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Abstract: Micro- and nanosize lignin has recently gained interest due to improved properties
compared to standard lignin available today. As the second most abundant biopolymer after
cellulose, lignin is readily available but used for rather low-value applications. This review focuses
on the application of micro- and nanostructured lignin in final products or processes that all show
potential for high added value. The fields of application are ranging from improvement of mechanical
properties of polymer nanocomposites, bactericidal and antioxidant properties and impregnations to
hollow lignin drug carriers for hydrophobic and hydrophilic substances. Also, a carbonization of
lignin nanostructures can lead to high-value applications such as use in supercapacitors for energy
storage. The properties of the final product depend on the surface properties of the nanomaterial and,
therefore, on factors like the lignin source, extraction method, and production/precipitation methods,
as discussed in this review.

Keywords: lignin; nanoparticles; microparticles; biorefinery; reinforcing; antibacterial; UV-blocker;
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1. Introduction

Lignocellulosic biomass residues are estimated to exceed 2 × 1011 t/year worldwide and offer
a vast source for lignin [1]. Most of the lignin is currently used as an energy source. However,
economic analysis has proved that the use of biomass for energy applications alone, in many cases,
is not economically viable and utilization of the entire biomass through multiple processes is needed
to improve the economics [2]. Only about 40% of the generated lignin is needed to cover the internal
energy demand of a biorefinery [3,4]. Hence, 60% of the generated lignin is available to maximize
valorization in addition to the valorization of the carbohydrate fractions.

Lignin in nanoscale can be one of the keys to maximize valorization of the input feedstock in
a biorefinery, and “you can make anything you want out of lignin . . . except money” [5] is changing
to “Yes, we can make money out of lignin” [6]. For example, lignin-derived carbon nanofibers were
successfully produced in pilot scale at Scion and Revolution Fibres (Auckland, New Zealand) and
offer low production cost relative to other carbon nanomaterials [6].

Lignin is a highly irregularly branched polyphenolic polyether, consisting of the primary
monolignols, p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, which are connected via
aromatic and aliphatic ether bonds [7] as well as non-aromatic C–C bonds. The high complexity and
inhomogeneity of the lignin structure is, in many cases, even further increased by currently applied
pretreatment technologies and adds additional challenges for lignin’s downstream processing and
valorization [8,9]. Lignins can be roughly distinguished by their origin plant species and the processing
method. In case of origin, three major types of lignin can be distinguished; where softwood lignins are
comprised almost solely of coniferyl alcohol; hardwood lignins of both coniferyl and sinapyl alcohol;
and grass lignins of all three types [10]. In the case of the processing method, two different routes
can be identified: (1) lignin recovery before carbohydrate conversion; and (2) lignin recovery after
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carbohydrate conversion [11]. The latter is expected to be used for low-value markets, whereas lignin
removal before fermentation through methods such as organosolv pretreatment or the use of ionic
liquids as extraction solvent can result in lignin with little structural changes [11].

A possibility for overcoming the issue of high complexity and inhomogeneity is the use of the
lignin at submicron scale, since nanostructured materials can have considerably different properties
from larger-dimensional material of the same composition [12]. Production methods for lignin from
micro- to nanosize in the shape of particles, fibers, tubes and sheets from different lignin sources were
comprehensively compared in a previous review by the authors [13]. However, the lignin materials
produced are, in most cases, only intermediates and need to be converted or applied in a final product
or process. A summary of applications reported in recent literature is given in the present review.

2. Application Overview for Lignin from Micro- to Nanosize

A wide range of applications for lignin nanomaterials is reported in the literature. This review
gives an overview of the present applications and their performance in the final product or process.
Figure 1 gives a graphical overview of the published and potential applications.

Int. J. Mol. Sci. 2017, 18, 2367 2 of 23 

 

latter is expected to be used for low-value markets, whereas lignin removal before fermentation through 
methods such as organosolv pretreatment or the use of ionic liquids as extraction solvent can result in 
lignin with little structural changes [11]. 

A possibility for overcoming the issue of high complexity and inhomogeneity is the use of the 
lignin at submicron scale, since nanostructured materials can have considerably different properties 
from larger-dimensional material of the same composition [12]. Production methods for lignin from 
micro- to nanosize in the shape of particles, fibers, tubes and sheets from different lignin sources were 
comprehensively compared in a previous review by the authors [13]. However, the lignin materials 
produced are, in most cases, only intermediates and need to be converted or applied in a final product 
or process. A summary of applications reported in recent literature is given in the present review. 

2. Application Overview for Lignin from Micro- to Nanosize 

A wide range of applications for lignin nanomaterials is reported in the literature. This review 
gives an overview of the present applications and their performance in the final product or process. 
Figure 1 gives a graphical overview of the published and potential applications. 

 
Figure 1. Overview of potential and investigated applications of lignin from micro- to nanosize 
published in literature. 

Lignin shows many unique properties such as resistance to decay and biological attacks, 
ultraviolet (UV) absorption, high stiffness, and the ability to retard and inhibit oxidation reactions. 
Therefore, it offers the potential to produce high-value products from a large-volume feedstock 
[14,15]. Incorporation of nanoparticles in polymers can be a way to increase their values, since current 
properties can be improved and the materials can be provided with new features. This review is 
sectioned according to the fields of application of the materials. Therefore, the same polymer blends 
can be found in several chapters. Table 1 lists all polymer blends in order to give an overview of the 
fields of applications of polymer blends, the applied production methods, and properties. 

Figure 1. Overview of potential and investigated applications of lignin from micro- to nanosize
published in literature.

Lignin shows many unique properties such as resistance to decay and biological attacks,
ultraviolet (UV) absorption, high stiffness, and the ability to retard and inhibit oxidation reactions.
Therefore, it offers the potential to produce high-value products from a large-volume feedstock [14,15].
Incorporation of nanoparticles in polymers can be a way to increase their values, since current
properties can be improved and the materials can be provided with new features. This review
is sectioned according to the fields of application of the materials. Therefore, the same polymer blends
can be found in several chapters. Table 1 lists all polymer blends in order to give an overview of the
fields of applications of polymer blends, the applied production methods, and properties.
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Table 1. Overview of investigated polymer blends.

