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A B S T R A C T

In specific language impairment (SLI), there is a delay in the child’s oral language skills when compared with
nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and
word learning. This article reviews studies which have used mismatch negativity (MMN) in investigating low-
level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound
discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer
latencies for speech and non-speech sound changes in children with SLI than in typically developing children,
suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory
memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies re-
ported associations between MMN parameters and language test measures. In addition, it was found that lan-
guage intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results
suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI,
which are likely to influence speech perception.

1. Introduction

Specific Language Impairment (SLI) is a common developmental
disorder, affecting about 3–10% of children (Tomblin et al., 1997),
which has a serious impact on the child’s psychosocial and educational
outcome (Conti-Ramsden et al., 2013; Johnson et al., 2010). SLI is di-
agnosed if the child’s oral language is delayed compared to other,
nonverbal cognitive abilities and there is no other apparent neurolo-
gical or sensory explanation. On average, children with SLI learn new
words more slowly, have difficulties in understanding complex sen-
tences, and often the language they produce is poorer than in typically
developing peers (Leonard, 2014).

SLI affects many cognitive functions, particularly phonological
(Ramus et al., 2013) and morphological (Bishop, 2014) processing,
verbal short-term memory (Archibald and Gathercole, 2006), and im-
plicit learning of sequences of information (Lum et al., 2014). However,
SLI, which is highly heritable (Kang and Drayna, 2011), is most likely a
heterogeneous multidimensional disorder with several partly in-
dependent risk factors. For example, some cognitive components un-
derlying SLI might affect language abilities directly, whereas some
other risk factors may have an indirect impact leading to poor language
acquisition of language skills. In adolescents and adults the separation

of different causal factors might be difficult if not impossible, pro-
moting the importance to study children as early as possible.

Event-related potentials (ERPs) offer a means to investigate certain
deficits, such as poor speech sound discrimination, associated with SLI.
ERPs reveal the time course of sound processing from neural sound
encoding (sound-elicited deflections) to discrimination, followed by an
attention switch to intrusive sounds (Näätänen, 1992). The high tem-
poral resolution of ERPs enables one to determine which processes (e.g.,
encoding or discrimination of sounds, or formation or retention of
sound memory traces) and processing stages (e.g., early automatic vs.
later attentive) are abnormal. With the mismatch negativity (MMN),
which reflects the early, “low-level”, stages of auditory information
processing at the subcortical and cortical levels (Escera et al., 2014),
one can study these deficits even in children and infants. This is clearly
beneficial since infant perception and cognition are altogether chal-
lenging to assess and in children low motivation or ability to perform
experimental tasks can influence the results.

The current review discusses how the MMN has been and can be
used to investigate and predict auditory, language, and memory dys-
functions in SLI. To this end we first introduce MMN (particularly those
aspects of the MMN that are relevant for investigating SLI). Thereafter,
we present an overview of the studies using the MMN in investigating
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the neural basis of SLI, and suggest future directions for research in
order to deepen the understanding of the neural basis of SLI.

1.1. The mismatch negativity in investigating auditory cognition

1.1.1. An overview of MMN
MMN is a negative displacement in the sound-elicited ERP, the

waveform of which includes the P1-N1-P2 complex in adults (Näätänen,
1992) and the P1-N2-N4 complex in children under the age of 11
(Ponton et al., 2000). The MMN, peaking at 150–200ms from change
onset in adults, is elicited by any discriminable change or violation of
recent auditory regularities (for reviews, see Näätänen et al., 2007;
Winkler, 2007). Apart from the acoustic differences between sounds,
the MMN amplitude is also influenced by auditory linguistic experience
and also underlying auditory discrimination abilities (see Kujala and
Näätänen, 2010, for a review). The main generators of the MMN ori-
ginate in the supratemporal auditory cortices and frontal regions (for
reviews, see Alho, 1995; Kujala, 2007). It has been argued that the
MMN elicitation is based on the formation of a memory representation,
which lasts about 4–15 s (Cowan et al., 1993; Mäntysalo and Näätänen,
1987; Ulanovsky et al., 2004). An alternative interpretation was pos-
tulated (May and Tiitinen, 2010), suggesting that the MMN results just
because the neurons responding to standard stimuli have a higher de-
gree of refractoriness than those responding to deviant stimuli. How-
ever, with certain experimental manipulations the contribution of
exogenous responses can be avoided and a genuine MMN can be ob-
tained (Näätänen et al., 2011).

Neural discrimination responses are ontogenetically very early,
being elicited even in fetuses (Huotilainen et al., 2005). Change-elicited
responses are usually positively-displaced in infants, being therefore
called the mismatch response (MMR). An adult-like negativity starts to
emerge at the age of 3–6 months, but in this development there is wide
inter-individual variation (Trainor et al., 2003). By the school age, this
response typically shows the negative polarity of the MMN (Fig. 1),
although a positive MMR sometimes coincides with this response
(Maurer et al., 2003; Shafer et al., 2011; Lee et al., 2012). The MMR/
MMN peak latency decreases as children mature (e.g., Glass et al., 2008;
Morr et al., 2002; Shafer et al., 2000).

