSigDB and the known

gene sets constructed by Mariathasan et al. were used for

GSVA enrichment analysis.
Construction of the senescence‐related
prognostic signature

To establish a predictive model for cancer prognosis,

univariate Cox regression analysis was first performed to

identify prognostic genes. p <0.05 was considered significant.

Then, a popular method for variable selection—the least

absolute shrinkage and selection operator (LASSO) method for

variable selection in a Cox regression model—was used to select

the most useful prognostic genes with the R package “glmnet.”

The senescence‐related signature for patients with breast cancer

was built by considering the genes’ expression and correlation-

estimated Cox regression coefficients: risk score = S(expression
of gene * coefficient of gene).
Relationship between senescence‐
related signature and prognosis of
breast cancer

To examine the prognostic value of the senescence-related

signature, we compared the relationships between the

senescence-related signature and prognosis. The differences in

RFS were assessed using Kaplan–Meier curves generated by the

“survival” and “survminer” R packages. Furthermore, we used

GSE25055 to determine whether the scores were associated with
frontiersin.org
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treatment outcomes. GSE25055 is a neoadjuvant study of 310

HER2-negative breast cancer cases treated with taxane–

anthracycline chemotherapy preoperatively and endocrine

therapy if ER-positive. The risk scores were calculated in

different pathological response groups.
The immune phenotype of breast cancer

To understand the immune status of breast cancer patients,

single-sample gene set enrichment analysis (ssGSEA) was used

to assess the abundance of immune cells of each sample in

GSE21653 by a gene set of 28 immune cell types. Stromal and

immune cells were assessed through ESTIMATE (Estimation of

Stromal and Immune cells in Malignant Tumor tissues using

Expression Data).
RNA inference

Small interfering RNAs targeting CPEB1 (siG000064506A-

1 - 5 ) , NOTCH3 ( s iG098 2 0 1 0 0 7 5 9 - 1 - 5 ) , NUAK1

(siG000009891A-1-5), and PDPK1 (siG000005170A-1-5) were

obtained from Ruibo Biotechnology Co., Ltd. (Guangzhou,

China). Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA)

was used for siRNA transfection according to the manufacturer’s

instructions. In brief, MDA-MB-231 cells were seeded to be

70%–90% confluent at transfection. Lipofectamine 2000 reagent

(5 µl) and 5 µl of siRNA (10 mM) were mixed in 250 µl of Opti-

MEM medium. The mixture was then incubated at room

temperature for 10 min and then added dropwise into a

culture dish containing 1 ml of the medium. Transfected cells

were cultured under normal culture conditions (5% CO2, 37°C)

for 24 h. After that, the cells were digested and resuspended for

further experiments.
Colony formation and migration analysis

For the colony formation assay, the cells were treated with

the indicated siRNAs for 24 h, digested, and seeded into six-well

plates at a density of 1,000 cells per well. After 14 days of

incubation, the cells were fixed with 4% paraformaldehyde and

visualized by 0.5% crystal violet staining. Cell migration capacity

was assessed using 8-mm pore polycarbonate membrane

Transwell plates (Corning, USA). Briefly, 5 × 105 cells were

suspended without serum and were seeded into the upper

chambers precoated with Matrigel (BD BioCoat, USA). The

bottom chambers were filled with 600 ml of complete medium.

After 24 h, the cells on the bottom side of the pore membrane

were fixed and stained with crystal violet.
Frontiers in Immunology 04
Immunohistochemistry staining for
breast cancer samples

