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Many problems in the physical sciences, machine learning, and sta-
tistical inference necessitate sampling from a high-dimensional,
multimodal probability distribution. Markov Chain Monte Carlo
(MCMC) algorithms, the ubiquitous tool for this task, typically
rely on random local updates to propagate configurations of a
given system in a way that ensures that generated configurations
will be distributed according to a target probability distribution
asymptotically. In high-dimensional settings with multiple rele-
vant metastable basins, local approaches require either immense
computational effort or intricately designed importance sampling
strategies to capture information about, for example, the relative
populations of such basins. Here, we analyze an adaptive MCMC,
which augments MCMC sampling with nonlocal transition kernels
parameterized with generative models known as normalizing
flows. We focus on a setting where there are no preexisting data,
as is commonly the case for problems in which MCMC is used.
Our method uses 1) an MCMC strategy that blends local moves
obtained from any standard transition kernel with those from
a generative model to accelerate the sampling and 2) the data
generated this way to adapt the generative model and improve its
efficacy in the MCMC algorithm. We provide a theoretical analysis
of the convergence properties of this algorithm and investigate
numerically its efficiency, in particular in terms of its propensity
to equilibrate fast between metastable modes whose rough lo-
cation is known a priori but respective probability weight is not.
We show that our algorithm can sample effectively across large
free energy barriers, providing dramatic accelerations relative to
traditional MCMC algorithms.

Monte Carlo | normalizing flows | free energy calculations |
phase transitions

Monte Carlo approximations are the method of choice to
extract information from high-dimensional probability dis-

tributions encountered in the description of natural systems and
statistical models. One generic feature of these distributions
that is particularly challenging for sampling is multimodality
(or metastability): that is, when low-probability regions separate
high-probability regions (or basins) of the state space. Markov
Chain Monte Carlo (MCMC) algorithms, which are driven pri-
marily by local dynamics such as Hamiltonian Monte Carlo
or Langevin dynamics, typically struggle to transition between
metastable basins, leading to either extremely long correlation
times along the chains and few effective independent samples or
even failure to equilibrate at all. As a result, slow relaxation and
metastability plague sampling problems that arise in chemistry
and biophysics (1).

On the other hand, generative models, which have garnered
much attention in the machine learning literature, seem to effi-
ciently sample complicated high-dimensional distributions, such
as collections of images. Most of these generative models, includ-
ing generative adversarial networks (2) and variational autoen-
coders (3), rely on the transformation of samples from a simple
and tractable base distribution through a map parametrized with
neural networks. After learning, the map transforms samples

from the base to mimic samples of a given empirical distribution.
This formulation allows for drawing independent samples from
the model at a negligible cost. However, the conventional strategy
for training a generative model requires an extensive dataset of
samples. Arguably, these models have succeeded most dramati-
cally in domains where the cost of generating and curating data
are comparatively low (e.g., image recognition) (2, 4, 5).

In scientific computing applications, obtaining data from the
distribution is the primary goal. Furthermore, the quality metrics
used in traditional machine learning applications are a priori
quite different from the efficacy and precision in sampling a
target distribution. Hence, it is natural to ask whether traditional
MCMC methods and generative models can be successfully com-
bined to accelerate sampling of complicated high-dimensional
distributions?

The prospect of enhancing sampling with suitable generative
models is an active area of inquiry (4, 6–11). In particular,
sampling via Metropolis–Hastings MCMC requires the compu-
tation of each transition generation probability and its inverse.
As a result, the model architectures on which most generative
neural networks rely are not conducive to Metropolis–Hasting
MCMC. However, specific classes of neural networks have been
designed with this in mind, allowing for efficient estimates of
the probability of a generated sample, including autoregressive
models (12) and normalizing flows (NFs), which are expressive
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invertible function representations (13, 14). At this point,
NFs have been investigated as transition operators in MCMC
algorithms and variational ansatz in a variety of contexts in the
physical sciences and Bayesian applications (13, 15–20). These
methods offer a promising speedup for sampling unimodal
distributions without requiring preexisting data samples by
relying on a self-training objective for the map (described in
detail in SI Appendix, section S1). However, the multimodal case
requires prior knowledge about either the symmetries of the
systems generating the degeneracy of the modes (20) or the
location of the metastable basins (17). This necessity was noted
in the influential work of Noé et al. (21) that proposes a training
strategy for NFs to generate low-energy configurations, which
are subsequently reweighted.

