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Purpose: To present the ocular findings of a Hungarian family with X-linked juvenile retinoschisis (XLRS) and to reveal
a novel putative splice mutation leading to serious truncation of retinoschisin (RS1) protein. Our genetic results were
compared to a mouse model of XLRS.
Methods: Complete ophthalmic examinations were performed on five members (two male patients, two female carriers,
and one healthy fraternal male twin) of the family. The examinations included optical coherence tomography (OCT) and
full-field and multifocal electroretinography (mfERG). OCT and ERG results were compared to the normative database
of our laboratory. All exons and the flanking intronic regions of the RS1 gene were amplified by polymerase chain reaction
and directly sequenced in all family members and in 50 male controls.
Results: Typical microcystic foveal changes were found on fundoscopy and OCT in two male patients. Large foveal and
smaller perifoveal cysts were detected by OCT in the inner nuclear layer and another deeper retinal cleavage in the
photoreceptor layer. The standard combined b-wave amplitudes and b/a amplitude ratios of full-field ERGs of the male
patients were decreased compared with controls, but the typical “negative-type” ERG was not observed. The amplitudes
of mfERGs were reduced in all rings but mainly in the central part of the examined retina. Implicit times were delayed
across almost the whole testing field. Female carriers and the healthy fraternal twin brother were without any symptoms
and had normal clinical examination results, but the implicit times of female carriers were delayed in all rings. DNA
sequence analyses revealed a novel putative splice mutation (c.78+1G>C) in the splice donor site of intron 2 in RS1 of
two male patients and two female carriers. Mutations were absent in the 50 control samples.
Conclusions: Male patients exhibited typical bilateral foveal retinoschisis in two retinal layers and characteristic ERG
changes. The inheritance of the novel putative splice mutation (c.78+1G>C) followed the classic inheritance of an X-
linked recessive disease in two male patients and two female obligate carriers. There are two possible ways the c.78+1G>C
splice site mutation may lead to frameshift and introduce a premature termination codon at the beginning of exon 3: after
activation of the next cryptic splice site by a 10 bp insertion or after exon skipping by a 26 bp deletion. The splice site
mutation in the second intron of RS1 identified in these XLRS patients is practically identical to the N-ethyl-N-nitrosourea
(ENU) induced splice site mutation in the mouse model of XLRS described by the Tennessee Mouse Genome Consortium.
The genetic findings of the mutant mouse model confirm and support our human results.

X-linked juvenile retinoschisis (XLRS; OMIM 312700)
is the leading cause of juvenile macular degeneration and is
limited almost exclusively to males. It is caused by mutations
in the RS1 gene in Xp22.2 [1]. Affected males show radially
oriented intraretinal foveomacular cysts (spoke-wheel
pattern) in different retinal layers from inner to outer layers in
the earlier stage. In later stages of the disease the coalescing
cysts form a large central cavity, which can ultimately
progress into nonspecific macular atrophy [2-5].
Approximately half of cases have bilateral peripheral
retinoschisis in the inferotemporal part of the retina [6]. Boys
are usually diagnosed with uncorrectable visual impairment
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between the ages of 5 and 10 years [6]. Disease severity and
progression are highly variable even within families, and
complications such as vitreous hemorrhage, choroidal
sclerosis, retinal detachment, and neovascular glaucoma may
occur [6-8]. Full-field electroretinograms (ERGs) of the
affected individuals are characterized by a reduction in the
amplitude of standard combined b-wave and a relative
preservation of the a-wave, which is called electronegative
ERG (b/a wave ratio≤1) [9,10]. The a-wave can also be
reduced with age due to increasing RPE atrophy or
photoreceptor involvement [6,10]. The multifocal ERGs
(mfERG) of patients are characterized by diminished response
densities, mainly in the central rings with delayed implicit
times [9]. Thus ERG is a useful method to make the diagnoses
of XLRS, but it is not a specific indicator of XLRS [9].