Tissue microarray (TMA) was collaborated with Alenabio

Technology Co., Ltd. (Xian, China). The tissue microarray

contained 138 breast cancer specimens. Briefly, paraffin

sections were first deparaffinized, antigen retrieval was

performed in citrate buffer (pH 6.0), and endogenous

peroxidase activity was blocked in 0.3% H2O2. The slides were

continuously incubated with the indicated primary and

secondary antibodies until visualization with peroxidase and

3,3′-diaminobenzidine tetrahydrochloride. The expression of

CPEB1, NOTH3, NUAK1, and PDPK1 in the breast cancer

tissues from the tissue microarray was blindly quantified by two

pathologists based on histochemical score (H-score) as

previously described (22). The primary antibodies were

CPEB1 (Proteintech, Wuhan, China 13274-1-AP), NOTCH3

(Proteintech, Wuhan, China 55114-1-AP), NUAK1

(Proteintech, Wuhan, China 22723-1-AP), and PDPK1

(Proteintech, Wuhan, China 17086-1-AP).
Statistical analysis

Kaplan–Meier curve analysis with a two-tailed log-rank test

was performed to evaluate the prognostic significance. To clarify

whether the senescence-related score is an independent

prognostic factor, the R package “survival” was used for

multivariate Cox regression analysis. The chi-square test was

introduced to calculate the between-group differences. R

software (version 3.5.1) (https://www.r-project.org) was used

for the data processing and analysis. A significant difference in

all statistical methods of this study was considered if the p-value

was less than 0.05.
Results

Identification of senescence subtypes in
breast cancer

To fully comprehend the profile of senescence-related genes

in breast cancer tumorigenesis, 252 patients from GSE21653

were selected for further analysis in our research. Detailed

information of the 252 breast cancer patients is presented in

Supplementary Table 2.

We first conducted a functional enrichment analysis to explore

the potential biological functions of senescence-related genes. As

expected, these senescence-related genes were significantly enriched

in biological processes like cell aging and senescence (Figure 1A). In

addition, KEGG analysis indicated that senescence-related genes

were significantly enriched in cancer-related pathways, including
frontiersin.org
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senescence, cell cycle, and endocrine resistance (Figure 1B). Then,

univariate Cox regression was performed to assess the prognostic

values of the 278 senescence-related genes in patients with breast

cancer. Genes were divided into high and low expression according

to the median expression level. We also identified 44 genes that

were significantly associated with the patients’ survival. Among

them, 13 senescence-related genes were associated with poor

survival, and the other 31 genes were associated with better

prognosis (Figure 1C). The vast landscape of senescence-related

gene interactions and their prognostic value in patients with breast

cancer patients were demonstrated in a network (Figure 1D).

To further clarify the traits of senescence-related genes in

breast cancer, we used a consensus clustering algorithm to

categorize the 252 breast cancer patients based on the

expression profiles of the 278 senescence-related genes. We

sorted the entire cohort into two subtypes: clusters A

(n = 112) and B (n = 140), which meant k = 2 proved to be a

preferable choice (Figure 2A). The results of the PCA analysis
Frontiers in Immunology 05
indicated distributed discrete directions of senescence-related

genes between two clusters (Figure 2B). Patients in cluster A

exhibited a longer RFS compared to those in cluster B according

to the analysis of Kaplan–Meier curves (log-rank test, p = 0.003;

Figure 2C). Furthermore, we observed that patients in the two

clusters exhibited significantly different clinicopathological

features, including molecular subtypes, tumor grade, T stage,

N stage, P53 mutation, and the expression of Ki-67, HER2, PR,

and ER (Figure 2D; Table 1). As shown in Table 1, the median

follow‐up was 66.1 months in cluster A and 43.8 months in

cluster B. In cluster A, patients are more likely to possess lower

tumor grade, positive ER status, positive PR status, low

frequency of p53 mutation, and negative Ki-67 status than

those in cluster B. When we stratified the patients by

clinicopathologic factors, this senescence-related subtype could

not independently predict the prognosis. As shown in

Supplementary Figure 1, cluster B tumors often have a poor

prognosis in patients with small tumor size (≤2 cm, p = 0.044,
A B

DC

FIGURE 1

Enrichment analysis of the differently expressed genes and the PPI of the two groups. The bubble plot of the biological process (A) and
pathways (B) enriched between the two subtypes. (C) The forest plot of the survival analysis of the senescence-related genes. (D) Interactions
among senescence-related genes in BRCA. The line connecting the senescence-related genes represents their interaction, with the line
thickness indicating the strength of the association between senescence-related genes. Green and pink represent negative and positive
correlations, respectively. PPI, protein–protein interaction; BRCA, breast cancer.
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HR = 1.8), advanced tumor grade (grade III, p = 0.0029,

HR = 2.3), or triple-negative tumor (p = 0.0075, HR = 2.1)

when controlling for the remaining clinicopathologic factors.
Characteristics of TME in
distinct subtypes

To further clarify the dysregulated pathways between the

two clusters, we next conducted a GSVA enrichment analysis.

