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Kidney disease is a general term for heterogeneous damage that affects the function

and the structure of the kidneys. The rising incidence of kidney diseases represents a

considerable burden on the healthcare system, so the development of new drugs and

the identification of novel therapeutic targets are urgently needed. The pathophysiology

of kidney diseases is complex and involves multiple processes, including inflammation,

autophagy, cell-cycle progression, and oxidative stress. Heme oxygenase-1 (HO-1),

an enzyme involved in the process of heme degradation, has attracted widespread

attention in recent years due to its cytoprotective properties. As an enzyme with known

anti-oxidative functions, HO-1 plays an indispensable role in the regulation of oxidative

stress and is involved in the pathogenesis of several kidney diseases. Moreover, current

studies have revealed that HO-1 can affect cell proliferation, cell maturation, and other

metabolic processes, thereby altering the function of immune cells. Many strategies, such

as the administration of HO-1-overexpressing macrophages, use of phytochemicals, and

carbon monoxide-based therapies, have been developed to target HO-1 in a variety

of nephropathological animal models, indicating that HO-1 is a promising protein for

the treatment of kidney diseases. Here, we briefly review the effects of HO-1 induction

on specific immune cell populations with the aim of exploring the potential therapeutic

roles of HO-1 and designing HO-1-based therapeutic strategies for the treatment of

kidney diseases.
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INTRODUCTION

Kidney disease is an umbrella term for a number of diseased states characterized by impaired
kidney function and/or structure. Due to the occult onset and the difficulty in early diagnosis, a
large number of patients with kidney diseases end up with kidney failure and complete loss of
kidney function (1). Currently, kidney diseases are still treated by surgery, chronic dialysis, renal
transplantation, and other means, but these methods are suboptimal in the complete treatment of
these diseases (1). Thus, the development of new treatments and drugs to change this status remains
a pressing priority (1). Several potential renal protective therapies are currently being investigated,
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of which enhancing the heme oxygenase (HO) system to protect
renal morphology is an area of great interest.

Heme oxygenase is a type of microsomal enzyme with anti-
oxidant functions, and it is a member of the heat shock protein
family (2). As the rate-limiting enzyme of heme catabolism, heme
oxygenase decomposes heme to yield carbon monoxide (CO),
catalytic iron, and biliverdin (3–5). Biliverdin is subsequently
converted to unconjugated bilirubin by biliverdin reductase (3,
4, 6). HO can be subdivided into two subtypes: inducible heme
oxygenase-1 (HO-1) and constitutive isoform heme oxygenase-
2 (HO-2) (7). Different from HO-2, which is stably expressed in
most organs (8), HO-1 can be highly up-regulated by a variety
of oxidative stress stimuli to protect organs from the damage of
oxidative stress (9). In other words, the induction of HO-1 is
considered as an adaptive cellular response against the toxicity
of oxidative stress (10). More recently, HO-1 has also been
recognized as having significant immunomodulatory properties
and anti-inflammatory functions (11). The immunomodulatory
effects of HO-1 activity have been found in many immune cells
(Figure 1). For example, HO-1 expression is particularly up-
regulated in macrophages, where they inhibit the production of
inflammatory mediators (12–15). Furthermore, HO-1 modulates
the production of interferon-β (IFN) in macrophages and
dendritic cells (DCs) through direct HO-1 binding to IFN
regulatory factor 3 (IRF3) (16). On the other hand, the induction
of HO-1 inhibits pro-inflammatory functions andmaintains DCs
in an immature-like phenotype to promote tolerogenic DCs
(tolDCs), with a consequent reduction in effector T cell responses
and a promotion of regulatory T cell (Treg cell) responses (17–
22). Subsequent studies have reported that the up-regulation of
HO-1 in mast cell (MC) can stabilize MC membranes to reduce
the production of inflammatory cytokines, suggesting that HO-
1 can suppress DC maturation induced by MC degranulation
(23, 24). Moreover, HO-1 inhibits the phosphorylation of signal
transducer and activator of transcription 3 (STAT3) in naive
CD4+ T cells, thereby inhibiting T cell proliferation and T
helper 17 cell (Th17 cell) differentiation (25), and decreasing
T helper 2 cell (Th2 cell)-related cytokine production (26).
Furthermore, HO-1 is a critical transcriptional suppressor for
B cell development and growth (27), as well as an inhibitor for
natural killer cell (NK cell) effector functions (28). These results
demonstrate that HO-1 has anti-inflammatory, anti-oxidant,
and immunomodulatory properties, and they also imply the
therapeutic potential of HO-1 in inflammatory diseases.

The beneficial effects of HO-1 induction in inflammation have
also been associated with the degradation of the heme group
(29). Under pathogenic conditions, hemoproteins release the
heme group, which is a universal danger-associated molecular
pattern (DAMP) (30). Free heme subsequently binds to toll-
like receptor 4 (TLR4) (31), which triggers the production of
tumor necrosis factor α (TNFα) (32).Moreover, free heme readily
promotes lipid peroxidation and induces oxidative stress through
the generation of reactive oxygen species (ROS), which damage
cellular structures and tissues (33). HO-1 in macrophages has the
ability to catalyze the decomposition of heme, thereby reducing
TLR4 activation and ROS formation (34). Meanwhile, HO-
1 prevents heme-induced pro-inflammatory M1 macrophages

from undergoing polarization and drives the phenotypic shift
to anti-inflammatory M2 macrophages (35, 36). Moreover, the
products of heme degradation, namely, CO and biliverdin,
exert anti-inflammatory and anti-oxidant properties, respectively
(37). Biliverdin and its metabolite, bilirubin, exhibit suppressive
properties on the activation of CD4+ T cells (11, 38, 39). On
the other hand, CO can selectively decrease the expression of
several pro-inflammatory genes and increase the expression of
anti-inflammatory interleukins-10 (IL-10) in macrophages (40).
In rodent models of inflammation, HO-1 and its metabolites
(CO and biliverdin) have been shown to reduce leukocyte rolling,
adhesion, and neutrophil infiltration as well as migration of
eosinophils to inflammatory sites (41–45).