The RS1 gene that causes XLRS (localization: Xp22.2,
GenBank AF014459) was identified in 1997 by positional
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cloning [1]. Since then numerous inactivating mutations have
since been found and they are summarized in the retinoschisis
sequence variation database. RS1 has six exons and encodes
a 224 amino acid (AA) secretable extracellular adhesion
protein, called retinoschisin (RS1). RS1 is primarily present
in photoreceptors and bipolar cells and it interacts with the
surface of these cells to stabilize the organization of the retina
[11]. During the early stages of retinal development, ganglion
cells also express RS1. Müller cells neither express RS1 nor
are involved in its transport [12]. RS1 may be involved in
cellular adhesion and cell-cell interactions on membrane
surfaces [8,13]. The predicted RS1 protein contains three
domains: a 23 amino acid (AA) secretory leader sequence (LS,
encoded by exon 1–2), a 39 AA Rs1 domain (Rs1D, encoded
by exon 3) responsible for oligomerization, and a highly
conserved 157 AA discoidin domain (DD, encoded by exon
4–6; Figure 1) [10,13-16]. There is a 5 AA segment at the C-
terminal end of the protein. The highly conserved,
hydrophobic N-terminal 23-residue secretory leader signal
sequence mediates the protein export [9,13,14]. It is predicted
to be cleaved by a signal peptidase as part of the protein
secretion process [14]. The mature protein has a calculated
size of 201 AA and contains the main structural feature of
RS1, the highly conserved DD, which is shared with several
other proteins [9]. The dysfunctional, defective RS1 protein
is probably accumulated both extracellularly and
intracellularly, eventually leading to cystic-like spaces and
schisis formation in several different layers of the retina [7,
17].

Most of the mutations are missense mutations, and most
disease-causing mutations are localized to exon 4–6 of RS1
within the DD. Exons 1–3 tend to have mainly translation-
truncating nonsense mutations [18,19]. In addition to these
mutations, insertions, deletions, duplications, intragenic
deletions, splice site and frameshift mutations have also been
identified in XLRS patients [1,2,18,19].

The phenotype (as measured by optical coherence
tomography (OCT), fundoscopy, and ERG) shows a wide
interocular and intrafamilial variability even in the case of the
same mutation [2,20]. Thus far no real genotype-phenotype
correlation has been detected [20,21].

Here we demonstrate the phenotype and genotype of a
novel putative splice donor site mutation in a Hungarian

Figure 1. Schematic diagram of RS1 protein. The following
abbreviations were used: LS represents leader sequence (23 amino
acids (AAs)), Rs1D represents Rs1 domain (39 AAs), DD represents
discoidin domain (157 AAs), and there is a five AA segment present
on the C-terminal side of the DD. The red line marks the position of
the putative premature stop codon at the beginning of exon 3.

family and compare their genetic background with a similar
ENU-induced mutation in mouse, generated by the Tennessee
Mouse Genome Consortium [22].

METHODS
Clinical studies: All studies were conducted in accordance
with the tenets of the Declaration of Helsinki. Voluntary
informed consent was obtained from all participating
individuals (or from their parents) after providing a full
explanation of the procedures. The molecular genetic
examinations were approved by the Ethics Committee for
Human Genome Research of Semmelweis University. We
analyzed this family only, because no other family was found
with this splice site mutation. There were no more relatives in
the family. In spite of the low pedigree size, founding the
mutation in the RS1 gene of the X-chromosome can prove the
X-linked inheritance in this family. Our pedigree excludes the
dominant inharitance pattern and on the basis of our
knowledge there was no other inheritance pattern published if
an RS1 mutation is found. The rare cases, like consangious
marriage, X-chromosome inactivation, Turner syndrome  can

Figure 2. Pedigree of the family with X-linked juvenile retinoschisis.
Black boxes represent affected males, while circles with a black dot
in the center represent carrier females by sequence analysis. The
circle with an open dot represents a female that is expected to be an
obligate carrier female. Red numbers mark family members who
underwent complete clinical and molecular genetic examinations.
Red arrow points to the proband. Slashed boxes are deceased family
members. Patients III/2 and III/3 are fraternal twins.
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be excluded. So the inheritance can be X-linked recessive
only.

A Hungarian family (Figure 2) with XLRS was referred
to the study by the Department of Ophthalmology,
Semmelweis University, Budapest, Hungary. Complete
ophthalmic examinations including OCT, full-field and
multifocal ERGs were performed on three males and two
female obligate carriers. Two of the three males (III/2 and III/
3) are fraternal twins and only one of them had visual
difficulties.