The aim of this paper is to propose an alternative class of
adaptive MCMC algorithms augmented with an NF trained on
the fly with the generated samples and also, to carefully assess
the prospects of these algorithms for accelerating sampling in
cases where no extensive preexisting dataset is available. Our
main contributions are as follows.

• We introduce an adaptive Metropolis–Hastings MCMC algo-
rithm that augments a chain performing local steps with non-
local resampling steps proposed by an NF. The corresponding
proposal distribution is adapted along sampling by training
the NF via optimization of a forward Kullback–Leibler diver-
gence estimated on the generated data.

• As the adaptation of the map depends on the history of the
chains, the convergence of the proposed algorithm, where
training and sampling happen simultaneously, is not trivial.
We show that the adaptive algorithm is akin to a nonlinear
MCMC scheme (22), which we analyze in the continuous-
time limit. In this limit, we show that the algorithm converges
asymptotically with an exponential rate that can be explicitly
estimated.

• We test this adaptive MCMC approach on complex exam-
ples in high dimension (random fields, transition paths, and
interacting particle systems at phase coexistence) and show
that it dramatically accelerates the sampling. In particular, we
estimate the relative statistical weights of metastable states
efficiently without constructing a specific pathway between
the basins of interest.

Our results also emphasize some key determinants for the success
of sampling augmented with learning.

• One representative configuration per mode of interest in the
target distribution must be known beforehand to initialize
the chains. We critically assess the ability of using generative
model proposals to discover unknown metastable states and
show that this prospect is statistically unlikely without prior
information about these states.

• Blending generative sampling with a standard MCMC strat-
egy is typically required to guarantee good sampling of the
target distribution; in particular, we show that relying on
generative sampling alone may not be sufficient because it
requires that we learn the generative model to a degree of
accuracy that is hard to achieve in practice, especially in high-
dimensional examples.

• Finally, our analysis and numerical experiments show how
scaling to high dimensions is also facilitated by parametriza-
tions of NFs that incorporate known structures of the target
distributions, such as short-scale correlations. The possibility
to inform the map, or the base distribution, with physical
intuition alleviates the curse of dimensionality that would
prevent general-purpose parametrizations from reaching the
required level of precision with reasonably sized models as the
dimension grows.

Design Challenges in MCMC Methods

The goal of sampling is to generate configurations x ∈ Ω⊂ R
d

in proportion to some probability measure ν∗(dx ) = ρ∗(x )dx ,
which we assume has probability density function ρ∗. In physical
systems, we typically write this in Boltzmann form:

ρ∗(x ) = Z−1
∗ e−U∗(x), [1]

where U∗ ∝− log ρ∗ is the potential energy function for the
system. We assume that we have an explicit model for U∗ and can
efficiently evaluate this energy function, although we may have
little a priori information about the distribution of configurations
associated with this energy and in general, do not know the
normalization constant Z∗.

MCMC algorithms avoid computing Z∗ by generating a se-
quence {x (k)}k∈N of configurations with a transition kernel
π(x , y) with

∫
Ω
π(x , y)dy = 1 for all x ∈ Ω, which quantifies

the conditional probability density of a transition from state x
into state y. Assume that the kernel π(x , y) is irreducible and
aperiodic (23) and satisfies the detailed balance relation

ρ∗(x )π(x , y) = ρ∗(y)π(y , x ). [2]