Taken collectively, HO-1 activity has been confirmed to
affect both innate and adaptive immune responses (Table 1),
leading to the reduction of the early inflammatory response and
limiting the subsequent tissue damage (5, 55). As a response
to inflammatory stimuli and oxidative stress, the expression of
HO-1 could activate or inhibit cell-intrinsic pathways in most
cell types (20). Therefore, HO-1 is considered as one of the key
regulators of the immune system. Here, we focus this review on
the influence of HO-1 on kidney diseases in different immune
cell populations and kidney resident cells, with a comprehensive
understanding of HO-1 and its therapeutic potential in these
diseases. Figure 2 summarizes the beneficial effects of HO-1 in
these kidney diseases.

ACUTE KIDNEY INJURY

Acute kidney injury (AKI), characterized by a rapid increase in
serum creatinine and/or a decrease in urine output, is associated
with high rates of morbidity and mortality in hospital and
outpatient settings (56, 57). Despite the heterogeneity of causes,
the response following an acute insult involves similar pathways,
including apoptosis, necrosis, and infiltration of inflammatory
cells (58). These processes lead to an exaggerated inflammatory
response, further aggravating acute tubular necrosis (ATN)
and functional derangement in the form of AKI (59). Certain
diseases that result in AKI may cause heme release such as
intravascular hemolysis or rhabdomyolysis (60). Due to its small
molecular weight and hydrophobicity, heme can translocate
across the glomerular vascular endothelial cell membrane,
subsequently activating TLR4 signaling and other pathways, and
mediating the activation of endothelial cells and the production
of inflammatory cytokines (61, 62). Furthermore, excessive
proteins, such as hemoglobin or myoglobin, can be released into
the circulation (63). These processesmay lead to severe adenosine
triphosphate (ATP) depletion due to excess protein reabsorption,
subsequently causing depletion of energy stores and excessive
production of ROS (64). High levels of ROS can induce oxidative
stress, followed by impaired cellular homeostasis and cell death
(65). Under these conditions, inflammatory cells can be locally
activated or depleted from hematopoietic organs, thereby leading
to an exaggerated inflammatory response (66).

At early stages of AKI, excessive oxidative stress ultimately
results in cell death, which accelerates inflammation directly and
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FIGURE 1 | Immunomodulatory activity of heme oxygenase 1 (HO-1) in immune cells. HO-1 is stress-inducible by macrophages and promotes the phenotypic shift to

M2 macrophages, associated anti-inflammatory activities. HO-1 also modulates the production of interferon (IFN)-β in macrophages through direct HO-1 binding to

interferon regulatory factor 3 (IRF3) in response to pro-inflammatory stimuli. HO-1 induction in dendritic cells (DCs) inhibits their maturation, secretion of

pro-inflammatory cytokines, and induction of ROS. Mast cells (MCs) can sense local stressor insults to induce HO-1, thereby suppressing their degranulation and

production of inflammatory cytokines. Moreover, inhibiting MCs’ degranulation can also inhibit DCs’ maturation. These effects all result in the promotion of DCs into a

tolerogenic phenotype, thus promoting regulatory T cell (Treg cell) differentiation. HO-1 expression by T cells can additionally inhibit T helper 17 cells (TH17 cells)

differentiation, Th2-related cytokines secretion, as well as limit proliferation. Activated Treg cells can initiate HO-1 expression in neutrophils shifting them to a

suppressive phenotype, which inhibits their infiltration, basophil activation as well as migration of eosinophils. HO-1 expression by B cells can additionally promote

their development and growth. HO-1 induction can also inhibit NK cells effector functions and activity.

indirectly, and further increases oxidative stress (67). In this
context, HO-1 can be induced in both renal parenchymal cells
and tissue resident leukocytes (68, 69). Innate immune cells, such
as macrophages, DCs, and neutrophils, are chief participants
in the acute insult and recruited to the injured kidneys (70).
HO-1 expression in monocytes/macrophages is beneficial in
alleviating the inflammatory response of AKI. HO-1-expressing
macrophages tend to be polarized toward the M2 phenotype,
up-regulate the expression of anti-inflammatory cytokines (IL-
10), suppress pro-inflammatory cytokine (TNFα) secretion, and

express reparative genes that are beneficial for tissue recovery
after AKI (68, 71). A recent study by Hull et al. demonstrated that
HO-1 expression by renal DCs could regulate their migration,
allowing them to reside in the kidneys where they enhanced
recovery and decreased renal fibrosis after ischemia-reperfusion
injury (IRI) (68). Furthermore, the authors also found that HO-
1 expression in monocytes/macrophages not only accelerates
the exit of these cells from the ischemic kidney tissue, but also
their migration to extra-renal sites, in turn attenuating their
involvement in renal ischemic injury (68). Additionally, HO-1
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TABLE 1 | Effects of heme oxygenase-1 on innate and adaptive immune responses based on experiments.

Immune cells Express

levels

Species Contributing

factor

Effects References

Macrophages ↑ Human HO-1 Promotes M2 macrophage polarization (36)

↑ Mouse HO-1 Inhibits pro-inflammatory mediators (12)

Mouse CO Promotes LPS-induced expression of IL-10 (40)

↑ Mouse HO-1, CO Promotes IFN-β production through IRF3 signaling (16)

Dendritic cells ↑ Rat HO-1, CO Inhibits DCs’ maturation, pro-inflammatory cytokines secretion

and ROS induction

(17)

↑ Mouse HO-1 Promotes Treg cells differentiation (46)

↓ Mouse HO-1, CO Increases intracellular ROS levels, promotes a mature phenotype,

impairs phagocytic and endocytic functions, and increases T cell

stimulatory capacity

(22)

Mast cells ↑ Rat HO-1 Inhibits MCs’ degranulation and inflammatory cytokines production (23)

↑ Mouse HO-1 Inhibits DCs’ maturation indirectly (24)

Granulocyes ↓ Human HO-1 Treg cells initiate HO-1 expression in neutrophils, shifting them to a

suppressive phenotype.