We found that cluster B was significantly enriched in numerous

immune pathways, including NOD-like receptor signaling

pathway, primary immunodeficiency, and intestinal immune

network for IgA production and graft versus host disease,

suggesting that senescence may play a role in the immune

regulation of the TME (Figure 3A). We then performed a

GSEA analysis and found that biological functions related to

cellular senescence and aging were significantly enriched in

cluster A (Supplementary Figure 2A). To comprehensively

explore the associations between the two subtypes and

immune infiltration in breast cancer, we evaluated the

relevance between the two subtypes and 23 kinds of human
Frontiers in Immunology 06
immune cells using the ssGSEA method. Significant variations

were observed in the infiltration of immune cells between the

two subtypes (Figures 3B, C). The infiltration of activated B cells,

CD4+ cells, CD8+ cells, dendritic cells, CD56 bright natural

killer cells, gamma delta T cells, immature B cells, dendritic cells,

MDSCs, monocytes, natural killer T cells, natural killer

cells, regulatory T cells, T follicular helper cells, type 1 T

helper cells, type 17 T helper cells, and type 2 T helper cells

was lower in cluster A compared to that in cluster B. The

infiltration of mast cells and neutrophils was higher in cluster

A. TME score (stromal score, immune score, and estimate score)

of the two subtypes were calculated using the ESTIMATE

package in R. The level of the stromal score indicates the

existence of stromal cells, and the immune score is correlated

with the infiltration of immunocytes. Meanwhile, estimate scores

represented the aggregation of stromal or immune scores in the

TME. Our results revealed that lower TME scores were

represented in patients of cluster A (Figure 3D). In addition,

we investigated the profiles of immune checkpoints and found

that most immune checkpoints were differentially expressed in

the two groups, including PD-1 (PDCD1), PD-L1 (CD274), and

CTLA-4 (Figure 3E).
A

B

D

C

FIGURE 2

Senescence-related genes and the clinicopathological and biological characteristics of the two distinct subtypes of samples divided by
consistent clustering. (A) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (B) PCA analysis showing a
remarkable difference in transcriptomes between the two subtypes. (C) Univariate analysis showing 278 senescence-related genes related to the
RFS time. (D) Differences in clinicopathologic features and expression levels of senescence-related genes between the two distinct subtypes.
PCA, principal components analysis; RFS, recurrence-free-survival.
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TABLE 1 Clinicopathologic characteristics of breast cancer patients according to the senescence pattern.

Variables GSE21653 p-value

Cluster A (%) Cluster B (%)

Age at diagnosis (years) 0.657

≤50 37 (33.0) 50 (35.7)

>50 75 (67.0) 90 (64.3)

Tumor size 0.405

T1 29 28

T2 55 66

T3 26 40

Unknown 2 6

Lymph node status 0.488

Negative 49 (44.1) 67 (48.6)

Positive 62 (55.9) 71 (51.4)

Grade <0.001

I 35 (31.5) 8 (5.8)

II 54 (48.6) 30 (21.9)

III 22 (19.8) 99 (72.3)

ER status <0.001

Negative 12 (10.8) 98 (70.5)

Positive 99 (89.2) 41 (29.5)

PR status <0.001

Negative 21 (18.9) 103 (74.1)

Positive 90 (81.1) 36 (25.9)

HER2 status <0.001

Negative 98 (87.5) 109 (77.9)

Positive 3 (2.7) 23 (16.4)

Unknown 11 (9.8) 8 (5.7)

P53 status <0.001

Wild type 76 (67.9) 49 (35.0)

Mutant 18 (16.1) 50 (35.7)

Unknown 18 (16.1) 41 (29.3)

Ki-67 status <0.001

Negative 44 (39.3) 14 (10.0)

Positive 46 (41.1) 96 (68.6)

Unknown 22 (19.6) 30 (21.4)

Molecular subtype <0.001

Basal 1 (0.9) 74 (52.9)

HER2 1 (0.9) 21 (15.0)

Luminal A 72 (64.3) 13 (9.3)

Luminal B 25 (22.3) 19 (13.6)

Normal 13 (11.6) 13 (9.3)

Vital status 0.063

Alive 82 (73.2) 87 (62.1)