Then, the sequence {x (k)}k∈N will sample the target density ρ∗
in the sense that the empirical average of any suitable observable
φ converges to its expectation over ρ∗: that is,

lim
N→∞

1

N

N∑
k=1

φ(x (k)) =

∫
Ω

φ(x )ρ∗(x )dx . [3]

Designing a transition kernel π leading to fast convergence of
the series in [3] is a generically challenging task for MCMC
algorithms. In Metropolis–Hastings MCMC, one constructs a
proposal distribution that creates new samples that are then
accepted or rejected according to a criterion that maintains [2].
For example, in the Metropolis-adjusted Langevin algorithm
(MALA) (24), new configurations are proposed by approximat-
ing the solution of the Langevin equation propagated on a fixed
time interval.

Metropolis–Hastings MCMC algorithms, however, involve
a trade-off between two requirements that are hard to fulfill
simultaneously. Proposal distributions using local dynamics like
MALA suffer from long decorrelation times when there is
metastability in the target density ρ∗. At the same time, seeking
faster mixing times with nonlocal proposal distributions requires
careful design to avoid high rejection rates. Recent work in the
machine learning literature has suggested a data-driven approach
to constructing the transition kernel (4, 8, 9) that aids in this
design challenge; these approaches originally were pioneered in
the context of adaptive and nonlinear MCMC algorithms (22, 25–
27). Here, we explore the use of NFs to adaptively parameterize
the transition kernel.

MCMC Sampling with NFs
An NF is an invertible map T : Ω→ Ω that is optimized to
transport samples from a base measure νB(dx ) = ρB(x )dx (for
example, a Gaussian with unit variance) to a given target distri-
bution (14). The goal is to produce a mapT∗ with inverse T̄∗ such
that an expectation of an observable with respect to ρ∗ can be
estimated by transforming samples from the base density to the
target: that is, if xB is drawn from ρB(x ), then T∗(xB) is a sample
from ρ∗(x ) so that for any suitable observable O, we have∫

Ω

O(T∗(x ))ρB(x )dx =

∫
Ω

O(x )ρ∗(x )dx . [4]

The existence of such a map T∗ is guaranteed under the general
conditions on ρ∗ and ρB investigated (e.g., in the context of
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optimal transport theory) (28, 29). Of course, in practice we do
not have direct access to this ideal map T∗. Next, we discuss how
any approximation T of T∗ can in principle be used to perform
exact sampling of the target via Metropolis–Hastings MCMC and
how the map T can be improved via training.

Metropolis–Hastings MCMC with NF. Throughout, we denote the
push forward of ρB under the map T simply by ρ̂; it has the explicit
form

ρ̂(x ) = ρB(T̄ (x )) det
∣∣∇x T̄

∣∣ , [5]

where T̄ denotes the inverse map [i.e., T̄ (T (x )) = T (T̄ (x )) =
x ]. In practice, the parametrization of the map T must be
designed carefully to evaluate this density efficiently, requiring
easily estimable Jacobian determinants and inverses. This issue
has been one of the main foci in the NF literature (14) and is, for
instance, solved using coupling layers (30, 31). Even if the map
T is not the optimal T∗ [i.e., ρ̂(x ) �= ρ∗(x ) ], as long as ρ̂ and ρ∗
are either both positive or both zero at any point x ∈ Ω, we can
still generate configurations using T with the correct statistical
weight in the target distribution by using a Metropolis–Hastings
MCMC algorithm with an accept–reject step; a proposed config-
uration y = T (xB) from a given configuration x is accepted with
probability

acc(x , y) = min
[
1,

ρ̂(x )ρ∗(y)

ρ∗(x )ρ̂(y)

]
. [6]

This procedure is equivalent to using the transition kernel

πT (x , y) = acc(x , y)ρ̂(y) +
(
1− r(x )

)
δ(x − y), [7]

where r(x ) =
∫
Ω

acc(x , y)ρ̂(y)dy . The formula in Eq. 6 for the
acceptance probability emphasizes that if the generated configu-
rations do not have appreciable statistical weight in the target
distribution [i.e., ρ∗(y) is very small], few configurations will
be accepted. This problem can become fundamental in high-
dimensional spaces because unless care is taken to ensure oth-
erwise, the push-forward measure and the target will not overlap
(a discussion of this issue and a precise measure-theoretic for-
mulation of MCMC with NF are in SI Appendix, section S2). In
contrast, when the map yields an appreciable acceptance rate,
the flow-based proposals may mix much faster than proposals
based on local moves as independent configurations y can be
directly sampled from ρ̂. We illustrate these features in numerical
experiments presented below.