The MMN is often followed by a late discriminative negativity
(LDN) in children (Korpilahti et al., 2001; Maurer et al., 2003), the

amplitude of which behaves differently from that of the MMN, the LDN
being smaller for larger stimulus changes (Bishop et al., 2011; Hommet
et al., 2009; Liu et al., 2014). The LDN might reflect additional pro-
cessing of sounds that are difficult to discriminate (Bishop et al., 2011;
Hommet et al., 2009; Liu et al., 2014), or the establishment of children’s
neural phonological representations (Kuuluvainen et al., 2016; Liu
et al., 2014). The LDN amplitude decreases with age (Bishop et al.,
2011; Liu et al., 2014), and is usually not elicited in adults (see, how-
ever, Barry et al., 2009).

In the next sections, we will briefly describe how the MMN can be
used to investigate memory, discrimination, and language functions,
which are compromised in SLI. Thereafter, findings obtained with
MMN/LDN in investigating these functions in SLI will be discussed.

1.1.2. Sensory memory
A prolongation of the presentation interval of sounds abolishes

MMN, since the trace of each sound fades away when the next sound
enters the auditory system (Näätänen, 1992). The MMN was found to
be abolished with stimulus offset-to-onset intervals of 4 and 8 s. (for
example, Mäntysalo and Näätänen, 1987), but some MMN studies have
suggested longer sensory-memory lifetimes (e.g., Böttcher-Gandor and
Ullsperger, 1992; Sams et al., 1993; Winkler et al., 2002). By using
different stimulus presentation rates one can compare the duration of
the sensory memory trace between different participant groups.

The formation of memory traces can be studied with backward-
masking paradigms, in which a masking stimulus is presented after
sounds, which should interfere with the formation of the sound memory
trace (Hawkins and Presson, 1986). The masking effect, prohibiting the
discrimination of the sounds, occurs if the interval between the sound
and the masker is sufficiently short (Hawkins and Presson, 1986). In a
study using 25-ms long tones and 55-ms long maskers, deviant tones
neither elicited an MMN nor were behaviorally discriminated from the
standard tones when a masking sound occurred 20–50ms after the tone
offset (Winkler and Näätänen, 1992). However, a prolongation of this
interval to 150ms resulted in successful sound discrimination and MMN
elicitation. The memory-erasing effect of a masking stimulus, which
quickly follows the test sounds, might reflect the integration of suc-
cessive sound events to meaningful entities (Bregman, 1990).

1.1.3. Sound discrimination
The MMN amplitude is large and latency short if the deviant-stan-

dard difference is large, whereas the amplitude diminishes and latency
gets longer if this difference becomes small (Novitski et al., 2004; Sams
et al., 1985; Tiitinen et al., 1994). Furthermore, easily discriminable
stimulus differences also elicit large and early MMN responses, whereas
differences which are harder to discriminate result in small-amplitude
MMNs with a longer latency (Kujala and Näätänen, 2010). Due to this
association, the MMN can also be used as a measure of learning and
plasticity. Indeed, its amplitude becomes larger for stimuli used in
discrimination training (Kujala and Näätänen, 2010).

1.1.4. Speech vs. nonspeech processing
The MMNs elicited by nonspeech or unfamiliar sounds are larger

over the right than the left scalp areas (Giard et al., 1995; Paavilainen
et al., 1991) and have stronger generator sources in the right than left
hemisphere (Kuuluvainen et al., 2014; Shtyrov et al., 2000; Tervaniemi
et al., 2000). MMNs to speech sounds belonging to the individual’s

Fig. 1. Average ERPs to speech sounds (syllable/pi:/or/ke:/; grey line) and vowel
changes in the syllables (to syllable/pe:/or/ki:/, respectively; black line) in six-year old
typically developing children (N=63). The difference wave (ERP to the standard sti-
mulus subtracted from ERP to the deviant stimulus) is shown with a dashed line. The
MMN can be seen at around 150–250ms and the LDN at around 400–500ms from sti-
mulus onset.
Figure adapted from Kuuluvainen et al. (2016).
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native language, in turn, are relatively more lateralized to the left
hemisphere (Kuuluvainen et al., 2014; Näätänen et al., 1997; Shtyrov
et al., 2000). These partly separate neural substrates for speech vs.
nonspeech processing enable one to disentangle dysfunctions of speech
vs. nonspeech processing.

1.2. The literature and methods of the current review

The literature search was carried out from Web of Science, Pubmed,
Google scholar, and Ovid Medline, by combining search terms as fol-
lows: (MMN OR mismatch negativity OR MMNm OR MMR OR mis-
match response) AND (SLI OR language impairment). Only articles
published in English by 23.3.2017 were included. This search resulted
in 26 articles, from which we had to exclude papers including in-
sufficient information on methodology or data, or data which clearly
indicate methodological flaws (altogether 4 articles). For example,
studies failing to show responses insignificantly differing from zero
even in the healthy control group were excluded. Furthermore, a study
reporting an MMN amplitude of 16 microvolts was excluded, since this
magnitude is clearly an outlier compared to the average of around −2
microvolts found in the other studies of the current review. In addition,
we did not include publications lacking information on EEG recording
(for example, place of reference), data processing (for example, artefact
removal) or quantification (for example, how the amplitudes were
measured). Furthermore, studies including participants having obvious
co-morbidities (e.g., dyslexia or attention deficit in the sample of chil-
dren with SLI) were excluded. However, because various co-morbidities
are associated with SLI and particularly the older studies did not always
sufficiently pay attention to assessing and reporting them, it is possible
that data of some of the studies included in this review are influenced
by co-morbidities.

