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Iuliu Haţieganu University of Medicine
and Pharmacy, Romania

Stanislava Pankratova,
University of Copenhagen, Denmark

Abraham Martin,
Achucarro Basque Center

for Neuroscience, Spain

*Correspondence:
Shengmei Zhu

smzhu20088@zju.edu.cn
Xiaoxing Xiong

xiaoxingxiong@whu.edu.cn

Received: 19 November 2019
Accepted: 26 February 2020

Published: 18 March 2020

Citation:
Liu L, Gu L, Chen M, Zheng Y,

Xiong X and Zhu S (2020) Novel
Targets for Stroke Therapy: Special

Focus on TRPC Channels
and TRPC6.

Front. Aging Neurosci. 12:70.
doi: 10.3389/fnagi.2020.00070

Novel Targets for Stroke Therapy:
Special Focus on TRPC Channels
and TRPC6
Lu Liu1, Lijuan Gu2, Manli Chen1, Yueying Zheng1, Xiaoxing Xiong1,2* and
Shengmei Zhu1*

1 Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,
2 Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China

Stroke remains a leading cause of death, disability, and medical care burden worldwide.
However, transformation from laboratory findings toward effective pharmacological
interventions for clinical stroke has been unsatisfactory. Novel evidence has been
gained on the underlying mechanisms and therapeutic potential related to the transient
receptor potential (TRP) channels in several disorders. The TRP superfamily consists
of a diverse group of Ca2+ permeable non-selective cation channels. In particular,
the members of TRP subfamilies, TRP canonical (TRPC) channels and TRPC6, have
been found in different cell types in the whole body and have high levels of expression
in the central nervous system (CNS). Notably, the TRPCs and TRPC6 channel have
been implicated in neurite outgrowth and neuronal survival during normal development
and in a range of CNS pathological conditions. Recent studies have shown that
suppression of TRPC6 channel degradation prevents ischemic neuronal cell death in
experimental stroke. Accumulating evidence supports the important functions of TRPC6
in brain ischemia. We have highlighted some crucial advancement that points toward an
important involvement of TRPCs and TRPC6 in ischemic stroke. This review will make
an overview of the TRP and TRPC channels due to their roles as targets for clinical
trials and CNS disorders. Besides, the primary goal is to discuss and update the critical
role of TRPC6 channels in stroke and provide a promising target for stroke prevention
and therapy.
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INTRODUCTION

Ischemic stroke is induced by the obstruction of an artery or multiple arteries leading to the brain.
Focal impairment or occlusion of blood circulation to the brain impairs the normal function of
neurons. The mechanisms underlying ischemic stroke are complex, and include excitotoxicity,
oxidative and nitrosative stress, Ca2+ overload, inflammation, and apoptosis (Szydlowska and
Tymianski, 2010; Khoshnam et al., 2017). Among these mechanisms, intracellular Ca2+ overload
remains a vital role in neuronal injury associated with ischemic stroke (Choi, 1995). Glutamate
receptors, such as N-methyl-D-aspartate receptor (NMDAR), are thought to be major pathways for
intracellular Ca2+ influx in the central nervous system (CNS) after cerebral ischemia-reperfusion
(IR) injury. Excessive NMDARs activation and the following Ca2+ influx through NMDARs are
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crucial steps required for initiating ischemic cell death
(Szydlowska and Tymianski, 2010; Lai et al., 2011).To date,
pre-clinical studies have provided substantial evidences for the
neuroprotective effect of NMDAR antagonists in experimental
ischemic stroke (Ginsberg, 2008). However, for several decades,
clinical trials of NMDAR antagonists have all ended up with
failure to show beneficial effects due to their narrow therapeutic
windows and adverse effects (Wu and Tymianski, 2018). Thus,
effective therapeutic interventions for ischemic stroke are
urgently required.