(47)

↑ Mouse HO-1, CO Inhibits leukocytes rolling, adhesion and neutrophils infiltration (41)

↑ Mouse HO-1 Inhibits eosinophils migration (42)

Human CO Inhibits basophils activation (48)

T cells ↓ Human HO-1 Induces naive CD4+ and CD8+ T cells activation, proliferation, and

maturation

(49)

Mouse Bilirubin Suppresses CD4+ T cell reactivity (38)

Mouse Biliverdin Inhibits T cell proliferation (39)

↑ Human CO, HO-1 Inhibits CD4+ T cells proliferation (50)

↑ Mouse HO-1 Inhibits Th17 cell differentiation (25)

↑ Mouse HO-1 Decreases Th2-related cytokines (26)

↑ Human HO-1 Inhibits cytokine release proliferation, and cytotoxicity of other

immune cells

(51)

↑ Human HO-1 Influences Treg proliferative behavior, but not their suppressive

capacity

(52)

– Mouse HO-1 No alteration on the function of Tregs (53)

– Mouse HO-1 Impairs Treg function indirectly (18)

B cells – Mouse HO-1 Suppresses B cells development and growth (27)

NK cells ↑ Mouse HO-1 Suppresses NK cells effector functions (28)

↑ Rat HO-1 Reduces peripheral NK cell numbers (54)

expression in antigen-presenting cells (e.g., DCs) is required for
optimal Treg cell function, which has been suggested to facilitate
recovery following AKI (72, 73).

It is worth mentioning that the cytoprotective effects of HO-
1 are associated with the by-products of heme degradation.
CO exhibits potent anti-proliferative effects on T cells via the
down-regulation of IL-2 and caspase activity, which mitigates
inflammation (74). Moreover, CO also exerts inhibitory effects
on the migration of DCs and promotes immune tolerance (75,
76). CO has significant effects on the circulation by inhibiting
platelet aggregation and inducing potent vasodilatory effects
(77). Dual-treatment studies with biliverdin and CO in a rat
renal transplantation model demonstrated synergistic effects on
both blood flow rates and graft survival (78). Furthermore,
biliverdin can protect cells from apoptosis induced by cisplatin
(CP), a very effective anti-cancer drug, through its anti-oxidative
effects (79). CO inhalation therapy can also protect the kidneys
from nephrotoxicity induced by CP by limiting renal tubule

cell apoptosis (80). Moreover, HO-1 induction is related to the
increased availability of ferritin, leading to prompt conjugation
and removal of free iron, thereby removing another source of
potential oxidative stress (81). Thus, the mechanism of HO-1
may be multifaceted and diversified in terms of the maintenance
of renal blood flow and the promotion of cell survival (Figure 3).

The preventive role of HO-1, as well as the induction of
other cytoprotective stress proteins, is collectively referred
in the literature as “preconditioning treatment” (56).
Numerous subsequent studies have confirmed the potential
of pharmacologic or genetic HO-1 induction in immune
modulation against AKI (71, 82, 83). For instance, statins are
capable of exaggeratingHO-1 induction post ischemia in vascular
smooth muscle cells and macrophages, the administration of
which can reduce the severity of IRI-induced AKI, and this
protection can be blocked by HO inhibition (83). Moreover,
intravenous injection of HO-1-overexpressing macrophages
preferentially homes these cells to the ischemic kidney to
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FIGURE 2 | Overview of heme oxygenase-1 in renal diseases. HO-1 induction prevents renal damage in diverse renal diseases, such as acute kidney injury (AKI),

chronic kidney disease (CKD), glomerular diseases, diabetic nephropathy (DN), and kidney transplantion. Arrows followed by text indicate increase (↑) or decrease (↓).

ameliorate AKI (71). Besides the induction of HO-1 expression
under macroscopic conditions, recent studies also have focused
on the molecular mechanisms in the induction of HO-1
expression and the regulation of its activity, which includes
transcription factors and upstream signaling molecules. For
instance, the nuclear factor erythroid 2-related factor 2 (Nrf2)
is one of the key transcription factors involved in the regulation
of HO-1 (84). During injury, Nrf2 hyperactivation induces
the expression of anti-oxidant and detoxification enzymes and
downstream proteins, including HO-1 (85). This Nrf2/HO-1
signaling axis can trigger a variety of immunological processes
against AKI. Firstly, as one of the catalytic products of HO-1,
CO can decrease the activity of nuclear histone acetyltransferase,
preventing high-mobility group box 1 (HMGB1) acetylation
and release (86), thereby inhibiting the secretion of HMGB1
(87). Recently, studies have shown that HMGB1 activates
inflammatory responses by stimulating receptors such as
TLR4, and reduces the survival of tubular epithelial cells (86),
which promotes renal IR injury (88). Secondly, activation
of the Nrf2/HO-1 pathway can reduce the activity of the

NACHT, LRR, and PYD domains-containing protein 3 (NLRP3)
inflammasome, which is activated by ROS that subsequently
decrease the secretion of pro-inflammatory IL-1β and IL-18
(89). Furthermore, T cell-specific augmentation of Nrf2 affects
phenotypic diversity, activation, and recruitment of immune
cells, which includes increasing anti-inflammatory Tregs,
decreasing pro-inflammatory M1 macrophages, and reducing
intracellular cytokine production by T cells in ischemic AKI
(90). These studies suggest that HO-1, which is induced by the
activation of its transcription factor Nrf2, can protect kidneys
from the exaggerated inflammatory response during AKI.
Given that the multifactorial mechanisms of HO-1 induction
are adverse toward the pathophysiological processes of AKI,
preventive HO-1 induction may provide new insights that can
improve the treatment of AKI.