The majority of MMN studies on SLI have investigated acoustic or
speech discrimination. To summarize and compare the results of those
studies, discussed in Sections 2.1–2.3, we carried out a forest-plot
analysis. Forest plot is a common method to visualize systematic effects
over several studies (Lewis and Clarke, 2001). In the current review,
forest plots were used to visualize amplitude differences between the
groups in microvolts. Only studies reporting means and standard de-
viations were included in the analysis. The visualization shows the
amount, direction, and the confidence interval of the difference be-
tween the groups (in this case, between the language impaired and
control groups), and the data point size is scaled according to the effect
size of the individual study. In the current review, the weighted overall
difference over all the individual studies is shown at the bottom of the
plot (random-effects model). Analyses and visualizations were con-
ducted with metafor package (Viechtbauer, 2010; package version
1.9.8) of R (R-Core-Team, 2016; version 3.3.1).

2. Sound discrimination in SLI

2.1. Non-speech sound frequency discrimination in SLI

Frequency is an important cue in speech processing, particularly for
vowel identity (in terms of spectral cues of formants) and consonant

identity (formant transitions). In addition, it serves prosodic functions
and in Tone languages (e.g., Mandarin) lexical functions. Therefore, it is
not surprising that most of the MMN studies on children with SLI have
investigated sound frequency discrimination ability. In the first study
using MMN for investigating children with SLI Korpilahti and Lang
(1994) determined whether frequency (500 Hz vs. 553 Hz) dis-
crimination is impaired in SLI (which they called dysphasia, which was
an alternative label at that time). They found that the MMN for the
frequency change was diminished in children with SLI. Interestingly,
MMN latency correlated with age only in the typically developing
control group, which suggests that the maturation of the auditory
cortex might be abnormal in children with SLI. Children in this study
were 10 years old, but similarly diminished MMN amplitudes with the
same paradigm were also found in 5-year old children with SLI
(Holopainen et al., 1997). Consistent with these results, Holopainen
et al. (1998) found in their 5–9 year old SLI group a diminished MMN
for the same frequency change, but additionally the MMN latency was
delayed. Furthermore, the diminished MMN amplitude was associated
with children’s language skills.

The effect of different stimulus parameters was studied further with
1020, 1050 and 1100 Hz deviants using a 1000 Hz tone as the standard
stimulus and employing stimulus-onset asynchronies (SOA) of 270ms
and 470ms (Ahmmed et al., 2008). The results showed attenuated
MMN amplitudes in a SLI group, but in the longer SOA condition and
for the largest 5% and 10% deviants only, possibly because the 2%
deviant might have been too difficult to discriminate even for the
control group, thus not differentiating the groups.

The studies described above found MMN group differences within a
time window of 150–275ms after the sound onset. However, group
differences have also been investigated in a later time window of
350–600ms, presumably including the LDN. Rinker et al. (2007) found
significant MMNs, elicited by a change from 700 Hz to 750 Hz, for both
groups in the earlier time window, but in the LDN window, the response
was significant only in the typically developing group. Furthermore, the
scalp topographies of the responses were significantly more right-ward
lateralized in children with SLI than in the control children in both time
windows. In line with these findings, Bishop et al. (2010) found that
only the LDN component was significantly diminished in children with
SLI, but for the small deviants (3% change from 1000 Hz to 1030Hz)
only. Consistent with this, Uwer et al. (2002) found no MMN group
difference to a large frequency change from 1000 Hz to 1200Hz, which
might not be sufficiently challenging to differentiate the groups (see
Fig. 2).

Figs. 2 and 3 summarize the results concerning MMN/LDN findings
on frequency discrimination in children with or at risk for SLI. Ac-
cording to Fig. 2, the MMN/LDN amplitude is on average diminished in
individuals with or at risk for SLI. Fig. 3 suggests that more prominent
differences between SLI and control groups are found when the SOA
(Fig. 3A) and sound duration (Fig. 3B) are short and the frequency
difference between the deviant and standard stimulus is small (Fig. 3C).
However, since these three experimental parameters are strongly as-
sociated with each other, one cannot tell which of them has the most
important influence.
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Fig. 2. Forest plot of tone frequency discrimination studies showing the difference of MMN/LDN amplitudes between the groups in μVs. The black square indicates the mean difference
between the groups in each study (in μV; positive values indicate diminished MMN/LDN responses in SLI) and its size is scaled based on the effect size (a larger square for a bigger effect
size). The dotted vertical line represents zero microvolt difference between the groups and horizontal lines at each square show associated confidence intervals (the arrow indicating that
the line should continue). Black diamonds represent the results of the meta-analyses (random-effects model, RE) and their lateral tips show the corresponding confidence interval.
L= length of tone stimuli, S= SOA, A= the mean age of participants in years, T= the mean time point of the analyzed MMN/LDN in ms, D= the difference between the standard and
the deviant tones in absolute Hz, and RD= relative difference in percentage.
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2.2. Non-speech sound duration discrimination in SLI