Investigated in Neat Polymer Production Method Application Field and Neat Properties Investigated Properties by Addition of
Lignin Nanoparticles (LNPs)

[16,17] Polylactic acid (PLA)
- Extrusion
- Solvent casting

- Widely used as a packaging material
- Poor thermal and mechanical properties; poor ultraviolet

(UV) barrier properties [18]

- UV-transmittance
- Antibacterial activity
- Mechanical properties
- Thermal properties

[19] Wheat gluten (WG)

- Solvent casting as described by
Kayserilioglu et al. [20]

- Addition of aqueous LNP suspension to
the casting solution

- Can be easily processed into films; effective barrier
properties against carbon dioxide, oxygen and aroma
components, rapidly biodegradable [21–24]

- Poor mechanical properties; strong water absorption in
humid environment

- UV-transmittance
- Mechanical properties
- Thermal properties
- Water sensitivity

[25] Phenolic foams

- Mixing dry lignin particles with
resol resin

- Mixing of resol resin, surfactant, catalyst,
hardener and blowing agent

- Low thermal conductivity; exceptional fire-resistant
properties; high thermal stability; low cost [26]

- Relatively low mechanical performance; extreme friability
compared to other polymeric foams [27,28]

- Mechanical properties

[29] Cellulose triacetate (CTA)

- Solvent casting
- Separate solving of CTA and LNPs

in methylenchloride

- Membrane production
- Low mechanical strength; poor resistance to oxidation [30]

- Mechanical properties

[31] Glycidyl methacrylate
grafted PLA

- Extrusion
- Widely used as a packaging material
- Poor thermal and mechanical properties; poor UV barrier

properties [18]

- UV-transmittance
- UV-weathering stability
- Mechanical properties
- Thermal properties

[32,33] Poly vinyl alcohol
(PVA)/chitosan (CH)

- Solvent casting

- Widely used in food packaging, biomedical, household and
construction sector

- Good solvent resistance, mechanical performance und
biocompatibility [34,35]

- High moisture absorption; low biodegradation rate

- UV-transmittance
- Thermal properties
- Mechanical properties
- Migration
- Antioxidant activity
- Antibacterial activity

[36] Bio-poly (trimethylene
terephthalate)

- Extrusion - Good tensile behavior, outstanding elastic recovery and
thermal stability [37]

- Thermal properties
- Mechanical properties
- Biodegradation



Int. J. Mol. Sci. 2017, 18, 2367 4 of 24

3. Application of Lignin Nanoparticles (LNPs) as Reinforcement

Nanofillers can improve mechanical properties like stiffness, strength and toughness as well as
thermal stability and barrier properties [38]. Those nanocomposites can perform better in comparison
to traditional composites due to the higher specific surface of the nanofillers [39]. This section focuses
mainly on the mechanical properties, where other properties are discussed in different sections.

Del Saz-Orozco et al. [25] used softwood calcium lignosulfonate particles with an average diameter
of 1.6 µm to reinforce phenolic foams. The incorporation of 8.5 wt % of lignin particles in the foam
resulted in the greatest mechanical performance and makes it in those terms competitive with synthetic
fiber-reinforced phenolic foams. The addition of lignin particles showed a compressive modulus and
strength of 128% and 174%, respectively, compared to the neat phenolic foam.

Nevárez et al. [29] incorporated lignin nanoparticles (LNPs) in cellulose triacetate (CAT)
membranes and studied the impacts of organosolv lignin (OS), hydrolytic lignin and Kraft lignin
(KL) in acetylated and non-acetylated form on the mechanical properties. With only a few exceptions,
the mechanical properties were considerably improved through the incorporation of 1 wt % lignin.
The hydrolytic lignin, showing the smallest particle sizes among the studied lignins, resulted in the highest
Young’s moduli. The membranes can be applied in water purification and might reduce biofouling.

Tensile properties, like the tensile strength (σ), modulus (E), and elongation at break (εb), are very
important indicators for the selection of diverse applications for polymeric formulations [40]. Table 2
shows these parameters for various polymers and their counterpart with incorporated LNPs. The given
data shows that the incorporation of LNPs in the right concentration leads to an improved mechanical
behavior in all cases.

Table 2. Mechanical properties of different neat polymers in comparison to their nanocomposites.

Source Polymer Filler Composition and
Concentration

Tensile Strength σ

(MPa)
Young’s Modulus

E (MPa)
Elongation at
Break εb (%)

[19] Wheat gluten neat 5.5 ± 0.8 180.5 ± 57.9 297 ± 11
3 wt % LNP 13.3 ± 1.6 553.2 ± 56.3 28 ± 10

[32] PVA
neat 45.7 ± 1.3 1140 ± 220 164 ± 15

3 wt % LNP 51.4 ± 3.3 2100 ± 130 30.6 ± 8.5

[17] PLA
neat 44.0 ± 4.6 2010 ± 210 15.0

3 wt % LNP 41.1 ± 1.9 1390 ± 60 66.3
1 wt % LNP + 3 wt % CNC 53.6 ± 6.9 2500 ± 170 7.3

[31] PLA/g-PLA

neat PLA 44.4 ± 4.3 1950 ± 250 16.9 ± 4.0
PLA + 1 wt % LNP 48.6 ± 3.5 2150 ± 130 26.8 ± 4.8

g-PLA+ 1 wt % LNP 47.2 ± 3.1 1630 ± 110 108 ± 20
PLA/g-PLA + 1 wt % LNP 56.4 ± 3.3 2120 ± 140 20.4 ± 8.9