Dead 30 (26.8) 53 (37.9)

Median follow-up (months) 66.1 43.8
Frontiers in Immunology
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ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; P53, tumor protein P53; Ki-67, proliferation marker protein Ki-67.
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Identification and validation of the
senescence-related signature

To establish a predictive model for cancer prognosis, we

identified the prognostic genes using univariate Cox regression

analysis in the training set (GSE21653). Two hundred and fifty-
Frontiers in Immunology 08
two patients were classified into high- and low-expression

groups according to an optimal cutoff of each gene, and 83

senescence-related genes significantly associated with the RFS

were considered as prognostic genes for further analysis. Then,

the LASSO-penalized Cox analysis with 10-fold cross-validation

was performed to narrow the genes (Figures 4A, B).
A

B

D

E

C

FIGURE 3

Correlations of tumor immune cell microenvironments and two BRCA subtypes. (A) GSVA of biological pathways between the two distinct
subtypes, in which red and blue represent activated and inhibited pathways, respectively. (B) Heatmap of the tumor-infiltrating cell in the two
BRCA subtypes. (C) The abundance of the 23 infiltrating immune cell types in the two BRCA subtypes. (D) Correlations between the two
subtypes and TME score. (E) Heatmap of immune checkpoints between the two distinct subtypes, in which red represents differently expressed
checkpoints. BRCA, breast cancer; GSVA, gene set variation analysis; TME, tumor microenvironment. **P value < 0.01; ***P value < 0.001.
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A

B
D

E F

G H

C

FIGURE 4

Identification and validation of the senescence-related gene model. (A) Tenfold cross-validation for tuning parameter selection in the LASSO
model. (B) LASSO coefficient profiles of the 19 prognostic genes. A vertical line is drawn at the value chosen by the 10‐fold cross‐validation RFS.
Kaplan–Meier curves for the RFS of the two gene subtypes in GSE21653 (C), GSE20685 (E), and GSE25055 (G) (log-rank tests, p < 0.001). ROC
curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival according to the risk score in GSE21653 (D), GSE20685 (F), and
GSE25055 (H). LASSO, least absolute shrinkage and selection operator; RFS, recurrence-free survival.
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Subsequently, a four-gene-based signature model was developed,

consisting of three high-risk genes and one low-risk gene. The

risk score of breast cancer patients was calculated using the

following formula: Risk score = −0.482 * expression of CPEB1 +

0.468 * expression of NOTCH3 + 0.213 * expression of

NUAK1 + 0.321 * expression of PDPK1. Two hundred and

fifty-two breast cancer patients from GSE21653 were separated

into two groups according to the optimum cutoff score generated

using the “survminer” package in R via the maximally selected

rank statistics. Patients with a score lower than 0.142 belonged to

the low-risk group (n = 149), whereas those with a risk score

higher than 0.142 were placed in the high-risk group (n = 103,

Table 2). The Kaplan–Meier survival curves proved that patients

from the training set (GSE21653) with low risk had a

significantly favorable RFS compared to patients with high

scores (log-rank test, p < 0.001; Figure 4C). To investigate the

prognostic accuracy of this signature, we next performed the

time-dependent ROC curve analysis. The areas under the ROC

curve (AUC) achieved 0.859, 0.845, and 0.827 at 1, 3, and 5 years

of this predictive model (Figure 4D). Consistently, we obtained

similar results in the validation sets (GSE20685 and GSE25055),

indicating that this signature had an extraordinary prognostic

accuracy in breast cancer (Figures 4E–H).