The MMNs to tone duration changes have been investigated in
children with SLI to our knowledge only in two studies (Fig. 4).
Korpilahti and Lang (1994) compared MMNs elicited by 110-ms and
500-ms long deviants against 50-ms long standard tones, reporting
significantly smaller MMN in the SLI than control group for the large
change only. Uwer et al. (2002), in turn, compared MMNs to tone
duration changes in children with receptive or expressive SLI and those
without SLI, finding insignificant MMN differences between the three
groups. They used a duration change from 175ms to 100ms, which is
much smaller than the one that yielded group differences in the study of
Korpilahti and Lang. These studies also differ in the stimulus pre-
sentation intervals (400-ms stimulus offset-to-onset interval vs. 1000-
ms stimulus onset-to-onset interval, respectively) used, the direction of
the change (increment vs. decrement, respectively) and the analysis
time window (window around the mean vs. individual peak, respec-
tively), which makes it difficult to derive clear conclusions based on
these studies.

Overall, the results reported on the discrimination of non-speech
sound frequency and duration differences in children with SLI suggest
that at least some of them have dysfunctions in low-level auditory
discrimination not limited to speech processing. This difficulty is the
most apparent when the stimulus presentation rate is rapid
(SOA < 500ms; see also Bishop, 2007) and, in studies on MMNs eli-
cited by frequency changes, also when the absolute frequency differ-
ence between the standard and deviant is small (< 100Hz).

2.3. Speech sound discrimination in SLI

Phonemes are an important basic unit of speech processing. Neural re-
presentations of phonemes are acquired during the first year of life when the
infant’s speech system becomes tuned to the native language (e.g., Kuhl,
2004, for a review). Quick and accurate mapping of phonemes is crucial for
fluent language processing. Furthermore, developmental language and
learning problems have a strong association with impaired low-level pho-
neme processing and poor phonological representations (for reviews, see,
e.g., Kujala, 2007; Ramus, 2014; Snowling et al., 2000).

Fig. 3. The MMN/LDN difference between language impaired and control groups in tone frequency discrimination studies shown as a function of A) SOA, B) the length of the tones, and
C) the absolute frequency difference between the standard and deviant tones. The size of the ball-shaped marker indicates the effect size of the study and the colour indicates the analysis
time window (black=MMN, t < 275ms; red= LDN, t > 275ms).

Fig. 4. Forest plot of tone duration discrimination studies showing the difference of MMN/LDN amplitude between the groups in μVs. The black square indicates the mean difference
between the groups in each study (in μV; positive values indicate diminished MMN/LDN responses in SLI) and its size is scaled based on the effect size (a larger square for a bigger effect
size). The dotted vertical line represents zero microvolt difference between the groups and horizontal lines at each square show associated confidence intervals (the arrow indicating that
the line should continue). Black diamonds represent the results of the meta-analyses (random-effects model, RE) and their lateral tips show the corresponding confidence interval.
F= frequency of tone stimuli, S= SOA, A= the mean age of participants in years, T= the mean time point of the analyzed MMN/LDN in ms, D= the difference between the standard
and the deviant tones in absolute Hz, and RD= relative difference in percentage.
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Absent or diminished MMNs/LDNs have been reported in SLI for speech
sound changes (Datta et al., 2010; Shafer et al., 2011, 2005) or phoneme
changes in syllables (Bishop et al., 2010; Uwer et al., 2002) or short words
(Davids et al., 2011; Tuomainen, 2015). In addition, there are associations
between these neural measures and perceptual, cognitive, or language-skill
tests, as suggested by the studies discussed below.

A series of studies (Datta et al., 2010; Shafer et al., 2011, 2005) ex-
amined vowel discrimination in SLI by recording MMN/LDN and beha-
vioural responses and determined whether the impairment in vowel pro-
cessing in children with SLI depends on vowel length. They used/ε/(like in
“bet”) vowel as the standard and/I/(like in “bit”) vowel as the deviant and
two lengths of the vowels, 50ms (Shafer et al., 2005) and 250ms (Datta
et al., 2010). In addition to a passive oddball condition, they used an active
condition with auditory tone targets and additional discrimination tests.
They found that while children with SLI had normal-sized MMN responses
to longer vowels (Datta et al., 2010), they were diminished to shorter vo-
wels (Shafer et al., 2005). Significant group differences were obtained for
the MMN but not for the later LDN window, in which both groups had a
significant response (Shafer et al., 2005). Furthermore, the LDN to long

vowels was predominant on the right scalp areas in children with SLI,
whereas in typically developing children it was more left lateralized (Datta
et al., 2010). Attending to auditory or visual modality did not influence
MMN/LDN amplitude differences between the groups (Datta et al., 2010;
Shafer et al., 2005). In the discrimination tests, children with SLI were able
to detect the vowel targets equally well as typically developing children, but
in the vowel identification task they performed more poorly (Datta et al.,
2010; Shafer et al., 2011, 2005).