[16] PLA
neat 44.3 ± 4.6 1960 ± 230 17.0 ± 3.8

PLA + 1 wt % LNP 48.6 ± 3.4 2150 ± 130 26.7 ± 4.8
PLA + 3 wt % LNP 40.9 ± 2.1 1380 ± 60 66.7 ± 4.0

[41] Natural rubber
neat 25.24 ± 0.38 2.00 ± 0.03 2 654 ± 13

7 wt % LNP 1 29.24 ± 0.59 2.95 ± 0.10 2 658 ± 20

[36] bio-PTT
neat 51.49 ± 0.5 2058 ± 37 -

1.5 wt % LNP 59.16 ± 0.7 2227 ± 47 -
1.5 wt % LNP + 7 wt %

carbon fibers 61.74 ± 0.6 2309 ± 9 -

1 Based on the weight of lignin in the particles; 2 at 300% elongation not at break.

4. Applications of Lignin Nanoparticles as Ultraviolet (UV) Blocker

Lignin contains UV-absorbing functional groups such as phenolic, ketone and other
chromophores [42,43]. This UV-absorbing property can be used in applications like suncreens or
the impregnation of textiles. The effectiveness of this property can even be improved if the lignin
is used at nanoscale. Yearla and Padmasree [44] tested the protection of Escherichia coli against UV
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irradiation by hardwood dioxane lignin and softwood alkali lignin and their complementary nano
version, respectively. The UV protectant activity of the nanolignin showed up to a 30% increase in
comparison to the non-nanolignin. The UV-absorption spectra of KL nanospheres in an aqueous
environment were compared to non-nano KL by Li et al. [45]. The nanospheres with an average
hydrodynamic radius of 145 nm showed quite different absorption characteristics compared to the
non-nano KL despite their identical chemical composition. Both samples show an absorption maximum
at 283 nm, but the nanospherical KL exhibits a broader absorption band in the longer wavelength
region and also shows a shoulder towards the longer wavelength region.

Zimniewska et al. [46] treated linen and hemp fabric as well as non-woven flax with
nanostructured KL obtained by sonication. The treatment gives the textiles excellent UV-protection
while not worsening their physical and bio-physical properties. Using a silicone emulsion for a better
fixation of the nanoparticles improved the UV-protection by almost 5 times in comparison with
non-treated linen fabric.

Qian et al. [47,48] used lignin from different sources to successfully produce sunscreens.
Hydrophobic lignin showed the best performance blended in pure NIVEA™ cream, but the synergetic
effect with commercial sunscreens must be emphasized. The addition of 10 wt % OS to a commercial
sunscreen increased the sun protection factor (SPF) values from 15 to 91.61 and improved its photo
stability. In their most recent work, different spherical sizes of the incorporated lignin were investigated,
including lignin in nanoscale [49]. It was found that the SPF value of the sunscreens increases with
decreasing size of lignin colloidal spheres. While usually, commercial sunscreens need at least 20 wt %
chemical sunscreen actives to reach SPF 15, sunscreen containing 10 wt % OS colloidal spheres with
the size of about 50 nm reaches the identical SPF value.

Yang et al. [17,19,31,32] incorporated LNPs and cellulose nanocrystals (CNC) in wheat gluten
(WG), polyvinyl alcohol (PVA), chitosan (CH), glycidyl methacrylate grafted polylactic acid (g-PLA)
and neat polylactic acid (PLA). The UV- and visible light-blocking properties of selected blends can
be seen on the UV–Vis spectra in Figure 2. Wheat gluten films with incorporated LNPs (0 wt %,
1 wt % and 3 wt %) were prepared with a casting method described by Kayserilioglu et al. [20] and
aqueous LNP dispersion was added to the casting solution under vigorous stirring. Incorporation of
LNPs decreases the light transmittance in the visible light spectrum indicated by the transmittance at
a wavelength of 550 nm, which decreases from 89% for neat WG to 56% for WG containing 3 wt %
LNPs. In the UV range (below 400 nm) of the spectra, transmittance below 2% were reached for the
LNP containing PVA and WG samples [19]. Binary and ternary polymer films with PVA, CH and
LNPs were prepared via solvent casting, and the UV transmittance was reduced from 90.79% to 0.39%
for PVA containing 3 wt % LNPs at a wavelength of 320 nm. Ternary mixtures reached transmittance
values of 0.87% at 320 nm [32]. PLA films were also produced by extrusion and contained neat PLA,
g-PLA and LNPs. The blend consisting of g-PLA and 1 wt % LNPs blocks about 28% of the UV-B
(280–315 nm) irradiation [31]. A synergetic effect of incorporated LNPs and CNCs in PLA films was
found with respect to their transparency and UV-light blocking capability. Two different amounts of
cellulose nanocrystals and lignin nanoparticles were incorporated in a PLA and g-PLA matrix via melt
extrusion. The transmittance at a wavelength of 320 nm could be decreased from 91.4% for neat PLA,
to 57.8% for PLA with 3 wt % LNP and to 46.2% for PLA including 3 wt % LNP and 3 wt % CNC [17].
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5. Application of Lignin Nanoparticles as Biocide

Lignin contains different phenolic monomer fragments and is an important source of natural
antibacterial compounds. Phenolic fragments containing a double bond in α, β positions of the
side chain and a methyl group in the γ position show, in general, the most inhibitory effect [50].
Lignin from different sources, different extraction methods and even a series of lignin model
compounds showed successful antimicrobial properties against various microorganisms [51–53].
The polyphenolic compounds of lignin cause cell membrane damage and lysis of bacteria with
subsequent release of cell content [50,54]. Nanoparticles offer a huge surface area and, therefore,
more functional and polyphenolic sidechains on their surface. This increases the contact area and can
increase the antimicrobial effect.

Silver nanoparticles, on the other hand, also show effective antimicrobial, antifungal and antiviral
properties [55,56]. However, recovery or deactivation of those particles in incineration or wastewater
after their intended use is arduous and may adversely affect many ecosystems [57–60].