Despite the pivotal functions of NMDARs, non-glutamate
mechanisms have drawn attention as promising Ca2+ influx
pathways involved in brain ischemia. In this respect, researchers
shifted focus toward the transient receptor potential (TRP)
channels (Szydlowska and Tymianski, 2010). TRPs are non-
selective cationic channels which have key functions in different
disorders (Moran, 2018). The TRP canonical (TRPC) subfamily
was proved to be extensively distributed in CNS and have
important functions in neuronal development (Tai et al., 2009).
Understanding of these channels may drive the researchers
to make a significant breakthrough in CNS diseases therapy.
Recently, growing evidence indicates that TRPC6 channel has
been involved in Ca2+ homeostasis and shown to participate
in the molecular pathophysiology of ischemic stroke. TRPC6
was reported to have an critical role in neuroprotection in
both in vitro and in vivo models of ischemic stroke (Du et al.,
2010). In this review, we present a general description of
the current understanding of TRPs and TRPC subfamily, with
an emphasis on their involvement in clinical trials and CNS
dysfunctions. Furthermore, this review concentrates on evidence-
based advancements of TRPC6 in CNS disorders and cerebral
ischemia. The primary aim is to clarify the relationship between
TRPC6 and ischemic stroke and discuss future perspectives.

THE TRP ION CHANNEL FAMILY

The TRP channels comprise a big family of cation channels that
are involved in various physiological and pathological processes.
TRPs were first discovered in Drosophila in 1960s as a conditional
phototransduction mutant (Minke, 1977; Montell et al., 1985).
TRPs are commonly distributed in different cell types and tissues,
and possess many vital functions in ion homeostasis, sensory
transduction, inflammatory responses, innate and adaptive
immune responses, and cell survival (Clapham, 2003; Nilius
et al., 2007; Ramirez et al., 2018). The channel subunits consist
of six transmembrane domains (TDs) that assemble as cation-
permeable tetramers (Clapham et al., 2001). However, TRP
channels have relatively low selectivity for the transport of
cations, such as Na+ and Ca2+, into the cytoplasm.

The TRPs are divided into seven subfamilies, TRPC
(canonical), TRPV (vanilloid), TRPM (melastatin), TRPP
(polycystin), TRPML (mucolipin), TRPA (ankyrin), and TRPN
(NO-mechano-potential), based on amino acid homology
(Nilius et al., 2007). These channels can receive multiple types
of intracellular and extracellular information, which in turn
can induce a series of different responses. Dysfunctions of

these proteins are related to many disorders (Kaneko and
Szallasi, 2014); e.g., progressive kidney diseases (TRPC5 and
TRPC6) (Winn et al., 2005; Zhou et al., 2017), pulmonary edema
(TRPC6) (Weissmann et al., 2012), stroke (TRPC6) (Du et al.,
2010), myocardial IR injury (TRPC3/6/7) (He et al., 2017),
Huntington’s disease (HD) (TRPC5) (Hong et al., 2015), pruritus
(TRPV1,TRPA1) (Moran, 2018), lower urinary tract disorders
(TRPV4), pain (TRPV1, TRPA1, TRPM8, and TRPM3), and
type 2 diabetes (TRPM5) (Voets et al., 2019), idiopathic rhinitis
(TRPA1 and TRPV1) (Van Gerven et al., 2017), irritable bowel
syndrome (TRPV1) (Wouters et al., 2016), and genetic diseases
(TRPA1, TRPC6, TRPV3/4, TRPM1/4/6, TRPML1, TRPP2)
(Moran, 2018).