CHRONIC KIDNEY DISEASE

Chronic kidney disease (CKD) is a clinical syndrome secondary
to the definitive dysfunction and/or the structure of the
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FIGURE 3 | The beneficial actions of HO-1 on renal tubule in acute kidney injury. HO-1 and its products of heme exhibit pleiotropic effects on the cell survival, the

inflammatory response and the microcirculation, all of which are of potential importance in mediating its potential protective effects after AKI.

kidneys and is a public health problem that causes substantial
morbidity and mortality (91). In CKD, various abnormally
filtered urinary proteins stimulate tubular epithelial cells
to synthesize pro-inflammatory mediators, including ROS
and chemokines (92). Proteinuria is well-recognized as a
prognostic index of the severity of progressive kidney disease
and the degree of decline in renal function in CKD (93).
Reabsorption of urinary proteins induces ROS production
within tubular epithelial cells, which results in the high up-
regulation of HO-1 (94). The overexpression of HO-1 in
proximal tubular epithelial cells reduces the albumin-stimulated
production of cytokines such as monocyte chemoattractant
protein-1 (MCP-1) (95). In addition, MCP-1 is a potent
chemoattractant, affecting monocytes/macrophages, and
increased MCP-1 levels can stimulate transforming growth
factor (TGF)-β induction in resident glomerular cells (96).
Moreover, MCP-1 induces inflammation by activating nuclear
factor-kappaB (NF-κB), thereby directly producing pro-
inflammatory effects on the proximal tubules (97, 98). HO-1
knockout mice exhibit drastic interstitial cellular inflammation
accompanied by the striking up-regulation of MCP-1 and
the activation of NF-κB, which is consistent with previous
findings (99).

Theoretically, any etiology that can cause progressive and
permanent death of renal tissue and the subsequent replacement
of functional nephrons has the potential to lead the fibrosis
characteristics of CKD (100). Despite the heterogeneity of
etiologies, TGF-β has a critical role in initiating and modulating
tissue repair, and its aberrant expression is involved in the
pathogenesis of progressive CKD (101). However, this factor
can activate the expression of HO-1 to stabilize and attenuate
tissue injury (102). Interestingly, a therapeutic approach for
HO-1 induction has been proposed in mitigating TGF-β-
mediated renal disease (103). In mice with unilateral ureteral
obstruction (UUO), a progressive interstitial fibrosis model, the
preventive enhancement of HO-1 expression 48 h before UUO
attenuated fibrosis by down-regulating inflammatory pro-fibrotic
genes as well as pro-apoptotic pathways (caspase-3 activation),
which decreased proteinuria and renal dysfunction (104, 105).
Zinc protoporphyrin IX (ZnPP), an HO-1 inhibitor, can block
these protective effects, thereby inducing increased fibrosis,
up-regulating tubular TGF-β1 expression and inflammation,
and enhancing the epithelial-to-mesenchymal transition with
the increased infiltration of macrophages (106). In transgenic
mice, HO-1 overexpression has been reported to limit the
tubule-interstitial infiltration of macrophages and to regulate
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the secretion of inflammatory cytokines, significantly reducing
renal interstitial fibrosis in the UUO model (107). Recent
evidence indicates that HO-1 can act as a protective agent against
renal fibrosis through the regulation of microRNAs, such as
the p53-regulated miR-34a and the pro-fibrotic miR-21, but
the underlying regulatory mechanisms remain unclear (108).
Moreover, administration of low-dose CO to mice has protective
effects via the MAPK kinase 3 (MKK3) pathway, thereby
inhibiting the development of renal fibrosis in obstructive
nephropathy (109). These results suggest that the augmentation
of HO-1 levels may be a therapeutic strategy against renal
interstitial fibrosis.

Interestingly, the level of HO-1 expression is variable across
individuals due to the high degree of polymorphism in the
number of the guanosine thymidine (GT)n fragment in the
promoter (110). This is clinically meaningful, as shown in
patients with coronary artery disease in whom a greater number
of GT dinucleotide repeats in the HO-1 gene promoter was found
to be associated with an increased risk of CKD (111). Thus,
dysregulated pathways of inflammation and repair, such as the
up-regulated failure of HO-1, may increase oxidative stress and
inflammation, which in turn can contribute to this self-injury
state (112). Despite the reduced oxygen supply in CKD, hypoxia
inducible factors (HIF) are down-regulated and associated with
decreased HO-1 expression, although HIF induction was found
to restore HO-1 expression in a mouse model of CKD, together
with other target genes and angiogenesis (113). Furthermore,
Nrf2 activation (and downstream HO-1) may lessen maladaptive
repair after repeated acute injuries (114). Thus, the up-regulation
of HO-1 expression by Nrf2 or HIF seems to be a potential target
for delaying the progression of CKD.

Hemodialysis is one of three renal replacement therapies, and
the arteriovenous fistula (AVF) is the preferred hemodialysis
vascular access, although it is complicated by high failure rates
and attendant morbidity (115). AVF blood flow is markedly
reduced in the setting of CKD, and the venous wall is significantly
thickened (116). The risk of venous thrombus formation is also
increased due to the up-regulation of genes with procoagulant
properties (117). However, venous HO-1 induction can improve
AVF blood flow and decrease venous wall thickness of the AVF
in a murine model of CKD (118). Moreover, the authors found
that the administration of carbonmonoxide-releasingmolecules-
3 (CORM-3) (40 mg/kg ip) after nephrectomy and before AVF
surgery acutely increases AVF blood flow (118). This study
indicates that induction of HO-1 and/or administration of its
products may confer beneficial effects in terms of improving
certain classical therapies. To conclude, up-regulation of HO-
1 during CKD may interrupt the progressive loss of renal
function by inhibiting the progression of renal fibrosis. As such,
aberrant expression of HO-1 may favor fibrosis by decreasing
blood flow, thereby establishing and maintaining a chronic
pro-inflammatory state.