Popa et al. [61] and Gîlcă et al. [62] investigated epoxidated and hydroxymethylated lignin
nanoparticles as an impregnating agent for wood. Oak, birch and poplar veneer samples were treated
with nanoparticle dispersions, buried in garden soil sown with wheat for 6 months and evaluated by
their mass loss and variation of contact angle. The birch veneer sample treated with a combination
of CuCl and hydroxmethylated sarkanda grass alkali LNPs showed the best results in terms of mass
loss. The reference sample showed a mass loss of 80 wt % whereas the treated sample only showed
8.7 wt % [61]. Epoxylated LNPs from commercial Protobind 1000, 2000 and 3000 with average particle
diameters of 70–200 nm without addition of CuCl were used for the impregnation of poplar and oak
veneer. The mass loss of the untreated reference samples was 37 wt % and 40.1 wt % for poplar and
oak, respectively. The best results for oak were achieved by treatment with Protobind 1000 LNPs
and a reduction of the mass loss to 20.5 wt %, whereas Protobind 3000 LNPs showed the best result
for poplar and reduced mass loss to 9.5 wt % [62]. Those results show improved wood resistance to
biodegradation. However, tailored formulations for each wood type seem to be necessary.
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Zimniewska et al. [46] impregnated linen fabric with LNPs from Kraft Lignin and achieved
antibacterial activity for eight bacteria cultures which are most often found in human environments.

The antibacterial activity of LNPs incorporated in polymer films for food packaging was evaluated
by Yang et al. [17,32]. A liquid medium test [63] was used in all experiments. Two different PLA blends,
one containing 3 wt % LNPs and one containing 3 wt % LNPs and 1 wt % CNCs, and neat PLA were
tested against the bacterial plant pathogen Pseudomonas syringae pv. tomato (Pst). This bacterium
affects tomatoes production worldwide causing serious damage to all organs, including fruits that
result unmarketable [64]. In the other study, the biocidal activity of neat PVA, CH, PVA/CH films
and nanocomposites containing LNPs was evaluated against Xanthomonas arboricola pv. pruni (CFBP
3894) and Pectobacterium carotovorum subsp. odoriferum (CFBP 1115) bacterial plant pathogens [32].
Both bacteria can damage fresh fruits and vegetables in open fields and after harvesting [32,65].
The results of investigation can be seen in Figure 3. All LNP-incorporated polymer blends showed
lower colony-forming unit (CFU) concentrations within the first 3 h of immersion in the nutrient broth.
After 24 h, the Xanthomonas arboricola pv. Pruni and Pseudomonas syringae pv. tomato concentrations in
the tests with incorporated LNPs were significantly lower compared to the neat polymers. However,
increasing CFU concentrations were observed in each sample between 3 h and 24 h but remained at
lower CFU concentrations compared to the neat polymers [17,32].
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Richter et al. [66] combined the strong antimicrobial properties of silver with the biodegradability of
lignin. Indulin AT™ lignin, obtained by a Kraft pulping process, was used to obtain an environmentally
benign core in nanosize. The nanoparticles were precipitated via pH shift and had a mean hydrodynamic
diameter of 84 ± 5 nm [67]. Afterwards, particles were infused with Ag+ ions in an aqueous solution of
AgNO3 and coated with polydiallyldimethylammonium chloride (PDAC) to shift the zeta potential
of the particles to positive values. Those silver infused particles are capable of neutralizing common
Gram-negative and Gram-positive human pathogens as well as quaternary amine-resistant bacteria.
The amount of silver used was 10 times less in comparison to conventional silver nanoparticles and
aqueous AgNO3 solution. Figure 4 shows the proposed schematics of bactericidal activity and behavior
of the particles after release into the environment. Both particles release Ag+ ions which cause the
bacteria to die. The silver-infused lignin particle is supposed to not contain Ag+ ions after utilization
and remain as a biodegradable lignin particle, whereas the silver nanoparticle still releases Ag+ ions
after utilization.

Int. J. Mol. Sci. 2017, 18, 2367  8 of 23 

 

Richter et al. [66] combined the strong antimicrobial properties of silver with the 
biodegradability of lignin. Indulin AT™ lignin, obtained by a Kraft pulping process, was used to 
obtain an environmentally benign core in nanosize. The nanoparticles were precipitated via pH shift 
and had a mean hydrodynamic diameter of 84 ± 5 nm [67]. Afterwards, particles were infused with 
Ag+ ions in an aqueous solution of AgNO3 and coated with polydiallyldimethylammonium chloride 
(PDAC) to shift the zeta potential of the particles to positive values. Those silver infused particles are 
capable of neutralizing common Gram-negative and Gram-positive human pathogens as well as 
quaternary amine-resistant bacteria. The amount of silver used was 10 times less in comparison to 
conventional silver nanoparticles and aqueous AgNO3 solution. Figure 4 shows the proposed 
schematics of bactericidal activity and behavior of the particles after release into the environment. 
Both particles release Ag+ ions which cause the bacteria to die. The silver-infused lignin particle is 
supposed to not contain Ag+ ions after utilization and remain as a biodegradable lignin particle, 
whereas the silver nanoparticle still releases Ag+ ions after utilization. 

 
Figure 4. Proposed use cycle and principle of the bactericidal action of environmentally benign lignin-
core nanoparticles (b) and the currently used silver nanoparticles (a). Reprinted by permission from 
Macmillan Publishers Ltd.: Nature Nanotechnology [66], Copyright 2015. 