Best corrected visual acuity (BCVA) was determined
using a Snellen chart. Dilated indirect ophthalmoscopy of the
posterior pole was performed with fundus photography.

OCT was performed in both eyes of each family member,
using six 6-mm long OCT scans centered on the fovea by a
Stratus OCT device (Carl Zeiss Medical Inc., Dublin, CA).
The foveal thickness was calculated on the basis of OCT scans
by the built-in software of the device and shows the retinal
thickness between the internal limiting membrane and the
pigmentepithel layer at the fovea. The FT map is a color-coded
map of foveal thickness and uses to evaluate the size of
macular edema, but also suitable to visualize macular cyst and
check the central fixation. The total macular volume was also
calculated by the built-in software and shows the volume
between the above mentioned two layers at the macula and
also capable to evaluate the size of edema or cyst.

Full-field ERGs (Roland Consult RetiPort, Wiesbaden,
Germany) with white single flash stimuli were recorded
according to International Society for Clinical
Electrophysiology of Vision standards [23,24]. Pupils were
dilated by instilling one drop of cyclopentolate 0.5% solution
in each eye, and corneal jet electrodes were placed after
instilling 0.4% oxybuprocaine chlorate as a topical corneal
anesthesia. The amplitudes and implicit times of scotopic
bright-flash (maximal response) a- and b-waves were
measured, and the ratios of the b/a amplitudes were calculated.

TABLE 1. SEQUENCES OF PRIMERS USED TO AMPLIFY THE CODING REGIONS OF THE RS1 GENE.

Exon Primers (5′-3′)
Product size
       (bp)

 Ta
(°C)

1 F: CTCAGCCAAAGACCTAAGAAC 216 58
R: GTATGCAATGAATGTCAATGG

2 F: GTGATGCTGTTGGATTTCTC 176 56
R: CAAAGTGATAGTCCTCTATG

3 F: CGATGCATAAGGACTGAGTGTGATC 377 50
R: GCATTAACATAGGCTTAC TAATAG

4 F: CGTGAGTAGTGAACCGTTGAAGAC 381 50
R: ACGCTGGTAGAGAGGCCTAT

5 F: GCAAGTTAAGTATAACGGAAGCTG G 508 50
R: GGAAAGCGCAGATGATCCACTGTG

6 F: GCAAACTGCTTTAACTAC TTCC 427 50
R: CCAGCACTGCAGTTACAATTGC

Shown are primer sequences, annealing temperatures, and
anticipated size of the amplified product for the different
fragments of RS1  studied. The following abbreviations were
used: base pair (bp) and annealing temperature (Ta). The
template sequence is available at NCBI, GenBank accession
number: RS1: NM_000330 .

The multifocal ERGs (Roland Consult RetiScan,
Wiesbaden, Germany) were recorded with the same
electrodes, using a 21” video stimulating display. Before
insertion of the contact lens electrode, the subjects were
optically corrected for the viewing distance if it was possible.
The central 60° diameter part of the retina was stimulated in
each eye separately by 61 hexagons under photopic
conditions. Amplitudes and implicit times of the b-waves (P1)
of first order kernels were measured.

All OCT and ERG results were compared with the values
of 35 male and 35 female control subjects, with a mean age
±SD: 22±10 years, respectively. To confirm the pathogenetic
effects of the identified mutation 50 control male subjects
(including the previous mentioned 35 control males), with a
mean age±SD: 22.8±10.3 years were genetically examined.
All controls were examined using the same clinical protocol.
All of them had normal vision, had not any acquired or
genetically inherited eye diseases and not the members of
XLRS families. Inclusion criteria in the normative database
were: preserved vision and absence of any acquired or
genetically inherited eye diseases. A simple comparison was
performed with the mean±2SD values of the normative
database.
Molecular genetic studies: Peripheral blood (6 ml) was
collected in EDTA-K3 tubes from all family members and 50
healthy male controls. Genomic DNA was isolated from
leukocytes according to the manufacturer’s instructions, using
the QIAamp DNA Mini Kit (Qiagen GmbH; Hilden,
Germany). Isolated DNA samples were stored at a
temperature -20°C. The 50 male controls include the 35 ones
from the OCT and ERG controls. For mutation screening all
exons and the flanking intronic regions of RS1 were amplified
by the polymerase chain reaction (PCR) process using
standard primers. Details of the primers, size of the amplified
fragments, and annealing temperatures are given in Table 1.