These results suggest, firstly, that shorter sounds are harder to neurally
discriminate than longer sounds in SLI (Fig. 5), consistent with results ob-
tained with non-speech stimuli (Figs. 2–4), as discussed above. Secondly,
attention did not influence these results suggesting that neither of the
groups benefitted more than the other one from attending to the stimuli.
Thirdly, the vowel-discrimination impairment of children with SLI was
evident also at the perceptual level, as reflected in poor performance in a
vowel identification test. This was interpreted to reflect deficient matching
of acoustic input with phonological representations or problems in the
maintenance of the stimuli in memory sufficiently long for accomplishing
the matching task (Datta et al., 2010).

Fig. 5. Forest plot of speech-sound discrimination studies showing the difference of MMN/LDN amplitude between the groups in μVs. The black square indicates the mean difference
between the groups in each study (in μV; positive values indicate diminished MMN/LDN responses in SLI) and its size is scaled based on the effect size (a larger square for a bigger effect
size). The dotted vertical line represents zero microvolt difference between the groups and horizontal lines at each square show associated confidence intervals (the arrow indicating that
the line should continue). Black diamonds represent the results of the meta-analyses (random-effects model, RE) and their lateral tips show the corresponding confidence interval.
L= length of speech stimuli, S= SOA, A= the mean age of participants in years, T= the mean point of the analyzed MMN/LDN in ms, C= the specific speech sound contrast (standard
−>deviant).
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Diminished change-elicited responses were also found in children
with SLI for consonant changes in syllables (Fig. 5) and these responses
were associated with nonword repetition. A study including both vowel
and consonant changes in syllables (/ba/standard with/da/and/bi/de-
viants) found diminished LDNs for the consonant but not for the vowel
changes in children with SLI (Bishop et al., 2010). Frequency analysis of
this component (4–7 Hz in 300–600ms time range) showed a sig-
nificant correlation in the SLI group, with a more diminished LDN re-
sponse being associated with poorer nonword repetition performance.
Consistent with these results, adults who were poor in nonword re-
petition had smaller late change-elicited responses than those who were
good in nonword repetition (Barry et al., 2009). These are important
findings, because poor nonword repetition performance was proposed
to be one of the most reliable markers of SLI (Bishop et al., 1996).

Some studies failed to show group differences of MMNs elicited by
speech sound changes between children with and without SLI. For ex-
ample, a study with two consonant and two vowel changes in syllables
found no significant differences between the groups in the MMNm, the
magnetic counterpart of the MMN (Pihko et al., 2008). The reasons for
this might be a poor MMNm signal in some participants, yielding no
reliable dipoles in the analysis, and a small number of participants
(n=11 in each group).

In addition to diminished MMN/LDN amplitudes, delayed MMN
latencies were found to be associated with SLI. For example, Roberts
et al. (2012) recorded MMNm in the auditory cortex to vowel (/u/vs./
a/) and tone (300 Hz vs. 700 Hz) changes in children with or without
SLI. Their general MMNm index (an average of MMNm to speech and
tone sounds in both hemispheres) indicated a significantly delayed re-
sponse in the SLI group, which was remarkably large, about 55ms.
Furthermore, the classification accuracy of the MMNm between the
groups was 89.1%, the sensitivity for SLI being 84% and specificity
92%.

These results imply that neural speech sound discrimination is de-
ficient in children with SLI in multiple ways, including diminished
MMN amplitudes, delayed latencies, and atypical scalp distributions.
These results suggest poor and slow speech sound discrimination ac-
curacy and diminished contribution of the language-dominant left
hemisphere to these processes. Moreover, evidence was found for a
connection between the MMN/LDN and language skills.

2.4. Sensory memory trace in SLI

Efficient functioning of sensory memory is essential for supporting
auditory and speech perception. The individual sounds of speech come
in a rapid succession, which requires segmentation of the input and
identification of the sounds. Rapid auditory inputs are susceptible to
masking effects from preceding and succeeding sounds which nega-
tively impacts perception (Massaro et al., 1976), which degrade the
detection of the identities of the sounds. In addition, the maintenance of
the heard input in the sensory memory is mandatory in order to identify
and remember words, grammar units, and their relationships. There-
fore, it is important to determine the sensory memory integrity in
language deficits.

There is evidence of elevated masking in the auditory system in SLI.
For example, Marler et al. (2002) showed elevated sound detection
thresholds in children with SLI, particularly during backward masking,
and found neural correlates of masking effects with the MMN. In the
MMN experiment, their standard stimulus was 108 dB (SPL) and the
deviant one 88 dB (SPL) in intensity, both 10ms in duration, whereas
the masking sound, which immediately followed the stimuli, was a 150-
ms long narrow-band noise masker. Stimuli were presented in 500-ms
and 1000-ms SOA conditions, the results of which were combined since
they did not differ. The MMN amplitude was found to be diminished
and latency delayed in children with SLI. Unfortunately, there was no
control condition without a masking stimulus, which would be neces-
sary to confirm the specific effects of the masker on the MMN. However,

the combined MMN and psychophysics results support the hypothesis of
elevated neural masking effects in SLI.

Corroborating results were found in a behavioural study in which
children had to detect tones while there was a masking noise either
concurrently, before, or after these tones (Wright et al., 1997). It was
found that tones had to be presented with a higher intensity to children
with SLI to be detected. Noise presented after the tones, causing
backward masking effects, was the most detrimental for these children
yielding no performance overlap in the backward masking condition
between the groups. The results suggesting vulnerability to masking
might contribute at least partially to the speech processing difficulties
of children with SLI, since the sounds occurring at a rapid pace in
speech are likely to mask each other.