GLOMERULAR DISEASES

Glomerular diseases are a leading cause of chronic and end stage
renal disease (ESRD) worldwide (119). The unique anatomical
location and highly specialized structure of the glomerulus makes

the glomerular microvasculature particularly vulnerable, exposes
it to a variety of HO-1 inducers. In line with this, up-regulation
or induction of HO-1 has been observed in diverse glomerular
diseases, including sickle cell nephropathy (120), minimal change
disease (121), and IgA nephropathy (121). Interestingly, although
the glomerular microvasculature is commonly attacked in
these diseases, the above studies demonstrate dominant HO-1
induction primarily in renal tubular rather than glomerular cells
(122, 123). This indicates that injury in glomeruli can induce
HO-1 expression in renal tubules, which establishes the potential
association between glomeruli and tubules.

Glomerulonephritis (GN) refers to a group of renal diseases
that attack glomeruli due to damage mediated by immunological
mechanisms (124). To study HO-1 expression in acute GN, a
model of nephrotoxic nephritis (NTN) has mostly been used
(125). In this model, the location of HO-1 expression was also
predominantly found in tubular cells and not in glomeruli (126).
Under certain circumstances, such as the administration of HO-1
inducer in this model, HO-1 expression can also be induced by
glomerulus cells, showing reduced glomerular neutrophils and
macrophage infiltration, and decreased glomerular thrombosis
(127). In kidney injury, HO-1 expression can be induced in
renal parenchymal cells and tissue resident leukocytes (68,
69). These renal tissue resident leukocytes can contribute to
lymphocyte differentiation and activation, thereby linking innate
and adaptive immune systems (128). HO-1 can also exhibit
inhibitory effects on autophagy, which is a highly regulated
mechanism to eliminate damaged organelles and proteins from
cells and to maintain homeostasis (129).

Inflammatory responses are also regulated by nitric oxide
(NO), which is synthesized by nitric oxide synthase (NOS) (130).
In GN, intraglomerular inducible nitric oxide synthase (iNOS)
activation leads to high levels of NO generation, which results
in supraphysiologic amounts of NO within glomeruli (131). The
excessive NO can move freely in and out of cells and bind to the
heme-iron present in iNOS itself and other hemoproteins (132,
133). Thus, excessive NO can inhibit the subsequent production
of NO catalyzed by iNOS (134). Additionally, the binding of
NO to heme-containing enzymes can promote destabilization,
fragmentation, and proteolysis by proteasomes (135). Thus, NO
promotes the release of heme from iNOS, and HO-1 activity is
enhanced by the released heme, which can undergo degradation
and removal by HO-1 (135). Consistent with these findings,
iNOS and HO-1 are co-induced in an NTN model (136). NO
production derived from iNOS stimulates HO-1 expression in
glomerular mesangial cells, whereas HO-1 activation reduces
iNOS expression/activity, which provides evidence for a link
between iNOS and HO-1 in NTN rats (136). This may be partly
attributable to the expression products of HO-1, all of which can
suppress the effects of iNOS expression (137, 138). For instance,
CO can bind heme within iNOS and influence the enzymatic
activity of iNOS and the production of NO (139). The released
iron can suppress iNOS transcription, which down-regulates
iNOS expression (140). Another possible reason may be that the
heme prosthetic group required by iNOS is degraded by HO-
1 (141). Increased HO-1 activity can decrease the availability
of heme needed for incorporation into newly synthesized apo-
iNOS protein, thereby impairing the synthesis of functional iNOS
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(142). Moreover, iNOS activity is inhibited when excessive NO
binds to heme within the iNOS protein (134). As a result, the
activity of iNOS is suppressed and the additional production of
NO is blocked, allowing the cells to survive after being exposed
to both oxidative and nitrosative stresses. This negative feedback
seems to be an excellent mechanism in that glomerular cells can
rapidly defend against NO-mediated oxidative injury.

It has also been reported that oxidative stress constitutes
a key and a common event in the pathogenesis of IgA
nephropathy (143, 144), which is the most common form of
primary GN worldwide (145). Nakamura et al. reported that
oxidative DNA damage and oxidative stress were increased in
patients with IgA nephropathy compared with healthy controls
(146). Chen et al. observed that polymorphonuclear leukocyte
infiltration, which has a high potential to produce ROS, increased
in patients with IgA nephropathy (144). These data suggest
that the production of activated ROS is associated with renal
dysfunction in IgA nephropathy. ROS are considered to be
activated in IgA nephropathy due to the lower mRNA expression
of superoxide dismutase (SOD) in moderately or severely
damaged tissues from patients with IgA nephropathy and non-
IgA mesangial proliferative glomerulonephritis compared with
normal or mildly damaged tissues (147). Furthermore, decreased
SOD levels may suppress the superoxide-scavenging reaction,
thereby rendering the tissues more vulnerable to oxidative
stress (147). Accordingly, HO-1 immunoreactivity in the kidneys
of patients with IgA nephropathy was significantly higher
than that in the kidneys of controls (144). Activated HO-1
can reduce oxidative stress-mediated cellular injury through
at least two possible mechanisms, namely, the degradation of
cellular heme and the elevation of biliverdin concentrations
(148, 149). However, the underlying mechanisms of HO-1 in
IgA nephropathy remain unclear, with research pointing to the
presence of HO-1 promoter polymorphisms, which predispose
individuals to the development of IgA nephropathy (150).

In addition, inflammatory reactions and oxidative
stress are involved in the pathogenesis of focal segmental
glomerulosclerosis (FSGS), a very common type of chronic
kidney disease with clinical features of excessive proteinuria or
nephrotic syndrome (151). HO-1-deficient rats exhibit FSGS-
type lesions that associate with proteinuria, which implicates
HO-1 in the pathobiology of FSGS (152). Aggravated oxidative
stress resulting from the absence of HO-1 may be an underlying
mechanism that explains the presence of FSGS-type lesions
and proteinuria observed in the glomeruli of rats lacking
HO-1. Furthermore, several studies have already reported that
targeting the Nrf2 anti-oxidant pathway may hold promise
as a renoprotective therapy for FSGS (153, 154). Yang et al.
observed that targeting the Nrf2-mediated anti-oxidant pathway
significantly prevented the development of FSGS in treated mice
(153). This delayed effect may involve mechanistic pathways,
such as the binding of Nrf2 to anti-oxidant-response elements
in the promoter region of several Nrf2-downstream genes
encoding anti-oxidant enzymes, including HO-1, glutathione
peroxidase (GPx), catalase, and SOD (155, 156). However, it
is not entirely clear to what extent HO-1 plays a role in the
protection of FSGS.