PCR was performed using genomic DNA in a Termo
Hybaid PxE thermal cycler (Thermo Hybaid, Franklin, MA).
The reaction volume of 50 µl contained the following: 5X
GoTaq Reaction Buffer (pH 8.5, containing 1.5 mM MgCl2;
Promega Corporation, Madison WI), 25 pmoles of each
primer (Invitrogen Life Technologies, Glasgow, UK), 0.2 mM
each dNTP (Promega), and 2.5 U GoTaq Polymerase
(Promega). PCR cycles for the retinoschisin gene were as
follows: pre-denaturation at 95 °C for 2 min, followed by 35
cycles of denaturation at 95 °C for 1 min, annealing at the
appropriate temperature for 1 min, and 1 min elongation at
72 °C. The final extension was performed at 72 °C for 10 min.

The amplicons were analyzed on 1% agarose gel and
stained with ethidium bromide. The resulting DNAs were
purified using Roche High Pure PCR Purification Kit (Roche
Diagnostics GmbH, Mannheim Germany) according to the
manufacturer’s protocol.
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PCR-amplified DNA of RS1 were sequenced by direct
nucleotide sequencing using the Big Dye Terminator Cycle-
Sequencing v3.1 Kit (Applied Biosystems, Foster City, CA)

and run on an automated sequencer (ABI Prism® 310 Genetic
Analyzer; Perkin Elmer™; Applied Biosystems).

Figure 3. Fundus photographs and
optical coherence tomography images
of patients IV/1 and III/2 suffering in X-
linked juvenile retinoschisis. In patient
IV/1, the fundi show radially oriented
intraretinal foveomacular cysts in a
spoke-wheel configuration, with the
absence of foveal reflex (IV/1 A, B). A
golden-yellow reflex called Mizou-
Nakamura phenomenon is seen on the
posterior pole of both eyes of patient IV/
1 marked by white arrowheads (A, B).
The OCT images of him (IV/1 C, D)
reveal retinoschisis in the inner nuclear
layer (marked by blue arrow), in the
photoreceptor layer (marked by yellow
arrow) and some cysts in the outer
plexiform layer (marked by white
arrows) in both eyes, and one cyst in the
ganglion cell layer (marked by red
arrow) in the right eye. His OCT scans
and foveal thickness maps show
significant diffuse thickening of the
right fovea (IV/1 C, C1-2), and because
of the huge central cyst the significant
pronounced thickening of the left fovea
(IV/1 D, D1-2) compared with the
controls. The eccentric fixation is
clearly identifiable on his left FT map
(IV/1 D1). In patient III/2, the fundi
show spoke-wheel configurations in the
foveas with the absence of foveal reflex
(III/2 A, B). The OCT images reveal
retinoschisis in the inner nuclear layer
(pronounced in the left eye), small cysts
in the ganglion cell layer of both eyes
(III/2 C, D) and one cyst in the outer
plexiform layer of left eye (III/2 D). His
OCT scans and foveal thickness maps
show significant diffuse thickening of
the right fovea (III/2 C, C1-2), and
because of the huge central cyst the
significant pronounced thickening of
the left fovea (III/2 D, D1-2). The
eccentric fixation is clearly identifiable
on his left FT map (IIII/2 D1).
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The results were compared with the reference sequence
from the X-linked retinoschisis sequence variation database
and the sequence of the 50 controls.

The putative donor splice site was predicted with
NNSPLICE, 0.9 version, at the website of the Berkeley
Drosophila genome project.

RESULTS
Clinical studies: The clinical data of patients are reported in
Table 2. A pedigree of the family members involved in the
study is given in Figure 2.