To further examine the predictive value of this senescence-

related signature, univariate and multivariate Cox proportional

hazards regression analyses were performed in the GSE21653,

GSE20685, and GSE25055 datasets. Our findings demonstrated

that the senescence‐related signature was an independent risk

factor when controlling for the classical clinicopathologic factors

(Figure 5). When we separated the patients by clinical risk

factors, including tumor size, grade, ER status, and p53

mutation, the senescence-related signature was still a gainful

prognostic model (Figure 6).
Relationship between the risk
model and TME

GSVA enrichment analysis showed that cell cycle and DNA

replication pathways were positively correlated to high-risk

scores. At the same time, drug metabolism cytochrome and

taurine and hypotaurine metabolism were positively relevant

with low-risk scores (Figure 7A). GSEA analysis indicated that

biological functions related to cellular senescence and aging were

significantly enriched in the high-risk group (Supplementary

Figure 2B). We further explored the relationships between risk

score and infiltration of immune cells of breast cancer using the

ESTIMATE package in R (Figure 7B). The infiltration levels of

activated CD4+ T cells, CD56dim natural killer cells, and gamma

delta T cells in the high-risk group were significantly higher

compared to those in the low-risk group. Nevertheless, the

infiltration of eosinophils, mast cells, neutrophils, and

plasmacytoid dendritic cells was significantly decreased in the
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high-risk group (Figure 7C). We also calculated the TME scores

of the high- and low-risk groups, and our results demonstrated

higher stromal and ESTIMATE scores for patients with low risk

(Figure 7D). We then investigated the expression of immune

checkpoints in the two groups, and it was found that the

expression of PD-1 (PDCD1) was differentially expressed in

the two groups (Figure 7E). We further used GSE25055 to

determine whether this signature was associated with

treatment outcomes. It was found that a lower risk score was

associated with a higher pathological response rate in patients

given neoadjuvant chemotherapy (Supplementary Figure 3).
Analysis of the four senescence-related
genes used for the prognostic signature

We further explored the expression levels of the four

prognostic genes in breast cancer patients (Figure 8). The

results demonstrated that the expression level of CPEB1 was

significantly decreased in grades II and III compared to that in

grade I. Meanwhile, the expression of CPEB1 was negatively

correlated with P53 mutation. In addition, the expression levels

of CPEB1, NOTCH3, NUAK1, and PDPK1 were significantly

discrepant among the molecular subtypes of breast cancer.

Consistently, CPEB1 was upregulated in the low-risk group,

while NOTCH3, NUAK1, and PDPK1 were overexpressed in the

high-risk group (Figure 9A). The Sankey analysis indicated that

over half of the patients in cluster A were grouped into high risk

(Figure 9B). The Kaplan–Meier survival curves indicated a

longer RFS in patients with a high-expression level of CPEB1

or low-expression levels of NOTCH3, NUAK1, and PDPK1

(Figures 9C–F). We further assessed the relationship between

these four genes and the abundance of immune cells. It was

observed that the expression of PDK1 was negatively correlated

with most immune cells, while NUAK1, NOTCH3, and CPEB1

were positively related to several immune cells, including

MDSCs, macrophages, and plasmacytoid dendritic cells

(Figure 9G). We next evaluated the correlations between TME

scores and the expression of the four genes, indicating that the

TME scores were negatively associated with PDPK1 but

positively associated with NUAK1, NOTCH3, and CPEB1

(Figure 9H). In addition, we investigated the associations

between the expression of immune checkpoints and the four

senescence-related genes. Figure 9I shows that a large proportion

of the 46 immune checkpoints were negatively associated with

the expression of PDPK1. Several markers were positively

associated with the expression of NUAK1, NOTCH3, and

CPEB1, including CD276 and NRP1. Meanwhile, it is worth

mentioning that the expression of CD274 had a significantly

negative correlation with PDPK1, NUAK1, and NOTCH3. To

further confirm the protein expression and the prognostic value

of the four genes, we performed immunohistochemistry (IHC)

analysis using TMA which contained 138 patients. The results of
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TABLE 2 Clinicopathologic characteristics of breast cancer patients according to the senescence-related signature.

Variables GSE21653 p-value

High risk (%) Low risk (%)

Age at diagnosis (years) 0.337

≤50 32 (31.1) 55 (36.9)

>50 71 (68.9) 94 (63.1)

Tumor size 0.582

T1 19 (18.4) 38 (25.5)

T2 51 (49.5) 70 (47.0)

T3 29 (28.2) 37 (24.8)

Unknown 4 (3.9) 4 (2.7)

Lymph node status 0.901

Negative 48 (47.1) 68 (46.3)

Positive 54 (52.9) 79 (53.7)

Grade <0.001

I 6 (5.9) 37 (25.3)

II 24 (23.5) 60 (41.1)

III 72 (70.6) 49 (33.6)

ER status <0.001

Negative 61 (59.2) 49 (33.3)

Positive 42 (40.8) 98 (66.7)