However, a study by Bishop et al. (1999) could not demonstrate
significant differences between language impaired and unimpaired
children in behavioural detection of sounds in backward masking
conditions. This discrepancy might result from differences in the stimuli
in these three studies. For example, both in the study of Wright et al.
(1997) and Marler et al. (2002) the stimulus was a 10-ms sound,
whereas it was a more salient 20-ms sound in the study of Bishop et al.
(1999). Also the number of participants in these studies was low, 8–11
per each group, which might have influenced the findings. Particularly,
a low number of child participants may yield unreliable results in tests
requiring motivation and ability to attend. This problem could be even
more pronounced in children with developmental disorders, since they
might have poor cognitive abilities. MMN recordings might be of help
in overcoming these problems.

Also sensory memory maintenance might be impaired in SLI, as
suggested by studies using various SOAs in recording MMN. For ex-
ample, at the age of 5 years, MMNs were recorded from children, who
were classified as early or late talkers at the age of around 2 years
(Grossheinrich et al., 2010), with a paradigm enabling the investigation
of sensory memory duration in a short recording time (Grau et al.,
1998). In a short SOA condition, the stimuli, of which 87,5% were
standard 1000Hz tones and 12,5% deviant 1200 Hz tones, were pre-
sented with a SOA of 500ms. In a long-SOA condition, stimuli were
presented with this SOA in trains of 4 tones, the inter-train offset-to-
onset interval being 2 s, the trains starting either with a standard or
randomly with a deviant stimulus. No MMN amplitude differences were
found in the short-SOA condition. However, a group difference was

Fig. 6. The MMN reflects poor word-stress discrimination in infants with SLI. MMNs (the
responses to the standard stimuli subtracted from those to the deviant stimuli) to changes
in the stress of a word in 5-month old infants with (dashed line) or without (continuous
line) a risk for SLI.
Figure adopted from Weber et al. (2005).

T. Kujala and M. Leminen Developmental Cognitive Neuroscience 28 (2017) 65–75

71



found in the condition with long inter-train intervals, with the MMN
being diminished in the group of late talkers, suggesting a more rapid
decay of the memory trace in these individuals. A similar result of MMN
diminution when the interval was long but not when it was short was
also found for parents of children with SLI (Barry et al., 2008).

These results suggest abnormally low tolerance to masking effects of
sounds and shortened duration of sensory memory in SLI. These deficits
could potentially influence, on the one hand, correct identification of
speech sounds and, on the other, integrating information over time,
which is necessary for memorizing past input to understand speech,
particularly longer words. This suggestion is supported by results
showing that MMNs are not elicited by changes within words in adults
who were parents of children with SLI and poor in nonword repetition
(Barry et al., 2009).

3. Associations between sound discrimination and language
development in children at risk for SLI

Since SLI has a strong genetic component (for a review, see e.g.,
Newbury and Monaco, 2010), some of its neural indices should exist
even in early childhood. For example, the infant counterpart of the
MMN, the MMR, was recorded in 2-month old infants with or without a
familial background of SLI for a vowel duration change in syllable/ba/
(Friedrich et al., 2004). The MMR was found to be significantly delayed
in the infant group at risk for SLI. In another study, infants with a fa-
milial history of language problems were followed up with ERP re-
cordings at 3, 9, 12, 16, 24, 36 and 48 months, and the relationship of
these ERPs with language skills was determined at the ages of 3 and 4
years (Choudhury and Benasich, 2011). The stimuli were pairs of
100 Hz tones with within-pair intervals of 70ms or 300ms. In deviant
pairs, the second tone was 300 Hz instead of 100 Hz in frequency. A
diminished MMR, especially in the left hemisphere, was found in in-
fants at risk for SLI at ages of 6, 9, 12, and 36 months, but only in the
condition with the short interval. In addition, both the amplitude and
latency of a negative component preceding the positive MMR (called
“the N2” by the authors) to the deviant stimulus in this condition (at 6,
9 and 12 months) predicted language test performance at the ages of 3
and 4 years so that a larger amplitude and a shorter latency were as-
sociated with a better performance in different language tests.

Another study had stimuli which consisted of syllable patterns/
ba:ba/and/baba:/, the deviances including both the vowel length
change in the first syllable and the onset and intensity (stress) changes
of the second syllable (Weber et al., 2005). MMNs were recorded at the
age of 5 months and the estimate of expressive language skills was
assessed by a parental inventory at the ages of one and two years.
Subgroups were formed from these production estimates and MMN of
these subgroups was compared. The MMN (this time negative) for the
stress pattern change was found to be smaller at the left hemisphere
sites in children who later had weaker expressive language skills (see
Fig. 6). Furthermore, the MMN amplitude correlated with the later
language-related/word production scores, with larger MMN amplitudes
for stress pattern changes during infancy being associated with better
language production skills 7 months later (Weber et al., 2005).