Fundoscopy showed typical bilateral spokewheel-like
foveal retinoschisis (Figure 3) characterized by radially
arranged microcysts in the inner layers of the retina with the
absence of foveal reflex in patients IV/1 and III/2. Neither
peripheral retinoschisis nor any retinal tears or retinal
detachments were evident. Golden-like fundus reflex, also
called the Mizuo-Nakamura phenomenon, was found in both
fundi of patient IV/1.

BCVA parameters of male patients, which varied from
0.25 to 0.42, were below the normal BCVA range of
0.98±0.06. At his first examination, patient IV/1 could hardly
find the numbers on the Snellen chart. His BCVA was 0.25 in
the right eye and 0.3 with eccentric fixation in the left eye.
One year later, the fundoscopic findings had not changed, but
his visual acuity had improved: BCVA in this patient’s right
eye and left eye were both 0.42 without any correction and
with eccentric fixation in the left eye.

OCT images of patient IV/1 showed huge low reflective
cysts in the fovea surrounded perifoveally by many smaller
ones in the inner nuclear layer (INL), and another deeper
schisis in the photoreceptor layer (Figure 3). Next to the huge
central cysts, some cavities were evident in the outer
plexiform layer (OPL). The cysts were separated by multiple,
highly reflective, vertical, thin-walled strands. In the right eye
there was a small cyst in the ganglion cell layer also. Both
OCT scans and the foveal thickness map proved the eccentric
fixation in the left eye.

OCT images of patient III/2 (Figure 3) showed a flattened
schisis with smaller cysts bordered by vertical bridging retinal
elements in the INL in the right eye. In the left eye there were
huge centrally localized cysts besides the smaller ones in the
INL bordered by vertical bridging retinal strands with
eccentric fixation in the left eye. Small cysts could also be
found in the ganglion cell layer in both eyes. Foveal thickness
and total macular volume parameters of the two patients were
increased (FT: 328% of the normative values; TMV: 118%).
OCT parameters of other family members were normal.

Full-field ERG recordings of patient IV/1 and III/2 (Table
2) showed markedly reduced standard combined b-wave
amplitudes (57% of the normative values) with the relative
preservation of standard combined a-wave amplitudes (91%)
in both eyes. The standard combined b/a amplitude ratios were

also decreased (63%), but the typical “negative-type” ERG
was not observed.

Response densities (RDs) of mfERGs of patient IV/1 and
III/2 (Figure 4A,B) were characterized by decreased P1 (b)
amplitudes (IV/1>III/2 in the first rings) across the whole
examined retinal area, but mainly in the three central rings as
compared with controls. RDs of carriers were within the
normal range. Implicit times of patients and carriers were
delayed in all rings compared with controls.
Molecular genetic studies: A novel putative RS1 splice donor
site mutation (c.78+1G>C) of intron 2 was identified in the
two male patients (III/2, IV/1) and in two female carriers (III/
1, II/1; Figure 2 and Figure 5; Table 1). There was no other
disease-causing mutation in the exons or in other flanking
introns of RS1. The asymptomatic fraternal twin (III/3) had
no mutation in RS1. There were no any SNPs found in the
disease family in or near the RS1 gene locus.

DISCUSSION
The symptoms, the morphological (OCT) and functional
(ERGs) phenotypes of patients IV/1 and III/2 corresponded
with XLRS. These patients had characteristic bilateral
spokewheel-like pattern of the macula without any peripheral
retinoschisis.

The rare golden-like fundus reflex on the fundi of patient
IV/1 (Mizuo-Nakamura phenomenon) was previously
described in the dark-adapted retina immediately or shortly
after exposure to light. The golden-like fundus reflex is
primarily observed in Oguchi's disease and in rare cases in
XLRS [25]. This reflex is probably attributed to a potassium
imbalance in the inner retina as a result of a decreased
potassium scavenging capacity of retinal Müller cells [25].

Two affected patients had decreased visual acuity
bilaterally. Patient IV/1 showed an improvement of visual
acuity in both eyes at a one-year follow-up. It may presumably
be due to the more efficient use of the ectopic fovea. It can
occur only in young age as a result of the plasticity of the
developing visual system [4,26].