Taken collectively, inflammatory responses and oxidative
stress appear to be a major part of the pathophysiologic process
in glomerular diseases. Under these conditions, HO-1 can be
induced in tubules, and glomerular injury may initiate HO-1
expression in renal tubules via a potential mechanism. Among
them, excessive NO production stimulates HO-1 expression in
glomerular mesangial cells, and activation of HO-1 may mitigate
NO-mediated toxicity by negatively modulating iNOS expression
or activity. HO-1 expression is also upregulated in tissue
resident leukocytes. Consequently, glomerular neutrophils and
macrophage infiltration are significantly reduced. As an adaptive
response to oxidative stress, increased HO-1 expression is also
needed to protect cells from oxidative stress, and it may be an
emerging therapy in clinical studies. Further studies are required
to understand the role of HO-1 in these glomerular diseases.

LUPUS NEPHRITIS

Systemic lupus erythematosus (SLE) is a typical systemic
autoimmune disease of unknown etiology that predominantly
affects women of child-bearing age (157). It is characterized
by chronic inflammation and immunological abnormalities
(158). Although inflammation may impact multiple
organ systems in SLE, lupus nephritis (LN) remains the
representative manifestation and the major contributor to
mortality caused by SLE (159). The pro-inflammatory role of
monocytes/macrophages in the pathogenesis of SLE has been
established. Patients with SLE exhibit a lower level of HO-1
expression in monocytes, suggesting a potential connection
between HO-1 expression by myeloid cells and lupus nephritis
(160). Cuitino et al. found that the activated neutrophils of
patients with LN showed low HO-1 expression, and the baseline
ROS level in patients’ monocytes was increased, and cobalt
protoporphyrin (Co-PP) restored the HO-1 level to the baseline
level (161). Thus, the pro-inflammatory environment of LN
patients may be associated with decreased HO-1 expression
in circulating and infiltrating monocytes/macrophages and
neutrophils. However, further studies are needed to determine
whether these alterations in immune cells are a cause or a
consequence of the disease.

In LN, renal damage is initiated by the production of anti-
nuclear antibodies (ANA) and the glomerular deposition of
immune complexes (IC) (162). These results are attributed to
the failure of T cell and B cell suppression, which is mediated
by defects in cell signaling, immune tolerance, and apoptotic
mechanisms that promote autoimmunity (163). Accordingly,
the administration of tolDCs has been suggested as a potential
strategy in the treatment of SLE (164, 165). In a mouse model
of SLE, DCs treated in vitro with HO-1 inducer showed a stable
tolerogenic profile, and treatment with these DCs alleviated SLE
symptoms, including decreased ANA and reduced skin lesion
severity (166). Likewise, after the administration of hemin as
an HO-1 inducer, these mice showed decreased proteinuria,
reduced glomerular immune complex deposition, and increased
expression of iNOS in the kidneys (167). They also showed
decreased circulating levels of anti-dsDNA IgG (a group of ANA)
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and IFNγ (167). Moreover, CO treatment can also ameliorate
proteinuria and renal inflammation in FcγRIIb-deficient mice, a
model for SLE (165). CO exposure also significantly decreases the
number of activated T cells in the kidneys and lungs, as well as
ANA levels in lupus-prone mice (168).

Based on the adverse effects of low HO-1 expression in
immune cells, it has become possible to use HO-1 inducers
to delay the progression of LN and even ameliorate the
systemic conditions of SLE patients (Figure 4). For instance,
baicalein can alleviate the symptoms of pristane-induced LN
by regulating the balance between Nrf2/HO-1 signaling and
NLRP3 expression (169). Furthermore, dietary extra virgin olive
oil could attenuate renal damage in a mice SLE model via the
activation of the Nrf-2/HO-1 pathway and the reduction of
pro-inflammatory cytokines (170). However, further studies are
required to provide greater insight into the effects of HO-1
induction and its byproducts.

DIABETIC NEPHROPATHY

Diabetic nephropathy (DN) is one of the most common
microvascular complications coinciding with both type I and II
diabetes (171). It is characterized by glomerular hypertrophy,
proteinuria, decreased glomerular filtration, and renal fibrosis
with progressive renal injury caused by high glucose levels
(172). About 45% diabetics are affected by this microvascular
complication, which ultimately leads to ESRD (173). Chronic
hyperglycemia is the major cause of increased ROS production
and the leading cause of CKD through the increase of oxidative
stress and the induction of cellular damage in patients with
diabetes, and thus, it is strongly implicated in the pathogenesis
of diabetic-related complications (174). High glucose levels
suppress the activation of the HO-1 gene, and reduced HO-1
activity not only increases the levels of heme and superoxide
anion (O2−) but also decreases the levels of CO and bilirubin,
thereby aggravating glucose-mediated oxidative stress (175–178).
These observations have been confirmed by experiments with
TNF, heme/hemoglobin, and H2O2 exposure, in which decreased
HO-1 activity resulted in reduced cell viability (179–182).

The diabetic db/db mouse model shows increased glomerular
HO-1 expression (183). This particular phenomenon was
also observed for other animal models of diabetes such as
streptozotocin (STZ)-induced diabetes mellitus (184). In vitro
experiments, high glucose-treated podocytes showed increased
HO-1 expression and apoptosis, and the inhibition of HO-
1 accentuated podocytes apoptosis (185). Additionally, Nrf2
overexpression in mouse mesangial cells up-regulated the
expression of HO-1, as well as reduced high glucose-induced ROS
and cell proliferation (186). The reverse effects were observed
in cells with Nrf2 knockdown, suggesting a protective role for
HO-1 in both podocytes and mesangial cells. Furthermore, HO-
1 overexpression prevents apoptosis and cell death mediated
by hyperglycemia due to the increased levels of the anti-
apoptotic protein B-cell leukemia-lymphoma-xL (Bcl-xL) and
several growth factors, as well as the decreased level of MCP-1
(187), again verifying the beneficial effects of HO-1.