6. Applications of Lignin Nanoparticles as Antioxidants/Radical Scavengers 

Lignin is an effective free-radical scavenger, which can reduce oxygen radicals, and retard and 
inhibit oxidation reactions [68,69]. Most antioxidant effects of lignins are considered as derived from 
the scavenging action of their phenolic structures on oxygen-containing reactive free radicals. 
Therefore, the reducing power of a compound may serve as a significant indicator of the potential 

Figure 4. Proposed use cycle and principle of the bactericidal action of environmentally benign
lignin-core nanoparticles (b) and the currently used silver nanoparticles (a). Reprinted by permission
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6. Applications of Lignin Nanoparticles as Antioxidants/Radical Scavengers

Lignin is an effective free-radical scavenger, which can reduce oxygen radicals, and retard and
inhibit oxidation reactions [68,69]. Most antioxidant effects of lignins are considered as derived
from the scavenging action of their phenolic structures on oxygen-containing reactive free radicals.
Therefore, the reducing power of a compound may serve as a significant indicator of the potential
antioxidant activity [70]. The scavenging activity is predominantly based on non-etherified phenolic
hydroxyl groups, ortho-methoxy groups and aliphatic hydroxyl groups in the side chain [69].

Lu et al. [71] compared the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity
(RSA), reducing power, superoxide radical-scavenging activity (SRSA) and water solubility of
nanoscale poplar OS (144 ± 30 nm) in comparison with non-nanoscale lignin. The chemical of structure
of nanoscale lignin did not change compared to the non-nanoscale lignin. The results in Figure 5 show
improved RSA, reducing power and SRSA for the LNPs in comparison to the non-nanoscale lignin.
Surprisingly, the solubility increased more than 12-fold despite the same chemical composition. Further
improvement of the RSA is possible by adaptation of the lignin extraction parameters, as indicated by
Pan et al. [72] where ethanol OS from hybrid poplar with more phenolic hydroxyl groups, less aliphatic
hydroxyl groups, low molecular weight, and narrow polydispersity showed high antioxidant activity.
These properties were improved at elevated temperature, longer reaction time, increased catalyst
concentration, and low ethanol/water ratio in the pretreatment process.
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of non-nanoscale lignin and nanoscale lignin. The antioxidant butylated hydroxyanisole (BHA) was
used as control. Reprinted from [71], with permission from Elsevier.
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The improvement of RSA depending on the particle size of hardwood dioxane lignin and softwood
alkali lignin was investigated by Yearla et al. [44]. The spherical LNPs had mean diameters ranging
from 80 nm to 104 nm. The RSA of the LNPs, however, showed only marginally differences when
compared to their non-nanoscale lignins where the alkali lignin showed better performance compared
to the dioxane lignin. These results are contrary to the findings of Lu et al. [71].

Ge et al. [73] investigated the free RSA of alkaline lignin LNPs produced by two different methods.
The first using ethylene glycol as a solvent, and the second using alkaline water as shown in previous
work for sugarcane bagasse [74]. The IC50 (dosage of lignin at free RSA = 50%) of each lignin was
calculated, where a higher antioxidant activity is indicated by a lower IC50 value. The IC50 values are
0.18 ± 0.01 mg/mL, 0.30 ± 0.02 mg/mL and 0.60 ± 0.05 mg/mL for LNPs precipitated by the second
method, non-nanoscale lignin and LNPs precipitated by the first method, respectively. This indicates
a dependency of the free RSA on the precipitation method of the LNPs.

Yang et al. [32] investigated the DPPH RSA for binary and ternary PVA/CH nanocomposites
containing LNPs for active food packaging following the methods reported by Byun et al. [75] and
Domenek et al. [76]. Neat PVA was used as control material. Nanocomposites containing 1 wt % LNPs
reached a RSA of up to 78.2% and samples containing 3 wt % up to 92%.

7. Application of Lignin Nanoparticles as Surfactants in Pickering Emulsions

Surfactants consist of polar head groups and nonpolar tails and are categorized by the chemistry of
their headgroup, including anionic species based on fatty acids and sulfonate derivatives [77], cationic
species based on arginine lipopeptides [78], and nonionic species based on alkyl polyglycosides [79].
Unlike traditional surfactant-stabilized emulsions, Pickering emulsions are stabilized by solid particles
at the interface between the dispersed phase and the continuous phase [80]. The generally large
energetic barrier associated with the particle desorption from the interface makes them inherently
more stable against coalescence than their surfactant-based counterparts [81].

Nypelö et al. [82] stabilized hexadecane in water emulsions with KL particles with a size of about
320 nm. The hexadecane droplets in the Pickering emulsion had average diameters of 7.7 ± 1.6 µm
and 22.3 ± 3.6 µm for 0.6 wt % and 0.2 wt % particle concentrations, respectively. The emulsions were
stable over the observation period of one week.

Wei et al. [83] used alkaline lignin as auxiliary material in the production of polystyrene (PS)
microparticles (see Figure 6). Under acidic conditions at pH 4, lignin forms particles with an average
size of 182 nm. These particles form a Pickering emulsion with the styrene/water. Styrene droplets
are surrounded by the lignin particles and droplet size can be adjusted by the concentration of lignin
particles. Droplet sizes from 22.31 µm to 58.93 µm were achieved for lignin concentrations based on
water from 1 wt % to 0.05 wt %. After polymerization of the styrene, lignin was recovered by raising
the pH value and dissolving the lignin particles.

Nanoparticles grafted with surface active polymer chains can decrease surface and interfacial
tensions and create stable Pickering emulsions [84–86]. Grafting properties like graft density, length and
architecture can be controlled by techniques such as atom transfer radical polymerization (ATRP) [87],
nitroxide-mediated radical polymerization (NMP) [88], and reversible addition–fragmentation chain
transfer (RAFT) [89,90].