Grossheinrich et al. (2010), in turn, determined language skills at
the age of 2 years, and recorded MMNs for frequency deviants at the
age of 5 years. As already discussed in this review, they found dimin-
ished MMNs in those 5-year old children who were late talkers at the
age of 2 years specifically in a condition requiring the retention of the
tone memory trace for 2 s but not when the stimuli appeared with 500-
ms intervals. Moreover, the MMN amplitude was associated with a
neuropsychological test measuring memory for the order of words (“the
word order subtest”), in which the child hears a list of words and has to
point pictures of the spoken items in their presentation order.

The results discussed above show MMR/MMN/LDN amplitude re-
duction particularly over the left scalp areas and delayed latency in
infants at familial risk for language deficits. Furthermore, these results

suggest that the neural deficits associated with SLI can be detected even
in infancy and indicate an association between the MMN/MMR and
language measures in children.

4. Effects of intervention on SLI and MMN

In order to understand the neural mechanisms associated with SLI, it
is also helpful to determine which neural processes change when lan-
guage problems are alleviated by intervention. To our knowledge, there
are very few studies which have looked at the effects of intervention at
the neural level of individuals with SLI. Pihko et al. (2007) determined
with magnetoencephalography (MEG) recordings the influence of lan-
guage intervention on SLI. There were two matched groups of 5-year-
old children with SLI, one of them carrying out language exercises
(speech, phoneme, and articulation discrimination training, rapid pro-
cessing, linguistic and phonological awareness training) and the other
physical exercises in 20-30-min group training sessions 3 times a week
for 8 weeks.

Auditory-cortex responses were recorded before and after the in-
tervention period for two stimulus sets: standard/da/, deviants/ga/
and/ba/, and standard/su/, deviants/sy/and/so/. It was found that
language exercise enhanced both obligatory responses to the syllables
and the MMNm to the/sy/deviant in the left hemisphere. In addition, it
improved discrimination of those syllables which originally were the
hardest to discriminate (/da/-/ba/and/su/-/so/pairs).

5. Concluding discussion and future directions

The results discussed in this review consistently show deficits in
low-level neural processing in SLI. Impairments were reported in cor-
tical consonant and vowel discrimination as well as tone frequency and
duration discrimination, as reflected by diminished MMN/LDN ampli-
tudes and delayed latencies (Figs. 2–5). Additionally, the central ner-
vous system of children with SLI appears to suffer more than normal
from masking effects caused by successive sounds and sensory memory
retention problems when sounds occur with long intervals. Further-
more, results showing atypical response amplitude distributions on the
scalp suggest partly distinct neural sources in auditory processing in
children with than without SLI. More recently, several studies have
determined associations between the MMN/LDN measures and lan-
guage/cognitive functions, and used follow-up designs to assess whe-
ther early signs of abnormal neural dysfunction can predict future
language problems. These studies found important associations be-
tween these different measures, which suggests a strong connection,
perhaps even a causal one, between the MMN/LDN responses and SLI.

The results obtained with the MMN/LDN elicited by speech and
non-speech sounds in participants with SLI fairly systematically suggest
poor neural discrimination of various sound types (Figs. 2–5), which is
compatible with the literature suggesting poor phonological functions
in SLI (Ramus et al., 2013). Yet, some studies failed to find significant
MMN/LDN differences between the SLI and control groups in some
stimulus conditions (e.g., Ahmmed et al., 2008; Uwer et al., 2002). It is
likely that some stimulus parameters are more sensitive than others in
tapping auditory problems in SLI. For example, the strongest evidence
for abnormal non-speech frequency and duration discrimination in SLI
was found when stimuli were presented with a rapid SOA (Figs. 2–4; see
also Bishop, 2007). Furthermore, a very small difference between the
standard and deviant stimulus may result in a small MMN/LDN re-
sponse also in the control group (“floor effect”; e.g., Ahmmed et al.,
2008) and a very large one in strong MMN/LDN amplitudes even in the
SLI group (“ceiling effect”; e.g., Uwer et al., 2002) abolishing significant
group differences. Furthermore, some studies found group differences
with brief but not with longer stimuli (Shafer et al., 2005), perhaps
because brief sounds might not form an equally strong memory trace in
children with than without SLI. Therefore, these parameters should be
systematically varied to find those that best distinguish the groups and
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illuminate the types of neural deficits that are associated with SLI and
may underlie the language dysfunctions.

The low-level auditory dysfunction in SLI appears to be associated
with, on the one hand, problems in distinguishing between sound types,
such as stimuli with different frequencies, durations, or speech sound
identities and, on the other, with sensory memory problems. Group
differences have been found with a relatively rapid SOA (200–600ms;
Datta et al., 2010; Korpilahti and Lang, 1994), as discussed above,
which should not pose high demands on memory-trace formation or
maintenance. Studies comparing MMNs obtained in various SOA con-
ditions support this notion, showing no MMN group differences to large
frequency changes in short SOA conditions but diminished MMNs in
participants with or at risk for language impairment in long SOA con-
ditions (e.g., Barry et al., 2008; Grossheinrich et al., 2010), suggesting
difficulties in maintaining the memory trace of the stimulus. This kind
of faster than normal sensory memory trace decay might impair sound
representation formation, which could result, e.g., in poor phonological
representations in infancy. It also might affect the representation for-
mation during listening, influencing speech perception.