There have been a number of clinical trials of compounds
that regulate TRPV1, TRPV3, TRPV4, TRPA1, and TRPM8
(Moran, 2018). The vanilloid receptor, TRPV1, is identified
as an important detector of pain, including heat hyperalgesia,
postherpetic neuralgia, and osteoarthritic pain (Moran, 2018).
Small molecule antagonists and agonists targeting TRPV1, such
as NEO6860, V116517, and capsaicin, have attracted attention
in research on multiple pain pathways and have been shown to
have clinical potential for use in sustained pain relief (Szallasi
et al., 2006; Arendt-Nielsen et al., 2016; Brown et al., 2017;
Blair, 2018). However, safety issues, such as impaired noxious
heat sensation and hyperthermia, require special consideration.
Although several recent clinical trials suggested no increase in
body temperature in humans (Arendt-Nielsen et al., 2016; Brown
et al., 2017), most TRPV1 antagonists examined previously
showed on-target adverse effects (Lee et al., 2017; Manitpisitkul
et al., 2018), thus limiting their clinical acceptance. The balance
between drug efficacy and side effects in clinical trials remains to
be explored. TRPV3 is sensitive to warm temperatures (>33◦C)
and is predominantly found in skin keratinocytes (Xu et al.,
2002; Moqrich et al., 2005). The TRPV3 antagonist, GRC 15300,
has successfully finished a phase 1 clinical trial and appears
to have potential for pain treatment (Pharmaceuticals, 2018).
TRPV3 is also an emerging target for itch and skin diseases
in animal models; further studies are required to confirm
its utility in treatment of clinical skin diseases. TRPV4 was
originally characterized in 2000 as an osmosensor that responds
to extracellular osmolarity (Liedtke et al., 2000; Strotmann et al.,
2000). TRPV4 performs essential roles in various diseases by
regulating Ca2+ influx. A clinical trial of TRPV4 blockers and
their promising roles in the treatment of dyspnea and pulmonary
edema in heart failure and acute decompensated heart failure
cases is currently finished in phase 1 stage (GlaxoSmithKline,
2019). Similarly, another single-center study designed to estimate
the effects of GSK2798745, a novel TRPV4 inhibitor, on
pulmonary gas exchange and pulmonary function in participants
with heart failure has already completed a phase 2 clinical
trial (GlaxoSmithKline, 2018). TRPA1 has been regarded as a
gatekeeper of chronic inflammatory diseases (Bautista et al.,
2013). A phase 2a clinical study yielded data indicating that
the TRPA1 antagonist, GRC 17536, alleviates pain with no
other drug-related side effects in patients with painful diabetic
neuropathy, which supports the promising therapeutic efficacy of
TRPA1 blockade in pain management (Pharmaceuticals, 2014).
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PF-05105679 is a TRPM8 antagonist that was shown to reverse
cold pain sensation in the cold presser test in humans (Andrews
et al., 2015; Gosset et al., 2017). Importantly, blockade of TRPM8
by PF-05105679 showed no effects on core body temperature.

Overall, TRPs have good potential as therapeutic targets for
various diseases. Further efforts are still required to explore the
specific and detailed functions of TRPs in different disorders.

THE TRPC SUBFAMILY AND THEIR
ROLES IN CNS

The mammalian C-type TRP channels (TRPC proteins) are
most closely related to Drosophila TRPs. In terms of amino
acid similarity, TRPCs can be classified into four subsets:
TRPC1, TRPC2, TRPC3/6/7, and TRPC4/5 (Clapham et al.,
2001). At a molecular level, all TRPCs consist of a pore–
loop motif, three to four NH2-terminal ankyrin repeat domains
(ARDs), and a COOH-terminal TRP domain (Venkatachalam
and Montell, 2007). The ARD is a common protein–protein
interaction module, typically consisting of 33 amino acid
residues, which forms a canonical helix-loop-helix fold followed
by a β-hairpin loop (Islam et al., 2018). ARDs perform crucial
roles in various cellular processes, including thetranscription,
signal transduction, inflammatory responses, cell development,
and cell cycle (Islam et al., 2018). Confocal Förster resonance
energy transfer (FRET) measurements revealed that the first
ARD in TRPC5 is crucial for homomultimerization (Schindl
et al., 2008). ADRs are also closely involved in TRPC4 tetramer
assembly (Lepage et al., 2009). In addition, ARDs in TRPC3 in
skeletal muscle could mediate TRPC3/1 heteromerization, thus
regulating resting cytosolic Ca2+ levels (Woo et al., 2014). The
novel membrane RING-H2 protein, RNF24, binds with the ARDs
of TRPC6 in the Golgi apparatus and results in intracellular
retention of TRPC6 without affecting channel activity (Lussier
et al., 2008). Thus, ARDs of TRPCs likely participate in their
channel heteromerization and trafficking. The TRP domain is
a highly conserved sequence of 25 amino acids containing a
proline-rich motif and an invariant sequence called the TRP box
(Glu-Trp-Lys-Phe-Ala-Arg) (Montell, 2001). A previous study
indicated that the TRP domain in TRPC3 is an essential element
in regulating the cell response to erythropoietin (Hirschler-
Laszkiewicz et al., 2011). The pore region of TRPCs, situated
between the fifth and sixth TDs, is associated with an intracellular
gate and an extracellular selectivity filter. The conserved LFW
motif is a key feature of the TRPC pore loop, which has a
pivotal role in hydrophobic interactions and in sustaining the
appropriate structure of the ion pore (Li J. et al., 2019).