Map Training. Improving the map T requires that we optimize
some objective function measuring the discrepancy between the
ρ̂(x ) and ρ∗(x ): for example, the Kullback–Leibler (KL) diver-
gence of ρ∗ with respect to ρ̂ that is given by an expectation over
ρ∗,

DKL(ρ∗‖ρ̂) = C∗ −
∫
Ω

log ρ̂(x )ρ∗(x )dx , [8]

where C∗ =
∫
Ω

log ρ∗(x )ρ∗(x )dx is a constant irrelevant for the
optimization of this objective over T. Typically, this procedure is
used in situations where a dataset from ρ∗ is available beforehand
(4, 5) and can be used to construct an empirical approximation of
Eq. 8; in contrast, we are focused on situations where only limited
data exist initially. In this context, it has been suggested (13, 15,
21) to use the reverse KL divergence of ρ̂ with respect to ρ∗ since
it can be expressed as an expectation over ρ̂:

DKL(ρ̂‖ρ∗) =− logZ∗ +

∫
Ω

[U∗(x ) + log ρ̂(x )]ρ̂(x )dx . [9]

The (unknown) constant logZ∗ is irrelevant for the optimiza-
tion of this objective over T. This approach seems to alleviate
altogether the need of preexisting samples from ρ∗; however,
it rests on the possibility to discover relevant regions on ρ∗ via

sampling ρ̂. In practice, this may be very hard to achieve unless
we have a good estimate of the ideal T∗ to begin with, which
is typically not the case; for this reason, here we will resort to
optimizing an approximation of the direct KL in Eq. 8. This
procedure, described in the next section, relies on a dynamical
estimate of the forward KL divergence that uses data generated
via an adaptive MCMC that synergistically takes advantage of the
learning to produce samples of the target ρ∗ efficiently.

We stress that once the map T becomes accurate enough, Eqs.
8 and 9 can also be combined for further training, as was done,
for example, in the related context of Boltzmann generators (21)
(for a road map of the different possible strategies to train T,
we refer the reader to SI Appendix, section S1). We also stress
that trainable generative models other than NFs can be used as
well, as long as they offer an easy way to sample some ρ̂ that
can be adapted to the target ρ∗; this feature is illustrated in the
numerical examples presented below.

Adaptive MCMC: Concurrent Sampling and Training
The adaptive MCMC we propose concurrently acquires data by
combining a local sampler with a nonlocal one based on an NF
and uses these data to further optimize the flow. This procedure
is summarized in Algorithm 1 with MALA as the local MCMC
algorithm, and it involves the following components.

Sampling. Our algorithm combines MCMC steps using a local
kernel π with those obtained using the NF kernel πT in Eq. 7.
Assuming for simplicity that we make consecutive steps with each
kernel, the algorithm uses the compounded kernel

π̂(x , y) =

∫
Ω

π(x , z )πT (z , y)dz , [10]

which satisfies the detailed balance relation Eq. 2 because the
transitions kernels π and πT individually do. While the flow-
based kernel πT allows global mixing between modes once T
is sufficiently optimized, alternating with the local kernel π im-
proves the robustness of the scheme by ensuring that sampling
proceeds in places within the modes where the map is not op-
timal. This is useful during the first iterations of the scheme

Algorithm 1 Adaptive MCMC: concurrent MCMC sampling and
map training.