Table 3 shows the grafting methods and polymers used for the applications of grafted LNPs in
Pickering emulsions. Gupta et al. [91] could form stable water-in-oil emulsions where the poly(acrylic
acid) grafted LNPs performed significantly greater than polyacrylamide grafted ones regarding
the partitioning into the emulsion phases. Emulsions were stable for weeks at room temperature.
The solution viscosities did not increase significantly by adding grafted LNPs while the surface tensions
decreased as a function of concentration, graft density, graft molecular weight and polymer chemistry.
Silmore et al. [80] could produce Pickering emulsions stable for a period of months with only 0.1 wt %
nanoparticle content. The interfacial tension was found to decrease with decreasing graft density and
increasing salinity.
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Figure 6. A schematic representation of the preparation of lignin-coated microparticles and bare
polystyrene (PS) microparticles based on a lignin-stabilized Pickering emulsion including recirculation
of lignin. Reproduced from [83] with permission of The Royal Society of Chemistry.

Table 3. Overview of the grafted LNPs for use in Pickering emulsions.

Source Lignin Type Grafting Method Grafted Polymers Stabilized Emulsion

[91] KL RAFT
polyacrylamide

water/hexanes 1
poly(acrylic acid)

[80] KL RAFT polyacrylamide water/cyclohexane

[92] AL ATRP 2-(diethyl-amino)ethyl methacrylate water/decane
1 mixture of C6H14 isomers as well as methylcyclopentane.

Qian et al. [92] developed a Pickering emulsion offering a gas-switchable feature. Figure 7 shows
the highly reversible and repeatable process of dispersing decane in water by CO2 bubbling and
precipitation by N2 bubbling. The dispersion and precipitation ability is determined by the grafting
density and chain length of the 2-(diethyl-amino)ethyl methacrylate (DEAEMA) units where shorter
chain length resulted in faster flocculation of the grafted lignin when switching to N2 bubbling.
The diameters of the produced particles showed a range of 237–404 nm, and concentration of
1 g/L grafted lignin based on the water content was sufficient to gain Pickering emulsions with
a water-to-decane volumetric ratio of 4:1.
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8. Applications of Carbonized Lignin Nano Fibers and Particles

Carbon nanostructures such as fibers and particles offer numerous possibilities for applications
like batteries, supercapacitors, fuel cells, structural composites, filtration devices. Fluorescence carbon
nanoparticles can be applied for biological labeling, bioimaging, and other optoelectronic device
applications. Therefore, this topic is rapidly gaining interest in research [93–96]. Lignin can be used
as a precursor for those carbon fibers and particles and opens application possibilities in high-value
products. Carbon fibers from commercially available KL were already successfully produced by
Kadla et al. [97] in 2002. Increasing tensile strength and modulus was observed with decreasing fiber
diameter where the smallest diameters of about 30 µm were achieved. This leads to the assumption
that further reduction of diameters to nanoscale could significantly improve these properties.

Hu and Hsieh [98] produced highly porous activated carbon fibers by the electrospinning of
aqueous solutions of predominantly spruce wood alkali lignin followed by simultaneous carbonization
and activation at 850 ◦C under an N2 atmosphere. These carbon fibers with diameters from 100 to 500 nm
were fabricated into supercapacitors for capacitive energy storage and demonstrated outstanding
electrochemical performance [99]. The capacitators reached an energy density of 8.1 Wh/kg based
on the averaged electrode mass and over 96% capacitance-retention rates were achieved after 5000
charge/discharge cycles. Also, Lai et al. [100] used carbon nanofiber mats produced from electro-spun
alkali lignin in high-performance supercapacitors. In this study, mixtures of alkali lignin/polyvinyl
alcohol (PVA) were used and resulted after electrospinning in average fiber diameters of about 100 nm.
The capacitance retention was retained to approximately 90% after 6000 cycles of charge/discharge.

Wang et al. [101] utilized OS/polyethylene mixtures for the production of carbon fibrous mats
dedicated for use as high-performance anode material in lithium-ion batteries. The production process
involved electro spinning followed by carbonization and thermal annealing in the presence of urea.
The fibrous mats achieved specific capacities up to 445 mAh/g, which are comparable to currently
used polyacrylonitrile-derived carbon fibers.

Gonugunta et al. [102] successfully synthesized carbon nanoparticles from commercial Protobind
2400 Lignin by freeze drying the lignin solution and through carbonization of the resulting lignin
nanoparticles in a tube furnace. The process yielded porous particles in the size range of 25 to 150 nm.

Yiamsawas et al. [103] methacrylated KL, which was subsequently processed to particles with
an extraordinary porous structure. The particles with diameters up to 2–3 µm were prepared in the
absence of surfactants or in the presence of the surfactant Lutensol AT25 and were carbonized at 600 ◦C
and 800 ◦C. Structural parameters were analyzed by the BET method (see Table 4). The adsorption
ability, which is the property mainly used in applications, was evaluated by using methylene blue
as a model adsorbent. Carbon particles prepared from porous LNPs showed an adsorption capacity
twice as high as the carbon particles prepared from pristine lignin.

Table 4. Oxygen and carbon composition determined by X-ray photoelectron spectroscopy (XPS) and
structure parameters obtained by the Brunauer–Emmett–Teller (BET) method for samples before and
after carbonization at different temperatures. Adapted with permission from [103]. Copyright 2017
American Chemical Society.

Sample Carbonization
Temperature (◦C) O (%) C (%) BET Surface

Area (m2/g)
Average Pore

Volume (cm3/g)
Average Pore

Width (Å)

Pristine lignin - 27 73 5 0.017 16.5
Porous LNP - 21.6 78.4 15 0.020 34.7

Pristine lignin 800 14.1 85.9 29 0.023 18.5
Porous LNP 600 17.2 82.8 202 0.123 14.7
Porous LNP 800 8 92 552 0.274 14.8

Carbon dots are, due to their optical stability, low toxicity, biocompatibility and ease of
functionalization, an interesting class of carbon nanoparticles [104–106]. Rai et al. [107] synthesized
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reduced fluorescence carbon dots (rFCDs) from lignosulfonate lignin using a microwave irradiation
method previously described by Chen et al. [108]. This method includes a depolymerisation step in
order to reach particle sizes of less than 10 nm and differs, therefore, from other production methods.
A brief schematic representation of the whole process is given in Figure 8. The process resulted
in cost-effective water-soluble rFCDs for bioimaging applications. The photoluminescent intensity
maximum was found at 475 nm when excited with 440 nm.Int. J. Mol. Sci. 2017, 18, 2367  13 of 23 
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9. Application of Lignin Nanoparticles as Nano- and Microcarrier

Currently, based on the number of published research papers, the use of lignin nanostructures
in the medical field as drug carriers seems to be the most investigated field of application. Generally,
the nanocarriers can be distinguished in two categories: (1) hollow particles where the carried substance
is encapsulated; (2) solid and porous particles infused with the carried substance.