Transient receptor potential canonical channels are non-
selective cation channels with different Ca2+ and Na+
permeability ratios. TRPCs activation is involved in changes
in [Ca2+]i, which governs diverse complex and crucial
cellular functions. Evidence suggests that all TRPCs can
be commonly activated by phospholipase C (PLC) within
numerous stimulation, like inflammatory and IR injury,
subsequently mediating Ca2+ entry into the cell (Weissmann
et al., 2012; Wu et al., 2015). TRPCs are closely connected to PLC

activity controlled by modulation of the endogenous agonists
diacylglycerols (DAGs) and phosphoinositides. TRPCs were
originally identified in sensory nerve endings followed by axons
and dendrites of central neurons in the CNS. There have been
shown that TRPCs are involved in nerve-growth-cone guidance,
neuronal survival, synapse formation, synaptic transmission,
and sensory transduction (Li et al., 2005; Jia et al., 2007; Zhou
et al., 2008; Quick et al., 2012; Hartmann and Konnerth, 2015).
Notably, TPRCs are responsible for inflammation, IR injury, and
excitotoxicity (Ramirez et al., 2018).

Alzheimer’s disease (AD) is driven by the cerebral deposition
of amyloid-β protein (Aβ), the primary element of the senile
plaques seen in the pathological brains. Loss of TRPC1 aggravates
memory deficits and cell apoptosis induced by Aβ (Li et al.,
2018). It is widely recognized that Aβ generation is closely related
to amyloid precursor protein cleavage by γ-secretase. Wang
et al. (2015) demonstrated that TRPC6 regulates γ-secretase
of amyloid precursor protein. Importantly, a recent clinical
case-control research revealed that the TRPC6 mRNA level
in peripheral leukocytes is markedly reduced in patients with
AD, which provides new insight for clinical diagnosis of AD
(Chen et al., 2019). In addition, piperazine, a novel TRPC6
agonist, was shown to decrease long-term potentiation in the
5xFAD mouse, suggesting that piperazine may have potential
for AD therapy (Popugaeva et al., 2019). Heteromultimeric
channels of TRPC1/4/5 subunits regulate flexible relearning and
working memory in mice (Broker-Lai et al., 2017). A study in
TRPC5 transgenic mice identified an essential role of TRPC5,
activated by G protein-coupled neuronal receptors, in the
modulation of innate fear. This result provided strong evidence
that TRPC5 channels may be a potential target for the alleviation
of fear behavior (Riccio et al., 2009). Previous study has
shown that TRPC1 aggravates hippocampal neuronal cell death
(Narayanan et al., 2008). A subsequent research suggested that
the TRPC1 mediates store-operated Ca2+ influx in neurons with
mutant Huntingtin protein, suggesting a novel treatment for
HD (Wu et al., 2011). Inhibition of TRPC1 is a potentially
useful neuroprotective and therapeutic strategy against HD (Wu
et al., 2018). In addition, generation of endogenous TRPC5
is increased in both transgenic mice and patients with HD.
Knockdown or blockage of TRPC5 promotes neuronal survival
and improved neurodegeneration in HD (Hong et al., 2015).
The novel TRPC4/5 blocker, M084, was reported to show rapid
antidepressant and anxiolytic-like effects in male C57BL/6 mice
(Yang et al., 2015). Furthermore, TRPC channels have gained
focus on the treatment of ischemic stroke. Decreased TRPC1
expression was shown in ischemic brain tissues. Overexpression
of TRPC1 inhibits cerebral I/R injury, whereas TRPC1 knockout
has the opposite effects. The underlying mechanism refers to the
generation of reactive oxygen species via nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase family 4-containing-
NADPH oxidase (Xu et al., 2018). Additionally, TRPC6 also holds
important roles in stroke therapy, which will be discussed in
further detail below.

Taken together, the observations outlined above indicating
the importance of TRPCs in CNS disorders suggest that agents
targeting TRPCs have great potential for clinical use. While
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FIGURE 1 | Structural features of TRPC6 channel. (A) Transmembrane
protein TRPC6 contains six TDs, four NH2-terminal ARDs, and a
COOH-terminal TRP domain. (B) S1–S6 are TDs. The pore region of TRPC6,
situated between the S5 and S6, allows the passage of cations. TRP:
transient receptor potential; TRPC6: transient receptor potential canonical
channel 6; TD: transmembrane domain; ARD: ankyrin repeat domain; S1–S6:
S1–S6 are the abbreviations of the first to sixth transmembrane domains.

highly selective and specific agonists and antagonists of TRPCs
are needed for future study to deeply explore their roles in the
treatment of CNS diseases. Even though there is limited evidence,
specific channel characters of TRPC channels make them possible
to be novel targets for brain ischemia. Therefore, further
research efforts are required to find the possible mechanisms
underlying the roles of TRPCs in CNS diseases and particularly
in ischemic stroke.