OCT images of the two patients showed huge low
reflective cysts in the fovea surrounded by many smaller ones
in the INL perifoveally, and another deeper schisis in the
photoreceptor layer, where normally the retinoschisin protein
can be detected in the highest quantity. FT and TMV of the
two patients were increased, and the eccentric fixation was
easily detected on the OCT macular thickness map (Figure 3).
Using the retinoschisis classification system developed by
Prenner at al. [27], we classified each eye of patients IV/1 and
III/2 as type 3.

The standard combined responses of full-field ERGs of
the two patients had a reduction in b-wave amplitude and a
relative preservation of the a-wave, leading to a reduction in
the b/a ratio (negative-type ERG). The standard combined b/
a amplitude ratios were lower in the older patient. The
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negative-type ERG was described as characteristic of XLRS;
however it is not specific, as it can be found in other retinal
diseases (e.g., congenital stationary night blindness, Oguchi
disease, fundus albipunctatus, Batten disease, central retinal

Figure 4. Multifocal electroretinography results of the two patients,
carriers, and controls. A: Trace arrays of patients IV/1 and III/2 with
61 elements. B: Response densities (RDs) and implicit times of
multifocal electroretinographs for five eccentric rings in patients
(marked red), carriers, and controls. Gray area represents the 95%
confidence interval of our control database, the single control line in
the center of the gray area represents the average of the set of control
patients, while error bars represents ± standard deviation (SD).
Response densities (RDs) of patients were decreased in all rings,
while carriers’ RDs were within the normal range. Implicit times of
patients and carriers were delayed in all rings. The following
abbreviations were used: right eye (RE) and left eye (LE).

artery occlusion, cancer-associated retinopathy, melanoma
associated retinopathy, Duchenne muscular dystrophy) [28].

In the mfERGs, first order kernels of the two patients
showed decreased P1 (b) amplitudes in all rings, but mainly
in the three central rings. Implicit times were delayed in all
rings.

During the aging of patients with XLRS, the size of foveal
cysts and the ERG b-wave amplitudes decrease [5,10,29,30].
Comparing with patient IV/1, the flattened cysts, lower OCT
values, and decreased standard combined b/a amplitude ratios
of patient III/2 were probably due to the age effect [5,10,29,
30].

The cell origin of full-field and mfERG responses is
concluded as the same [31]. The a-wave originates from
photoreceptors, while the b-wave from ON- and OFF-bipolar
cells with a smaller contribution of cone photoreceptors [31].
Accordingly the decreased standard combined b-waves and
the decreased P1-waves of our patients suggest that the retinal
damage affects mainly the INL with bipolar cells and less the
photoreceptor layer. This corresponds with our OCT findings
as more pronounced schisis was found in the INL and smaller
ones in the photoreceptor layer. The highest quantity of RS1
protein was also detected in these two layers by
immunohistochemistry [11,32].

As a new finding we described a novel putative splice
mutation with a G to C transversion at the conserved GT splice
donor site of intron 2 leading to 5′ splicing mutant variants of
retinoschisin. This may happen by cryptic splice site
activation or by exon skipping (Figure 5) described below:

Cryptic splice site activation (intron retention):
Conserved GT signals are important for normal gene
expression as they are involved in mRNA processing [33]. By
mutating a conserved splice donor site from GT to CT, a novel
cryptic site may become activated during RNA splicing, and
thus the splice is probably shifted by ten nucleotides (donor
site prediction score: 0.91) downstream to the next GT in the
intronic sequence. Consequently, exon 2 becomes longer by
ten nucleotides (CUAUGUAACA) inserted between
positions 78 and 79, and the insertion encodes Leu+Cys+Asn
amino acids and a residual adenine (A) nucleotide. The
frameshift hypothetically results in a consecutive premature
termination codon (PTC) in the beginning of exon 3 (after
codon 30). The mRNA with its PTC is probably destroyed by
a quality-control surveillance mechanism called nonsense-
mediated mRNA decay (NMD). It protects the cell from
mutations that could yield to truncated proteins by eliminating
mRNA that contains a PTC [34].