9.1. Capsules, Hollow and Porous Structures

In recent years, microencapsulation processes have gained significant interest in academic and
industrial research [109–115]. Microencapsulation has potential applications in the delivery of soluble
drugs [116,117], pesticides [118] and gene [119,120] and food additives [121]. The major problem for
controlled release systems is the initial burst which releases a great amount of active agent causing
an acutely high concentration and therefore, a failure of the controlled release [122,123]. Encapsulation
might be key for this issue.

Lignin nano- and microcapsules for the transport of hydrophobic and hydrophilic substances with
different releasing properties via miniemulsion polymerization are reported in literature [103,124–126].
Chen et al. [126] used allyl-grafted lignosulfonate to prepare capsules via ultrasonication in an oil-in-water
miniemulsion. The method resulted in capsules with diameters ranging from 50 to 300 nm. For the
release study, the hydrophobic model drug coumarin-6 was incorporated in the oil particle core by
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dissolving it in the oil phase before sonication. The capsules showed an entrapment capacity of
0.713 mmol/g based on the weight of modified lignosulfonate. The release study was conducted in
aqueous surfactant-containing buffer solutions at pH 4 and pH 7.4. The release kinetics showed an
enhanced release rate at the lower pH value (see Figure 9a; dataset pH 7.4 and pH 4). This behavior
might be ascribed to the destruction of acid-liable β-thiopropionate cross-linkages [127,128] and
weakening of the hydrophobicity of lignin’s cross-linked shell by protonation of coumarin-6 at low
pH-values [129]. Also, Tortora et al. [125] conducted a release study of coumarin-6 on lignin capsules.
In this study, pure KL was used to produce capsules in a size range of 0.3 to 1.1 µm depending on
the cross-linking agent used. The addition of poly(ethylene glycol) diglycidyl ether (PEG) and H2O2

reduced the size of the capsules in comparison with the use of just sonication, where PEG achieved
the smallest sizes. The biocompatibility study of theses capsules with Chinese hamster ovary cells
shows promising results for a potential use in the biomedical field. The release study was conducted
in water using the same surfactant and surfactant concentration as used by Chen et al. [126] but the
pH value was not controlled by a buffer. Figure 9a shows also the release kinetics of the capsules
made without cross-linking agent (LMC_5) and made with PEG (PEG-LMC_5). Both kinds of capsules
released their cargo at a similar rate where almost 100% of entrapped Coumarin-6 was released after
1 h. However, the release rate differed significantly from the rates obtained by Chen et al. [126] which
showed a maximum release of 60% after 48 h.
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Figure 9. Releasing rates of hydrophobic Coumarin-6 and hydrophilic SR101 for different lignin
capsules. (a) Coumanrin-6 releasing rate of capsules produced by Chen et al. [126] at pH 4 and
pH 7.4 (Adapted with permission from [126]. Copyright 2016 American Chemical Society) and
capsules (PEG-LMC_5 and LMC_5) produced by Tortora et al. [125] (Adapted with permission
from [125]. Copyright 2014 American Chemical Society); (b) SR101 releasing rate at different amounts
of crosslinking agent TDI, pH values, temperatures and degradation by enzymes [124], published by
The Royal Society of Chemistry.

Yiamsawas et al. [124] used interfacial polyaddition in inverse miniemulsions to prepare
nanocapsules for hydrophilic loadings. Lignosulfonic acid sodium salt with 2,4-Toluene diisocyanate
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(TDI) as cross-linker resulted in capsules in a range of 150–200 nm. A releasing study with hydrophilic
fluorescent dye sulforhodamine (SR101) including the investigation of the biodegradability was
conducted. The cleavage of the cross-linked lignin shell was studied by using a laccase enzyme from
the fungus Xylaria sp. IBWF A55-2009, which has an important role in the recycling of lignin [130].
Figure 9b shows the releasing kinetics of SR101-filled capsules with different amounts of cross-linking
agent TDI at pH values of 3 and 7 and with and without degradation by enzymes. The results clearly
show that less crosslinking agent, higher temperatures, lower pH values and degradation by enzymes
increase the release rate.

In a further work, Yiamsawas et al [103] was producing nano- and microparticles with variable
morphologies using KL modified by esterification with methacrylic anhydride in a combined miniemulsion
polymerization, with subsequent solvent evaporation. The solid nanoparticles, nanocapsules and porous
microparticles were loaded with 2-propylpyridine and release was studied following the method of
Dowding et al. [131]. 2-propylpyridine was used since it is soluble in the oil phase and partially soluble
in the aqueous phase. Figure 10a shows the release study results. Solid and porous particles show
the lowest rates whereas particles with an oil core and lignin shell show a higher rate. In addition,
the type of oil used as core seems to influence the releasing rate. Studies with degradation, using the
enzyme laccase, were conducted and indicate a higher releasing rate when treated with enzymes
(see Figure 10b).
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Figure 10. (a) Release profile of 2-propylpyridine from lignin nanocarriers with varying morphology,
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from [103]. Copyright 2017 American Chemical Society.