STRUCTURE AND CHARACTERISTICS
OF TRPC6

The TRPC6 channel protein is composed of six TDs, intracellular
NH2-ARDs, and the COOH-terminal TRPC6 domain (Figure 1).
TRPC6 has a molecular weight of approximately 110 kDa and
consists of 930 and 931 amino acid residues in mice and humans,
respectively. The intracellular cytoplasmic domain and TD are
indispensable for TRPC6 assembly (Tang et al., 2018). The
TRPC6 channel is permeable to several cations, including Ca2+,
Na+, K+, Cs+, and Ba2+ (Hofmann et al., 1999; Estacion et al.,
2006). The relative ion permeability ratio (PCa/PNa) of TRPC6 is

about 5 (Hofmann et al., 1999; Owsianik et al., 2006). Particularly,
TRPC6 governs the function and fate of Ca2+ homeostasis in
various cells and tissues. TRPC6 channel activation in neurons
usually occurs in parallel with cytosolic entry of Ca2+ ions and
the elevation of intracellular Ca2+ (Jia et al., 2007; Bouron et al.,
2016). TRPC6 is widely expressed in different anatomical regions
of the CNS, and is also highly distributed in placenta, lung,
pancreas, adipose, heart, kidney, muscle, and other tissues (Riccio
et al., 2002). TRPC6 can be activated by DAG, store-depletion,
Hyperforin (St. John’s wort extract), or H2O2 (Bouron et al.,
2016). DAG is a second messenger that acts as a regulator of
key signaling molecules, cellular membrane constituents, and
fatty acid metabolism (Massart and Zierath, 2019). It is widely
accepted that activation of TRPC6 channels by DAG promotes
various cellular responses, although the precise underlying
mechanisms remain to be elucidated. By contrast, several studies
have indicated that TRPC6 channels could also be store-operated
(Yu et al., 2003; El Boustany et al., 2008). Hyperforin has been
shown to specifically activate TRPC6 channels, which is mainly
responsible for the antidepressant effect of St. John’s wort (Yang
et al., 2018). There is also a close relation between TRPC6 and
reactive oxygen species. H2O2 was reported to directly activate
TRPC6 channels in different cell types (Bouron et al., 2016).

THE BIOLOGICAL FUNCTION OF TRPC6
IN CNS

In the postnatal rat cerebellum, TRPC6 is identified on
Purkinje cell bodies, on interneurons in the molecular layer
and mature granule cells in the internal granule cell layer,
and is required for postnatal cerebellar neuron development
(Huang et al., 2007). In cultured cerebellar granule cells, brain-
derived neurotrophic factor (BDNF) induces Ca2+ elevation
and nerve growth-cone extension through TRPC3/6 channels
(Li et al., 2005). Besides, TRPC3 and TRPC6 contribute to
BDNF-induced cerebellar granule neuron survival (Jia et al.,
2007). siRNAs against TRPC3 and TRPC6 reduce BDNF-
mediated intracellular Ca2+ elevation, neuroprotection, and
cAMP-response element binding protein (CREB) activation in
cerebellar granule neurons. By contrast, upregulation of TRPC3
or TRPC6 was shown to suppress neuronal apoptosis and
promote the transcription of CREB-dependent reporter gene.
Additionally, Ca2+ influx-dependent TRPC6 channel function
is involved in hippocampal neuron dendritic growth via the
Ca2+/calmodulin-dependent kinase IV (CaMKIV) and CREB
pathway (Tai et al., 2008). In particular, the CaMKIV-CREB
pathway seems to be a vital downstream molecular mechanism
of TRPC6 function in the CNS. Another study showed that
TRPC6 is predominantly presented in excitatory synapses and
plays important roles in promoting synapse and dendritic
spine formation, spatial memory, and learning through the
CaMKIV-CREB pathway (Zhou et al., 2008). As an important
intracellular second messenger, Ca2+ contributes to neuronal
development and survival. The interaction between TRPC3/6
channels and the Na+/Ca2+ exchanger could regulate Ca2+

influx in neuronal cells, suggesting that TRPC3/6 may govern

Frontiers in Aging Neuroscience | www.frontiersin.org 4 March 2020 | Volume 12 | Article 70