Among the HO-1 inducers, hemin can drastically increase
HO-1 expression, especially in tubules (188). After chronic
administration of hemin in STZ DN rats, these animals showed
increased creatinine clearance, decreased iNOS, and decreased
urea levels (189). However, hemin can selectively stimulate
anti-inflammatory M2 macrophages and IL-10 production,
thereby reducing interstitial macrophage infiltration in STZ
DN rats (190). Pro-inflammatory M1 macrophages, as well as
the suppressive extracellular matrix/profibrotic factors, are also
concomitantly abated (190). A recent study has reported that
hemin can improve insulin sensitivity by up-regulating HO-
1, presumably due to plasma insulin and potentiated agents
implicated in insulin sensitization and insulin signaling (191).
On the other hand, chromium mesoporphyrin (CrMP), an HO-
1 inhibitor, can nullify the hemin-dependent anti-diabetic and
insulin-sensitizing effects (191). Several other HO-1 inducers,
such as sitagliptin, can mitigate renal injury in STZ-treated
rats by activating phosphatidylinositol 3-kinase (PI3K) and Nrf2
(192). Additionally, inducers of HO-1 can improve insulin
sensitivity (193), which supports their protective effects and
offers the possibility of new therapeutic approaches. Finally,
the relevant role of HO-2 in protecting individuals from DN
cannot be ignored. STZ-induced diabetes in HO-2-deficient mice
stimulates superoxide anion production and provokes prominent
tubulointerstitial injury, thereby resulting in enhanced renal
dysfunction. Conversely, these negative effects are attenuated
when HO-1 is upregulated in these mice (194).

To conclude, chronic hyperglycemia in DN has the capacity to
increase oxidative stress and cell apoptosis. In this context, HO-
1 can be induced in several types of cells, including podocytes
and mesangial cells, thereby limiting podocyte apoptosis and
mesangial proliferation. HO-1 also plays an unexpected role in
DN under the action of HO-1 inducers by reducing interstitial
macrophage infiltration and improving insulin sensitivity.

KIDNEY TRANSPLANTATION

Kidney transplantation is considered to be the mainstay of
treatment and the preferred replacement therapy for patients
with ESRD (195). The failure of transplanted organs is usually
attributed to the early complications of IRI, namely, acute and
chronic rejection (196). Although most research has focused
on preventing T-cell responses that lead to acute rejection in
a more specific and less toxic way, none of these problems
have been completely overcome. Transplantation is a state
of ischemia-reperfusion, and the main factors affecting organ
function after transplantation are nutrient deprivation and
hypoxia, with reperfusion aggravating organ damage initially
caused by ischemia (197). Oxidative stress, apoptosis, and a non-
specific innate immune response that subsequently activates the
specific immune system are the leading causes of deteriorated
early graft function (198). Accordingly, HO-1 can potentially
prevent oxidative stress due to its anti-oxidant and anti-apoptotic
properties and suppress the immune response through its
immunomodulatory effects.
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FIGURE 4 | The beneficial effect of the use of HO-1 inducers on the SLE patient. HO-1 induction in immune cells promotes polarization of macrophages into the M2

profile with anti-inflammatory property. They are capable of increasing secretion of IL-10 and decreasing secretion of pro-inflammatory cytokines and mediators. These

favor the obtainment of a tolerogenic profile in DCs, thus generating regulatory T (Treg) cells differentiation, which prevents autoimmunity by inhibiting the activation

and proliferation of effector T (Teff) cells.

During organ transplantation, grafts are successively subjected
to global cold ischemia, warm ischemia, and blood reperfusion.
These steps are thought to compromise graft function and
to aggravate both acute and chronic rejection (199). The

length of warm ischemia is associated with the extent of
tissue damage in renal IRI. The prolonged duration of warm
ischemia results in inflammation, local tissue injury, higher
free heme levels, and upregulated levels of HO-1, C5a receptor
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(C5aR), IL-6, and TNF-α (200). However, during the cold
ischemia period, high HO-1 expression is related to an
inferior outcome, although previous studies cannot identify
a direct association between the longer ischemia time and
the higher HO-1 expression (201). In a rat model of kidney
transplantation, hyperthermic preconditioning or Co-PP induces
HO-1 expression. Furthermore, HO-1-induced animals show
decreased expression of apoptosis markers and signs of injury,
indicating that graft survival and function are improved
(202). HO-1 induction by hemin or fenoldopam in donors
has also yielded similar beneficial effects that associate with
preserved kidney graft function and prevention of apoptosis after
reperfusion (203, 204).

T cell and B cell activation by the graft is recognized as
the acute rejection episode after kidney transplantation (205).
During acute renal allograft rejection, HO-1 is mainly induced
in infiltrating macrophages (206). HIF-1 is also significantly up-
regulated in both tubules and infiltrating cells, indicating that
the rejected grafts are hypoxic (207). This effect may result
in the up-regulation of HO-1 in animal models, which may
inhibit the cytotoxicity mediated by T cells and NK cells and
may reduce the number of DCs in the graft and lymph nodes
derived by the donor, and, thus, improve the graft survival
(28). Moreover, administration of low doses of cyclosporine
A, immune-modulatory peptides, can induce HO-1 to reduce
allograft injury and to improve graft function (208). However,
recent observations indicate that HO-1 may also be involved in
B cell differentiation, which may potentially increase the risk of
acute rejection (27).