Ten et al. [132] synthesized lignin nanotubes (LNT) from different sources using a sacrificial
alumina membrane template. Those nanotubes are intended to be used in the medical therapeutic
field and to substitute carbon nanotubes (CNT) whose use has caused concerns due to their
cytotoxicity [133,134]. Cytotoxicity studies with human cervical adenocarcinoma (HeLa) cells showed
a toleration threshold 10 times higher when compared to CNTs. DNA can successfully adsorb on
the LNTs and leads to transfection in HeLa cells. Furthermore, it appears that the lignin-isolation
procedure is mainly influencing the cytotoxicity, and that the transfection efficiency is also influenced
by the lignin source.

Zhong et al. [135] encapsulated the enzyme horseradish peroxidase in sodium lignosulfonate
reverse micelles. Free enzymes easily lose their activity when exposed to the natural environment
whereas immobilized enzymes can gain stability, adjust reactions, and improve recyclability.
The immobilized enzyme showed enhanced activity compared to free horseradish peroxidase at
acidic and low-temperature environments. Those properties might allow applications in the processing
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of phenolic wastewater due to the catalytic polymerization property of horseradish peroxidase being
now viable under harsher conditions.

A layer-by-layer method was used by Wand and Zhao [136] in order to encapsulate the herbicide
picloram (PLR) with alternating layers of chitosan and sodium lignosulfonate. The release time of
the PLR and its photo stability was adjustable according to the number of layers used. The time
required for the release of 50% PLR from the capsules was 0.433 h, 1.015 h and 2.257 h for 4, 8 and
12 layers, respectively.

9.2. Solid and Porous Particles/Structures

In the case of solid particles, the active agent is incorporated in the LNPs already during the
precipitation step as shown by Figueiredo et al. [137] and Dai et al. [138].

Dai et al. [138] precipitated LNPs using ethanol, methanol and tetrahydrofuran (THF) as solvent
and water or aqueous Fe3O4 nanodispersion as antisolvent. Resveratrol (RSV), a bioactive molecule,
was used as active ingredient. In order to incorporate RSV in the LNP, it was mixed with the solvent
and incorporated during the precipitation process and resulted in an average hydrodynamic LNP
diameter of 180 nm. Cytological and animal tests were conducted and showed good anticancer effects,
enhanced by in vitro RSV release, stability and accumulation and better tumor reduction (see Figure 11).
Also, the LNPs had a relatively high drug-loading capacity of over 20 wt % as well as reduced adverse
effects compared to free RSV.
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Figure 11. Tumor photographs of mice treated with different nanoparticles, pure Resveratrol and
phosphate-buffered saline (PBS) as control. AL/RSV/Fe3O4, an LNP containing Resveratrol and Fe3O4

showed the best performance and could reduce the tumor size significantly. Adapted with permission
from [138]. Copyright 2017 American Chemical Society.

Figueiredo et al. [137] used similar methods for the preparation of Fe3O4 LNPs, but the
precipitation step was conducted via a dialysis process. The cytotoxic test agents, sorafenib (SFN)
and benzazulene (BZL), and a water-soluble drug, capecitabine (CAP), were also incorporated in
the LNPs during the precipitation process. All LNPs exhibited low cytotoxicity at concentrations
up to 100 mg/mL in different cell lines. Overall, these LNPs showed important features for drug
delivery and biomedical applications, including biocompatibility, very good stability, an ability to load
hydrophobic drugs and sustain their release, and good cellular interaction. Furthermore, the particles
including Fe3O4 showed superparamagnetic behavior, which makes them promising for magnetic
targeting and magnetic-resonance imaging.

10. Conclusions and Outlook

Different application fields of lignin from micro- to nanosize were identified from the literature
ranging from simple polymer blends with improved mechanical properties to promising drug carriers
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for cancer treatment. Consequently, the possibility of applying lignin in high-value pharma fields was
also shown. The parameters influencing the properties of the final product include the lignin source,
the method of extracting lignin from the lignocellulose raw material, the production/precipitation
method of the nanoparticles which influences the surface properties of the particles and, in the case of
polymer blends, the processing/blending method.

This is clearly an opportunity to tailor the properties of the final product by optimizing the whole
process chain. On the other hand, considering a whole biorefinery in which switching raw materials
and lignin-extraction methods is not easily possible, it is crucial to determine suitable final products
for existing processes. Moreover, changing raw lignocellulose quality might influence the LNP and
final product quality. Nevertheless, a large number of potential high-value applications are within the
range of vision for micro- and nanosize lignin particles.
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Abbreviations

AL Alkali lignin
ATRP Atom transfer radical polymerization
BHA Butylated hydroxyanisole
Bio-PTT Bio-poly(trimethylene terephthalate)
BZL Benzazulene
CAP Capecitabine
CAT Cellulose triacetate
CFU Colony-forming unit
CH Chitosan
CNC Cellulose nanocrystals
CNT Carbon nanotube
DEAEMA 2-(diethyl-amino)ethyl methacrylate
DPPH 2,2-diphenyl-1-picrylhydrazyl
g-PLA Glycidyl methacrylate grafted polylactic acid
HeLa Human cervical adenocarcinoma
KL Kraft lignin
LNP Lignin nanoparticles
LNT Lignin nanotubes
NMP Nitroxide-mediated radical polymerization
OS Organosolv lignin
PBS Phosphate-buffered saline
PDAC Polydiallyldimethylammonium chloride
PEG Poly(ethylene glycol) diglycidyl ether
PLA Polylactic acid
PLR Picloram
PS Polystyrene
PVA Polyvinyl alcohol
RAFT Reversible addition–fragmentation chain transfer
rFCDs Reduced fluorescence carbon dots
RSA Radical scavenging activity
RSV Resveratrol
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SFN Sorafenib
SPF Sun protection factor
SR101 Hydrophilic fluorescent dye sulforhodamine
SRSA Superoxide radical scavenging activity
TDI 2,4-Toluene diisocyanate
WG Wheat gluten
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55. Panáček, A.; Kolář, M.; Večeřová, R.; Prucek, R.; Soukupová, J.; Kryštof, V.; Hamal, P.; Zbořil, R.; Kvítek, L.
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