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-00070 March 16, 2020 Time: 15:34 # 5

Liu et al. TRPC6 in Ischemic Stroke

the fate of neurons by modulating Ca2+ influx (Louhivuori
et al., 2010). TRPC6 also acts as a negative regulator that
suppresses NMDA-induced Ca2+ currents in hippocampal
neurons (Shen et al., 2013). Interestingly, NMDAR was shown
to regulate transcription and degradation of TRPC6 in neurons
in a bidirectional manner through NR2A or NR2B activation
(Qu et al., 2017). Hyperforin, a specific agonist of TRPC6,
regulates dendritic spine morphology in the hippocampus via
TRPC6 activation and increasing intracellular Ca2+ transients
(Leuner et al., 2013). However, the underlying signaling cascade
has not yet been clarified. The same research team also
reported the involvement of phosphatidylinositide 3-kinase
(PI3K)/protein kinase B (PKB), Ras/mitogen-activated protein
kinase/extracellular signal-regulated kinases (Ras/MAPK/ERK),
and CaMKIV-CREB pathways (Heiser et al., 2013). Moreover,
hyperforin also raises the number of excitatory synapses,
dendritic spine density, and dendritic length in experimentally
depressed rats by rescuing the decline of TRPC6 expression
(Liu et al., 2015). High-throughput sequencing based on TRPC6
in autism spectrum disorder (ASD) patients and controls
revealed the presence of more non-synonymous mutations in
ASD individuals, suggesting that TRPC6 may carry out as a
potential predisposing factor for ASD (Griesi-Oliveira et al.,
2015). Furthermore, TRPC3 and TRPC6 could promote normal
sensory mechanotransduction in touch and hearing neurons,
and therefore knocking out both TRPC3 and TRPC6 resulted in
deficits in sensory conduction (Quick et al., 2012). TRPC6 and
TRPC7 channels also function in phototransduction in murine
retinal ganglion cells (Jiang et al., 2018).

In general, TRPC6 channels are extensively expressed
in the CNS and have various crucial functions. Therefore,
agents targeting TRPC6 may have potential for the cure of
brain disorders.

TRPC6 AND ISCHEMIC STROKE

During the process of ischemic stroke, increasing evidences
support that TRPC6 seems to be a protective pathway. In
comparison with TRPC1/3/4/5, TRPC6 is significantly degraded
in neurons following exposure to ischemia, resulting in ischemic
neuronal death. The maintenance of TRPC6 expression via
CREB-dependent mechanisms has a neuroprotective effect, and
has potential as a protective strategy against ischemic stroke
(Du et al., 2010). In addition, TRPC6 suppresses NMDAR-
induced Ca2+ elevation and neuronal excitotoxicity, and protects
neurons from ischemic brain injury (Li et al., 2012). Resveratrol,
neuroprotectin D1, and the main compound of green tea,
(−)-epigallocatechin-3-gallate, inhibit calpain-mediated TRPC6
proteolysis and activate MEK/ERK or CaMKIV-dependent
CREB pathways, therefore improving neurological status in
experimental stroke (Lin et al., 2013a; Yao et al., 2013, 2014).
Particularly, the TRPC6 activator, hyperforin, also contributes
to neuroprotection after ischemic stroke by blocking TRPC6
degradation accompanied by elevation of phosphorylated CREB
in CaMKIV and Ras/MEK/ERK-dependent mechanisms (Lin
et al., 2013b). Furthermore, calycosin increases neuronal TRPC6