PR status <0.001

Negative 64 (62.1) 60 (40.8)

Positive 39 (37.9) 87 (59.2)

HER2 status 0.134

Negative 86 (83.5) 121 (81.2)

Positive 13 (12.6) 13 (8.7)

Unknown 4 (3.9) 15 (10.1)

P53 status 0.003

Wild type 39 (37.9) 86 (57.7)

Mutant 38 (36.9) 30 (20.1)

Unknown 26 (25.2) 33 (22.1)

Ki-67 status 0.011

Negative 14 (13.6) 44 (29.5)

Positive 67 (65.0) 75 (50.3)

Unknown 22 (21.4) 30 (20.1)

Molecular subtype <0.001

Basal 47 (45.6) 28 (18.8)

HER2 10 (9.7) 12 (8.1)

Luminal A 17 (16.5) 68 (45.6)

Luminal B 23 (22.3) 21 (14.1)

Normal 6 (5.8) 20 (13.4)

Vital status

Alive 53 (51.5) 116 (77.9)

Dead 50 (48.5) 33 (22.1)

Median follow-up (months)
Frontiers in Immunology
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ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; P53, tumor protein P53; Ki-67, proliferation marker protein Ki-67.
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the IHC analysis demonstrated that NOTCH3, NUAK1, and

PDPK1 were highly expressed in breast cancer tissues

(Figure 10A). The survival analysis indicated that high

NOTCH3 and NUAK1 protein levels were associated with a

poor prognosis (Figure 10B).

We silenced the expression of each gene through siRNA

(Figure 10C) to further verify the biological functions of CPEB1,

NOTCH3, NUAK1, and PDPK1. The results of colony formation

indicated that depletion of NOTCH3, NUAK1, or PDPK1

inhibited the colony formation ability of MDA-MB-231 cells,

while no significant difference was observed upon CPEB1

depletion. Consistently, depletion of NOTCH3, NUAK1, or

PDPK1 decreased cancer cell migration (Figure 10D).
Discussion

Numerous studies have revealed that senescence can

modulate the progression of breast cancer and can interact with

therapies, both potentially being induced by treatment and

influencing treatment resistance. Since senescence is considered
Frontiers in Immunology 12
as a tumor suppressor mechanism, induction of cancer cell

senescence is the focus of research into novel tumor treatments.

In the present study, we constructed a senescence-related

signature to predict the prognosis of breast cancer and used

GSE25055 to determine whether this signature was associated

with treatment outcomes. We observed that the signature was

positively associated with the pathological response. Higher risk

scores indicated poor pathological response to neoadjuvant

chemotherapy. It was reported that radiation could induce

senescence in breast cancer, and these cells in turn released

SASPs to promote the migration and invasion of neighboring

cancer cells (23). Palbociclib (a CDK4/6 inhibitor) exerts

antiproliferative effects on breast cancer cells and induces

senescence and cell cycle arrest (24). In addition, some

chemotherapy drugs can induce senescence of breast cancer as

well. Breast cancer cells exposed to doxorubicin undergo

widespread senescence (25). In MMTV-Wnt1 mouse models of

breast carcinoma, doxorubicin induces senescence and the

expression of the SASP factors. These cytokines produced by

senescent cells could promote the proliferation of surrounding

non-senescent cancer cells and lead to clinical relapse (26). A
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FIGURE 5

The predictive value of the senescence‐related signature. The results of the univariate Cox analysis in GSE21653 (A), GSE20685 (C), and
GSE25055 (E). The results of the multivariate Cox analysis in GSE21653 (B), GSE20685 (D), and GSE25055 (F).
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FIGURE 6

Multivariate Cox analysis for patients according to the predictive model stratified by clinicopathological risk factors. (A, B) tumor size, (C, D)
tumor grade, (E, F) ER status, and (G, H) P53 mutation.
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previous study explored the relationships between SASP positivity

and tumor microenvironments in invasive breast cancer (IBC)

tissues. SASP positivity is associated with a poor prognosis in

luminal A IBC, while SASP-positive TNBC indicates better

survival. The multivariate analysis demonstrates that SASP
Frontiers in Immunology 14
positivity is an independent prognostic factor in both luminal A