1: SAMPLETRAIN(U∗, T , {xi(0)}ni=1, τ , kmax, kLang, ε)
2: Inputs: U∗ target energy, T initial map, {xi(0)}ni=1 initial

data, τ > 0 time step, kmax ∈ N total duration, kLang ∈ N num-
ber of Langevin steps per resampling step, ε > 0map training
time step

3: k = 0
4: while k < kmax do
5: for i = 1, . . . ,n do
6: if k mod kLang + 1 = 0 then
7: x ′

B,i ∼ ρB
8: x ′

i = T (x ′
B,i) � push-forward via T

9: xi(k + 1) = x ′
i with probability acc(xi(k), x

′
i ),

otherwise xi(k + 1) = xi(k) � resampling step
10: else
11: x ′

i = xi(k)− τ∇U∗(xi(k)) +
√
2τ ηi with ηi ∼

N (0d , Id) � discretized Langevin step
12: xi(k + 1) = x ′

i with MALA acceptance probabil-
ity or ULA, otherwise xi(k + 1) = xi(k)

13: k ← k + 1
14: L[T ] =− 1

n

∑n
i=1 log ρ̂(xi(k)) � evaluate DKL(ρt‖ρ̂) on

sampled data
15: T ← T − ε∇L[T ] � Update the map
16: return: {xi(k)}kmax,n

k=0,i=1, T
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when the map T is almost untrained as well as once training has
converged, if the expressiveness of the map parametrization is
not sufficient to capture all the features of the target distribution.
In SI Appendix, section S7.2, we demonstrate numerically the
benefit of retaining local components to the sampling scheme
(SI Appendix, Fig. S4). Let us also note that the convergence
rate of a chain using π̂(x , y) is necessarily faster than that of
MCMC using π(x , z ) or πT (z , y) individually; if we assume the
existence of a spectral gap for both π and πT and denote the
leading eigenvalues of these kernels by λ̂ < 1, λ < 1, and λT < 1,
respectively, we have λ̂≤ λλT . While we employ MALA here,
any detailed balance MCMC method could be used in Eq. 10. The
transition kernel π does not need to be local; it should, however,
have satisfactory acceptance rates. Note that in the experiments
that follow, we used ULA because the time steps were sufficiently
small to ensure a high acceptance rate.

Adaptation. The kernel πT of Algorithm 1 is adapted by using the
newly sampled configurations as data to optimize the parameters
of the NF T. Denoting by ρk the probability density of the chain
with kernel π̂ after k ∈ N steps from initialization ρ0, we minimize
the KL divergence of ρk with respect to ρ̂, DKL(ρk‖ρ̂), instead
of the KL divergence of the unknown ρ∗ with respect to ρ̂ as in
Eq. 8. Denoting by {xi(k)}ni=1 the sample of n chains after k ∈ N

steps of MCMC, this amounts to using the following consistent
estimator for DKL(ρk‖ρ̂) up to an irrelevant constant:

Ln [T ] =− 1

n

n∑
i=1

log ρ̂(xi(k))

=
1

n

n∑
i=1

(
UB(T̄ (xi(k))− log det |∇T̄ (xi(k))|

)
.

[11]

In practice, we use stochastic gradient descent on this loss func-
tion to update the parameters of the NF (Algorithm 1, line
11). While the expression for the loss is written at iteration k,
we can average gradients over multiple MCMC steps. Details
of the map parametrizations and training procedures for the
experiments presented in the next sections are described in
SI Appendix, section S6.

Initialization. To start the MCMC chains, we assume that we
have configurations {xi(0)}ni=1 in the different modes of the
target, but they are not necessarily drawn from ρ∗. We em-
phasize that the method, therefore, applies in situations where
the locations of the metastable states of interest are known a

priori, and one should not expect the procedure to find states
in basins distinct from initialization. We demonstrate that it is
unlikely that the adaptive MCMC will discover new metastable
basins without any initial information about their location in
SI Appendix, section S7.1 on the example of a Gaussian mixture
model (SI Appendix, Fig. S1) and in SI Appendix, section S5 for
the random-field example discussed below.