The auditory system both has to maintain memory representations
of heard sounds over hundreds of milliseconds to seconds and detect the
identities of sounds rapidly succeeding each other. For example, when
listening to speech one has to detect phonemes while they are heard in a
very rapid succession, whereby the consecutive sounds may impose
masking effects on one another. In children with SLI the diminished
MMNs/LDNs to consonant changes in CV syllables (e.g., Bishop et al.,
2010; Uwer et al., 2002) could be caused by a difficulty in dis-
criminating the differences in rapid spectrotemporal changes included
in consonants but also by masking effects caused by the adjacent
sounds, or both. Indeed, such backward masking effect was found to be
elevated in SLI in behavioral (Wright et al., 1997) and MMN experi-
ments (Marler et al., 2002).

All these problems discussed above may potentially contribute to
the difficulties the children with SLI encounter, since for fluent speech,
fast and accurate ability in making distinctions between different
speech sounds is needed (e.g., Strange, 2011, for a review). Weak
speech-sound memory traces make speech processing less automatic,
which might hamper the more attention-demanding language pro-
cesses, such as grammar. It is tempting to speculate that these multiple
challenges in low-level auditory processing in SLI discussed above could
influence higher-order language functions, such as morphology and
comprehension. There is currently insufficient evidence for this con-
clusion, but available data from a number of studies are encouraging,
and suggest the need for further studies to determine how the impaired
low-level functions are associated with language deficits in SLI.

Research on SLI and other developmental disorders influenced by
multiple genes has the challenge of showing a true causality between
the neural abnormalities and the actual functional difficulties influen-
cing everyday life. For example, the sound-discrimination deficit evi-
denced by many studies might simply co-occur with all the other
symptoms typical for SLI, having no actual causal role in language
processing. This was not sufficiently acknowledged by earlier studies
aiming at, for instance, testing the theory of the rapid auditory temporal
processing in SLI (see Bishop, 2007, for a review), according to which
problems in detecting auditory cues underlies language deficits (Tallal,
2004). Indeed, many studies using the MMN suggested impaired dis-
crimination of auditory cues in these disorders (Bishop, 2007), but they
were unable to demonstrate a causal relationship between the auditory
deficits and subsequent language impairment.

Some more recent studies not merely reported perceptual impair-
ments but determined whether, for example, the neural indices have a
significant correlation with language tests, giving further insight to this
potential connection. For instance, significant associations have been
reported for diminished or delayed MMNs in children at risk for SLI and
later language abilities (e.g., Choudhury and Benasich, 2011; Weber
et al., 2005), suggesting that there indeed is a connection between

abnormal low-level neural processes and SLI. In addition, language-
intervention induced enhancements in MMNm were shown con-
currently with improvement in speech-sound discrimination tests
(Pihko et al., 2007).

Next, we would like to suggest some directions for future research.
With MMN studies it might be possible to disentangle which low-level
impairments are associated with the actual problems in using language
efficiently. For example, it could be hypothesized that deficiency in
discriminating phonemes is associated with problems in learning new
words, which is a common problem in SLI (Kan and Windsor, 2010),
since weak representations of sounds could be expected to result in poor
word-form memory traces. Furthermore, understanding complex sen-
tences should be associated with sensory-memory duration since re-
tention of items (words, morphological units, etc.) in memory is vital
for grasping the meaning of sentences. Besides determining the asso-
ciations between low-level impairments and various components in
language processing, causal relationships between these could be tested
by investigating the influence of targeted interventions. For example, if
discrimination training of temporal cues results in improved phonolo-
gical skills and enhancement of the MMN in individuals with SLI, one
could claim that a deficit in discriminating temporal cues underlies
phonological dysfunctions in SLI.

Another relatively under researched area in MMN studies on SLI is
whether the MMN diminution in SLI results from a deficit in true sen-
sory-memory or neural adaptation-related processes (May and Tiitinen,
2010; Näätänen et al., 2011). Disentangling the contribution of the
discrimination vs. adaptation/dishabituation processes on auditory
functions in SLI would further illuminate the nature of neural dys-
functions in this disorder.

To achieve a more comprehensive picture on SLI with the help of
MMN, one should include a large number of participants, optimized
MMN paradigms enabling, for instance, the assessment of both dis-
crimination and memory functions in a short time, and large language
and cognitive test batteries. This would help to identify subtypes of SLI,
which could serve as a basis for designing targeted interventions.
Furthermore, it is important to select proper experimental parameters
for the MMN recordings, ensuring both sufficient differences between
stimuli to minimize possible floor effects, while at the same time not
choosing stimulus differences that are so great they result in ceiling
effects. Furthermore, the influence of SOA should be taken into ac-
count, since it has a distinct effect on the MMN recorded from parti-
cipants with than without SLI (Grossheinrich et al., 2010; Barry et al.,
2008). In addition, reliable individual data, including sufficient trials,
should be acquired to achieve reliable results from correlation analyses,
since the MMN is a very small brain signal (see, for example, Kujala
et al., 2007, for a review on methodological issues in studies using the
MMN). Furthermore, by using modern neuroimaging tools, such as
MEG, one could determine the dynamics of the two temporal-lobe MMN
sources and separate speech-specific from other auditory dysfunctions.
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