and phosphorylated CREB expression in response to brain
ischemic damage (Guo et al., 2017). We believe that the TRPC6-
CaMKIV-CREB pathway may be an important mechanism
of ischemic stroke (Figure 2). There is increasing research
interest in stem cell therapy for ischemic stroke. Animal
researches have indicated that bone marrow-derived stromal cells
(BMSCs) improve outcomes in stroke, although the regulatory
mechanisms have yet to be clarified (Yang et al., 2014).
Surprisingly, TRPC6 channels have been shown to participate in
the neuroprotective effect of BMSCs and oxiracetam combination
therapies in acute brain IR damage (Wang et al., 2019).
Furthermore, overexpression of TRPC6 in BMSCs improves
neuronal functions in rats after ischemic stroke, which is
associated with BDNF/CREB pathway (Li W. et al., 2019). The
inflammatory response plays a critical role in the pathophysiology
of ischemic stroke. The proinflammatory cytokine, interleukin
(IL)-17A, was shown to be linked with brain IR injury
(Gelderblom et al., 2012). Another study suggested that TRPC6
may act downstream of IL-17A, and indicated that IL-17A
could promote degradation of TRPC6, thus exacerbating cerebral
IR injury (Zhang et al., 2014). Taken together, the evidences
outlined above indicate that TRPC6 has a positive function in
neuroprotection and that TRPC6 expression is reduced during
ischemic stroke. However, it should be noted that TRPC6 may
also have harmful effects on neurons following cerebral IR
injury. In contrast to previous studies, TRPC6 expression was
proved to be increased in wild-type mice neurons after ischemic
stroke. Increased TRPC6 levels or overexpression of TRPC6
exacerbated IR injury-induced infarct volume, Ca2+ elevation,
and neuronal death (Chen J. et al., 2017). Deletion of TRPC3/6/7
was shown to decrease activation of the proapoptotic factor and
nuclear factor (NF)-κB, attenuate NF-κB nuclear translocation,
and enhance activation of PKB, finally leading to resistance
against cerebral IR injury (Chen X. et al., 2017). The causes
for these discrepancies among studies remain unclear; however,
they might have been due to species differences, distinct animal
ischemic stroke models, dissimilar experimental environments,
and researchers. Therefore, more studies are required to clarify
the specific function of the TRPC6 channel in ischemic stroke.

The evidence discussed here indicates that compounds
targeting TRPC6 may have clinical potential as novel agents
for prevention and treatment of ischemic stroke. It should be
noted that interventions for most of the experiments mentioned
above are performed under intracerebroventricular injection or
in vitro cell condition. However, taking into consideration that
TRPC6 is broadly distributed in human tissues (Riccio et al.,
2002), both agonists and antagonists of TRPC6 might bring
some systematic adverse effects. Besides, hyperforin had been
shown to induce TRPC6-dependent Na+ currents and entry and
subsequently decrease the Na+ gradients across the membrane
thus may inhibit the neuronal amine uptake (Leuner et al.,
2007; Wang et al., 2020). Furthermore, hyperforin could also
function as a protonophore and generate H+ currents in a
TRPC6-independent way in several cells (cortical microglial cells,
chromaffin cells, lipid bilayers, and HEK-293 cells), and thereby
suppress the neurotransmitter uptake through sodium-proton
exchangers (Sell et al., 2014). Thus, many factors should be
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FIGURE 2 | Underlying signaling cascade of TRPC6 in ischemic stroke. TRPC6/Ca2+/CAMKIV/CREB pathway is closely involved in the pathophysiological
mechanism of cerebral IR injury. TRPC6: transient receptor potential canonical channel 6; Ca2+: calcium; CAMKIV: Ca2+/calmodulin-dependent kinase IV; CREB:
cAMP-response element binding protein; NF-κB: nuclear factor (NF)-κB.

thoroughly considered before studies are conducted to explore
the effect TRPC6 on ischemic stroke.

CONCLUSION AND PERSPECTIVE

Due to its high prevalence adjuvant and novel treatments for
ischemic stroke are all under active investigation; e.g., digital
therapeutics, microRNA-based therapeutics, cell therapy, and
exosome therapy (Sun et al., 2018; Venkat et al., 2018a,b;
Bayraktutan, 2019; Choi et al., 2019). Despite advances in
therapy, stroke remains a major health issue. The studies
discussed in this review suggest that investigation of the TRPC
and TRPC6 channels may hold promise for the development
of novel directions in ischemic stroke therapies. We have
emphasized some important clues regarding the involved
mechanisms of TRPC6 in physiology and pathophysiology of
cerebral ischemia. More data and solid evidence of TRPCs

and TRPC6 in stroke therapy are urgently needed to bridge
the gap between current pre-clinical medical researches and
clinical practice. Further studies are required to support the
speculations regarding the promising therapeutic roles of TRPCs
and TRPC6 in ischemic stroke, and to determine the mechanisms
underlying these roles.
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