We initialize the map T as the identity transformation and
propagate the initial data using π̂. The initial sampling is essen-
tially driven by the local MCMC, here Langevin dynamics, as the
map is not adapted to the target. As the map improves, nonlocal
moves start to be accepted, the autocorrelation time drops, and
the Markov chains reallocate mass in proportion to the statistical
weights of the different basins. These features are illustrated
in SI Appendix, Fig. S1 in the context of the Gaussian mixture
model discussed in SI Appendix, section S7.1 and in Figs. 1 and 2
in the context of the random-field example discussed below.

Convergence. Two important questions arise regarding Algorithm
1. First, does this scheme produce samples that converge in dis-
tribution toward the target, and if so, does the adaptive training
of the map T improve the rate of convergence to the target
distribution? To analyze the properties of a transition operator
that combines nonlocal moves with the NF and a local MCMC al-
gorithm, we consider our approach in the continuous-time limit.
In this limit, when using Langevin dynamics as local sampler, the
density of the evolving ρt with respect to the target ρ∗, defined as
gt = ρt/ρ∗, satisfies

∂tgt =−∇U∗ · ∇gt +Δgt

+ α

∫
Ω

min(ĝt(x ), ĝt(y)) (gt(y)− gt(x )) ρ∗(y)dy
, [12]

where ĝt = ρ̂t/ρ∗ and α≥ 0 is an adjustable parameter that mea-
sures the balance between the Langevin and the resampling parts
of the dynamics. Setting α= 0 amounts to using the Langevin
dynamics alone; in that case, for any initial condition ρ0, we have
that ρt → ρ∗ (i.e., gt → 1) as t →∞, but this convergence will be
exponentially slow in general (32). The situation changes if we
include the resampling step (i.e., consider Eq. 12 with α > 0). In
SI Appendix, section S3, under various assumptions about ĝt , we
derive convergence rates under the dynamics in Eq. 12 for the
Pearson χ2 divergence of ρt with respect to ρ∗, which we denote
as

Dt =

∫
Ω

ρ2t
ρ∗

dx − 1 =

∫
Ω

g2
t ρ∗dx − 1≥ 0. [13]

A B C D

Fig. 1. Sampling metastable states of the stochastic Allen–Cahn model with Langevin dynamics augmented with an NF. (A) Configurations obtained by
pushing independent samples from the informed base measure Eq. 18 through the flow T at the beginning (black) and at the end of training (blue). Around
∼ 60% of generated configurations are accepted according to the Metropolis–Hasting criteria. (B) The learned map T is local in space. (C) Fourier spectrum
of the target samples: samples from a flow with informed base measure and uniformed base measure. An informed base measure is necessary to capture
the higher-frequency features of the target density. (D) Computation of the free energy differences between positive and negative modes with importance
sampling (IS) from the NF as a function of a local biasing field added in the Hamiltonian Eq. 19. Results are reported for inverse temperature β = 20, as
in the rest of the plots, and for the same experiment repeated at temperature β = 10. Errors bars computed from estimator variance are smaller than the
marker.
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Fig. 2. Concurrent training and sampling of the stochastic Allen–Cahn model with a real-non volume preserving (real-NVP) NF. (A) The stochastic gradient
descent using samples generated by the procedure decreases the negative log likelihood gradually. (B) As the training progresses, the acceptance rate in
the Metropolis–Hasting using proposals from the NF improves gradually, reaching levels well beyond 50%. The rolling average over the last 50 time steps is
plotted in darker color. (C) As independent proposals from the flow start getting accepted, the Markov Chain autocorrelation times drops abruptly. (D) Fast
mixing is illustrated by looking at the consecutive states of one walker updated with the transition kernel combining local Langevin updates and resampling
with the push forward. In 10 steps, the single walker has jumped between φ+ and φ−.