In a rat chronic renal transplantation model, the induction
of HO-1 in the donor kidney by Co-PP improves survival,
kidney function, and the morphologic characteristics of grafts
(209). The kidneys from Co-PP-treated donor animals exhibit
longer preservation under ischemic conditions, and thus, better
graft survival (209). Similar findings have also been reported
in brain-dead donors, with the up-regulation of HO-1 by
Co-PP ameliorating survival of the kidney graft (210). HO-1
overexpression in the recipient can also reduce chronic kidney
allograft injury (211). In this regard, there is evidence to suggest
that HO-1 can engender cell death induced by the activation of
alloreactive T cells, which facilitates graft tolerance (212).

In addition, some of the effects of HO-1 may be associated
with the expression of the byproducts of heme degradation
such as CO and biliverdin (4, 213, 214). For instance, CO
can reduce graft immunogenicity after engraftment and
improve allograft function, thereby slowing the progression
of chronic allograft nephropathy (76). Despite high doses of
CO and their clinical limitations, low doses of CO have been
shown to attenuate IRI (207), which was probably due to
the stabilization of various enzymes, thereby reducing their
degradation and release of heme (215). In a swine model
of a kidney allograft, CO exposure reduced acute tubular
necrosis and apoptosis, as well as the expression of tissue factor
and P-selectin, and enhanced cell proliferative repair (216).
Moreover, CO induction before organ procurement may avoid
chronic rejection of the kidney in rats (217, 218), and this
effect may be more significant with co-administration of CO

and biliverdin (78). Furthermore, administration of biliverdin
reduced the CD4+ T cell response by suppressing immune
transcription factor activation, inhibiting co-stimulatory
activity, and down-regulating major histocompatibility
complex (MHC) class II expression (38). The beneficial
effects of bilirubin administration have been proven in
patients with islet allografts (219). Thus, HO-1 induction
and administration of its products may confer beneficial effects
to the transplanted kidney.

CONCLUSION

During the past few decades, important roles for HO-1 and
its byproducts in the pathophysiology of kidney diseases
have been reported and supported by an abundance of
evidence. As mentioned above, HO-1 has the capacity to
affect the development and the function of a variety of
immune cells and kidney resident cells. Under physiological
conditions, HO-1 expression in these cells contributes
directly or indirectly to the protection of renal function
by eliminating free heme and preventing heme-induced
inflammation. Under certain pathological conditions,
such as kidney transplantation, autoimmune disease, and
autoinflammatory disease, HO-1 can regulate and/or inhibit
excessive immune responses to cellular stress. HO-1-based
immunotherapy may represent a promising strategy to
circumvent kidney diseases. These approaches will likely
include dietary and herbal medicines or gene therapy-
mediated induction of HO-1 as well as the administration
of its byproducts. However, it is crucial to consider the
pharmacological properties of these compounds as well as the
reported discrepancies between ex vivo/in vivo simulations
and the actual clinical situations. The administration of
heme and HO-1 byproducts for prolonged periods or at high
concentrations exhibits toxic properties. Thus, the enhancement
of HO-1 and its byproducts and the down-regulation of free
heme should be maintained at acceptable non-toxic levels.
Furthermore, despite the amelioration of the underlying
disease, chronic HO-1-induced immune suppression remains a
significant challenge.
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GLOSSARY

HO, heme oxygenase; CO, carbon monoxide; HO-1, heme
oxygenase-1; HO-2, heme oxygenase-2; IFN, interferon; DCs,
dendritic cells; IRF3, IFN regulatory factor 3; tolDCs, tolerogenic
dendritic cells; Treg cells, regulatory T cells; MC, mast cell;

STAT3, signal transducer and activator of transcription 3; Th17
cells, T helper 17 cells; Th2 cells, T helper 2 cells; NK cells,

natural killer cells; DAMP, danger-associated molecular pattern;
TLR4, toll-like receptor 4; TNF, tumor necrosis factor; ROS,
reactive oxygen species; IL, interleukins; AKI, acute kidney
injury; ATN, acute tubular necrosis; IR, ischemia-reperfusion;
ATP, adenosine triphosphate; IRI, ischemia-reperfusion injury;
CP, cisplatin; Nrf2, nuclear factor erythroid 2-related factor
2; HMGB1, high-mobility group box 1; NLRP3, NACHT,
LRR, and PYD domains-containing protein 3; CKD, chronic
kidney disease; MCP-1, monocyte chemoattractant protein-1;

TGF, transforming growth factors; NF-κB, nuclear factor-
kappaB; UUO, unilateral ureteral obstruction; ZnPP, Zinc
protoporphyrin IX; MKK3, MAPK kinase 3; GT, guanosine
thymidine; HIF, hypoxia inducible factors; AVF, arteriovenous
fistula; CORM-3, carbon monoxide-releasing molecules-
3; ESRD, end stage renal disease; GN, glomerulonephritis;
NTN, nephrotoxic nephritis; NO, nitric oxide; NOS, nitric
oxide synthase; iNOS, inducible nitric oxide synthase; SOD,
superoxide dismutase; FSGS, focal segmental glomerulosclerosis;
NADPH, nicotinamide adenine dinucleotide phosphate; GPx,
glutathione peroxidase; LN, lupus nephritis; SLE, systemic
lupus erythematosus; Co-PP, Cobalt Protoporphyrin; ANA,
anti-nuclear antibodies; IC, immune complexes; DN, diabetic
nephropathy; O2

–, superoxide anion; STZ, streptozotocin; CrMP,
chromium mesoporphyrin; PI3K, phosphatidylinositol 3-kinase;
Bcl-xL, B-cell leukemia-lymphoma-Xl; C5aR, C5a receptor;
MHC, major histocompatibility complex.

Frontiers in Medicine | www.frontiersin.org 18 August 2021 | Volume 8 | Article 708453

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Immunomodulatory Effects of Heme Oxygenase-1 in Kidney Disease
	Introduction
	Acute Kidney Injury
	Chronic Kidney Disease
	Glomerular Diseases
	Lupus Nephritis
	Diabetic Nephropathy
	Kidney Transplantation
	Conclusion
	Author Contributions
	Funding
	References
	Glossary