IBC and TNBC (27). Nevertheless, most studies only focus on a

single gene or a single type of immune cell. Our research revealed

an overall profile of senescence-related genes and TME in breast

cancer. Firstly, we separated breast cancer patients into two
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FIGURE 7

Correlations of the tumor immune cell microenvironment and risk score. (A) GSVA of the biological pathways between the two risk groups, in
which red and blue represent activated and inhibited pathways, respectively. (B) Heatmap of the tumor-infiltrating cell in the two risk groups.
(C) The abundance of the 23 infiltrating immune cell types in the two risk groups. (D) Correlations between the two subtypes and TME score.
(E) Differences in the expression of checkpoints in the two risk groups. BRCA, breast cancer; GSVA, gene set variation analysis; TME, tumor
microenvironment. *P value < 0.05; **P value < 0.01; ***P value < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.921182
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2022.921182
clusters (cluster A and cluster B) based on the expression of

senescence‐related genes. Patients in cluster A represented a

higher level of senescence as revealed by the GSEA analysis and

exhibited a better prognosis. Patients in cluster B tended to have

tumors with advanced stage, and there is a dramatic

preponderance of TNBC in cluster B. These would be expected

to produce at least the survival difference. To cl\arify the

infiltration of immune cells and activated pathways in breast

cancer, we next investigated the TME in the two clusters, showing

that cluster A negatively correlates with immune activation and

infiltration. Noting that cluster B tumors are often TNBC or

HER2-positive, it is not a surprise that immune pathways are

more enriched in cluster B, as immune infiltrates are significantly

more common in these tumors. We further constructed a

predictive signature of senescence-related genes using high-
Frontiers in Immunology 15
throughput expression profiles, and patients were divided into

low- or high-risk groups. Patients in the low-risk group

represented a higher level of senescence and exhibited better

prognosis. The results of the ROC analysis in the training and

validation sets demonstrated that this signature exhibited good

diagnostic efficiency for the 1-, 3-, and 5-year disease-relapse

events. Furthermore, we investigated the relationship between this

model and TME, and the results indicated that CPEB1, NOTCH3,

NUAK1, and PDPK1 were strongly associated with the expression

of tumor checkpoints and tumor immune infiltration.

The biological functions of senescence-related genes have

been studied previously. CPEB1 is a post-transcriptional

regulatory factor regulating mRNA translation by dynamically

adjusting poly (A) tail length (28). The prognostics of tumor

patients were affected by the level of CPEB1. Nagaoka et al.
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FIGURE 8

The relationships between the four senescence-related genes and clinical features. The box plots showed the correlations between CPEB1 (A),
NOTCH3 (B), NUAK1 (C), and PDPK1 (D) and tumor stage, ER status, tumor grade, P53 mutation, and molecular subtypes of BRCA. *P value <
0.05; ***P value < 0.001.
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FIGURE 9

The relationships between the four senescence-related genes and prognostics and the correlations of the tumor immune cell
microenvironment and the four senescence-related genes. (A) The expression of the four prognostic genes. (B) Sankey diagram. (C–F)
Univariate Cox regression analysis of the four prognostic genes in the signature. (G) The correlation between the four genes and activated
immune cells. (H) The relationship between the four genes and TME score. (I) The correlation between the four genes and immune checkpoint.
*P value < 0.05; **P value < 0.01; ***P value < 0.001.
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revealed that the low expression of CPEB1 promoted epithelial-to-

mesenchymal transition and metastasis in breast cancer (29).

Interestingly, these malignant phenotypes could be accelerated

by estrogen in breast cancer (30). Previous studies also

demonstrated that the low level of CPEB1 was linked to

increased metastasis and angiogenesis in gastric cancer (GC),
Frontiers in Immunology 17
while CPEB1 boosted ferroptosis by inhibiting TWIST1 (31).

Meanwhile, it was demonstrated that the negative regulation

between CPEB1 and SIRT1 suppressed HCC stemness (32).