Exon skipping: Nonsense, but not missense mutations,
can alter splicing pathways, resulting in failure to include the
affected exon in the final mRNA (a phenomenon known as
exon skipping). The presumed 26 bp deletion at position 52
(exon 2 skipping) may cause frameshift and a PTC at the
beginning of exon 3, as with the case of the 10 bp insertion
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described in the previous section. The mRNA with PTC is
probably eliminated by NMD.

PTCs that occur because of the frameshift caused either
by the 10 bp insertion or the 26 bp deletion may result in the
total absence of RS1 protein by NMD and the resultant
development of XLRS.

In a comparison of the clinical results of the two patients
with our own retinoschisis database, we found the absence of
the entire RS1 protein (completely lacking DD) did not seem
to be accompanied by more severe symptoms than the less
serious structural lesions of RS1 protein caused by other
mutations. This is in agreement with previous findings for
many X-linked recessive diseases: Considering that female
carriers are unaffected, it seems that the absence of a
functional RS1 protein in males, rather than the presence of a
gain-of-function mutant protein, is responsible for

retinoschisis in affected males [35]. Consequently, the main
point in avoiding retinoschisis is the presence of the functional
RS1 protein.

The Tennessee Mouse Genome Consortium generated
the 44TNJ mutant mouse, the first murine model of X-linked
retinoschisis in which the gene is expressed by using an ENU-
based mutagenesis screen to produce recessive mutations
[22]. The retinoschisis-1 homolog (Rs1h) cDNA, which was
reverse transcribed from mRNA isolated from eyes, and the
genomic DNA, obtained from tails, were sequenced directly.
The gene Rs1h revealed a T->C splice donor site mutation at
the second base of intron 2. This generated splice site mutation
is very similar to our human mutation. The amplification of
the mutant Rs1h cDNA by PCR revealed two new splice
products in the retina in addition to the wild type. The first
alternative transcript had a 10 bp insertion between positions

Figure 5. DNA sequence in wild type
(WT), in III/1 heterozygote carrier
mother, in IV/1 and III/2 hemizygote
patients. In case of patients with c.
78+1G→C mutation there may be two
possible ways during RNA splicing. The
first possible way is the partial intron
retention by the activation of a cryptic
splice site. Mutating the conserved
splice donor site from GT to CT, a novel
cryptic site may become activated
during RNA splicing, and thus the splice
is probably shifted by ten nucleotides
(CTA TGT AAC A) downstream to the
next GT in the intronic sequence. Thus
exon 2 gets longer by 10 nucleotides
(marked blue in the picture), which
results in a frameshift and finally cause
a premature termination codon (PTC) at
the beginning of exons 3 (after codon
30). In this way the truncated RS1
protein would contain only 30 AAs, but
previously the truncated mRNA may
probably be eliminated by the nonsense-
mediated mRNA decay (NMD). The
second possible way is the exon 2
skipping with a 26 bp deletion (marked
blue in the picture) at position 52. It may
result in a frameshift and a new PTC at
the beginning of exon 3 at the same
position like in case the above described
partial intron retention. In this way the
truncated RS1 protein would consist of
only 17 AAs and an additional new one
(marked green in the picture) at the C
terminal. But previously, like in the first
hypothetical way, the truncated mRNA
may probably be eliminated by the
nonsense-mediated mRNA decay
resulting in no functional RS1 protein.
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88 and 89, leading to elongation of exon 2 by the first 10
nucleotides of intron 2. The second alternative transcript had
a 26 bp deletion at position 62 (entire exon 2). Both splice
variants lead to frameshift and PTC at the beginning of exon
3. In both cases another open reading frame was found after
only a few bases.

On the basis of the simultaneous presence of two different
types of mRNA in 44TNJ mutant mouse and the very similar
mutations, we hypothesized that there may also be two
different types of mRNA simultaneously in our XLRS
patients.

Since identification of RS1 splice variants in human is
difficult because of the lack of tissue-specific cDNA sequence
data, we feel further animal studies are needed to clarify
whether the truncated Rs1h peptides or the peptides encoded
by the new open reading frames are present in the retina or
whether the mutant mRNAs are degraded by NMD. However,
our findings are very similar to those found in the above
mentioned animal model of XLRS and may help to understand
the genetic background of the disease in our family with
XLRS.
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