Notch proteins are cell membrane receptors crucial for cell

communication (33). Abnormal Notch signaling activation

promotes cancer progression, cancer stem cell activation, and
A
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FIGURE 10

Validation of the four prognostic genes by functional analysis. (A) Immunohistochemistry analysis of CPEB1, NOTCH3, NUAK1, and PDPK1 in
breast cancer tissues. (B) The high expression levels of NOTCH3 and NUAK1 were associated with a poor prognosis. The Cox proportion
hazards model was used to understand the significance between the two groups. Tissue microarray was obtained from Alenabio Technology
Co., Ltd., Xian, China. The tissue microarray contained 138 breast cancer specimens. (C) siRNA knockdown efficiencies. (D) The colony
formation and migration analysis of breast cancer cell depletion with CPEB1, NOTCH3, NUAK1, and PDPK1.
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tumor chemoresistance (34). For instance, it was shown that

Notch3 accelerated the development of prostate cancer-induced

bone lesions through MMP-3 (35). Meanwhile, previous

research proved that breast cancer tumorigenesis could be

regulated by phosphorylation of Notch3, which might be

affected by PTEN transactivation (36–38). Furthermore, many

molecules can also affect tumorigenesis by influencing the

Notch3 pathway. For example, Hsa_circ_0058124 facilitated

papillary thyroid cancer progression and invasiveness via the

NOTCH3/GATAD2A axis (39).

NUAK family kinase 1 (NUAK1) was reported to play a role

in oncogenesis by the improvement of glycolysis (40), induction

of ferroptosis (41), and phosphorylation of downstream

molecules (42). However, NUAK could prevent tumorigenesis

progression due to its protective function from oxidative stress

in colorectal tumors (43). Through targeting the NUAK1 kinase,

miR-622 inhibited the motility phenotype of breast cancer (44).

However, the specific mechanisms of NUAK1 in breast cancer

progression are unclear and need further exploration.

PDPK1 is a phosphorylation-regulated kinase that is

essential for numerous signaling pathway activation and

cellular processes (45). PDPK1 proved to be an intriguing

molecular target in physiological and pathological activities via

promotion of CD8+ T cells (46), regulation of autophagy (45),

the resistance of chemotherapy (47), phosphorylation of the

kinase family (48), and activation of other downstream

pathways. It was demonstrated that PDPK1 regulates prostate

cancer cell survival via SGK3 (49). Meanwhile, PDPK1 was

regulated by several molecular pathways, including mTORC2/

PI3K, and then facilitated the proliferation of breast cancer cells

(50). In a word, the senescence-related genes play a crucial part

in the tumorigenesis of breast cancer, where deeper studies are

required to probe their functions and mechanisms.

In this research, we established a prognostic model based on

four senescence-related genes to predict the RFS of breast cancer

patients. This model provided a beneficial pattern for clinical

outcomes analysis of breast cancer patients. Our study had

several notable limitations, although our model demonstrated

an accurate forecasting ability. Firstly, the sample sizes of our

investigation were finite, and large-scale cohort studies were

imperative for judging the value of this model. Secondly, the

relationship between these senescence-related genes and other

meaningful biomarkers, such as BRCA1, BRCA2, and HER-2,

was unclear. Thirdly, as these are bulk RNA signatures such that

it is not known if senescence genes are expressed in cancer or

stroma and as the immune cell identification process is again

bulk and so has a lot of surrogacy, validation with actual tissue to

confirm that functional protein levels match their RNA

signatures and confirming that immune infiltrates match the

RNA predictions are important to take this work further.

Furthermore, specific in-vivo and in-vitro experiments are

required to verify the function of these senescence-related genes.
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In summary, our study established a novel classification for

breast cancer based on the mRNA expression profiles of cellular

senescence-related genes. We observed that patients’ survival,

clinicopathologic features, and immune status were significantly

different between the two clusters. We also developed a

senescence scoring system to predict the RFS of patients with

breast cancer, which proved to be a beneficial tool for predicting

the clinical outcomes of breast cancer patients.
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SUPPLEMENTARY FIGURE 1

Multivariate Cox analysis for patients according to the senescence-related
subtype stratified by clinicopathological risk factors. (A, B) tumor size, (C,
D) tumor grade, (E, F) Tipple-negative breast cancer.

SUPPLEMENTARY FIGURE 2

Gene set enrichment analysis (GSEA). (A) Cellular senescence and aging

were significantly enriched in Cluster A. (B) Cellular senescence and aging

were significantly enriched in high risk group.

SUPPLEMENTARY FIGURE 3

Relationships between the senescence-related score and pathological

response to neoadjuvant chemotherapy.
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