In particular, we study the situation where T learns the instanta-
neous distribution at all times: that is, ρ̂= ρt (and hence, ĝt = gt )
for all t ≥ 0. While this is certainly a significant approximation,
we observe in numerical experiments that there is a dramatic
improvement in sampling once there is some mixing between
metastable basins, which motivates this limiting scenario. In this
case, under the assumptions that there exists some t0 ≥ 0 such
that Dt0 <∞ and

Gt0 = inf
x∈Ω

ρt0(x )

ρ∗(x )
= inf

x∈Ω
gt0(x )> 0, [14]

we show that

∀t ≥ t0 :Dt ≤
Dt0

(Gt0(e
α(t−t0) − 1) + 1)

2 . [15]

This equation indicates that Dt ≤Dt0 remains approximately
constant for α(t − t0)≤ logG−1

t0
and then, decays exponentially

with constant rate 2α > 0 subsequently. The derivation of Eq.
15 also shows that the exponential rate is controlled by the
resampling step of the MCMC algorithm that relies on the
NF, and this rate can only improve when we concurrently use
Langevin dynamics steps. In SI Appendix, section S4, we connect
the sampling scheme we use to a birth–death Fokker–Planck
equation (33), which could also be implemented in practice
as a Markov jump process; again, this analysis emphasizes the
favorable convergence properties of the scheme.

Scalability: Model-Informed Base Distributions and Maps, Mixtures,
Etc. As the dimension of the problem grows, it becomes in-
creasingly difficult to train a map to produce a push-forward
distribution matching the target to a given level of accuracy.
Before presenting numerical experiments, we emphasize a few
additional ingredients, easing the learning of generative models
for the sampling of complex high-dimensional systems.

When training an NF to represent a target density for which a
preexisting empirical dataset is available, a standardizing trans-
formation or a “whitening layer” is typically added at the output
(21). This layer centers and rescales the different input dimen-
sions such that their covariance matches the identity covariance
of the standard normal distribution usually used as base dis-
tribution. This operation, although it requires preexisting data,
crucially improves the outcome of learning when the original
covariance of the data is highly anisotropic. In the experiments
below, we show that it is sometimes possible to rely on the
knowledge of the target distribution to perform an operation
akin to this whitening layer with no preexisting data samples.
For instance, below we choose a base Gaussian distribution with

covariance matching the short-scale correlations of equilibrium
configurations of the system’s known Hamiltonian. We can also
design physics-informed base distributions that are more adapted
to the problem at hand than a Gaussian distribution; for example,
in the interacting particle system, we used the uniform distribu-
tion of the particle in the domain, which is an ideal distribution
in the gaseous phase.

Using prior knowledge about the physics can also help in
designing the class of maps T to optimize upon. For example,
in the interacting particle system, we used maps that factorize
in ways tailored to the system’s features. Yet another way of
easing learning, especially when modes have very different fine
structures or statistical weights, is to rely on a mixture of maps
instead on a single map, training each component to represent
a different mode. A similar idea was exploited in ref. 21 to
compute free energy differences between basins after training.
In practice, a map Tm is pretrained for each mode indexed by m
using data generated with the local MCMC sampler initialized in
the corresponding mode. Then, the adaptive MCMC procedure
described in Algorithm 1 can be started. The nonlocal proposal
is the mixture of the push-forward ρ̂m with initial weights pm .
The adaptive part of the proposal then amounts to optimizing the
mixture weights pm via Eq. 11, in a similar fashion as the param-
eters of the flow when using a single map.* This mixture method
requires that we train several maps but allows for treatment of
more complex systems, as demonstrated below.

Numerical Experiments
Fast-Mixing Augmented MCMC for Random Fields. As a first exam-
ple to illustrate the efficacy of adaptive sampling, we consider a
stochastic Allen–Cahn model, a canonical and ubiquitous model
for the microscopic physics of phase transitions in condensed
matter systems (34).
Field system. The stochastic Allen–Cahn equation is defined in
terms of a random field φ : [0, 1]→ R that satisfies

∂tφ= a∂2
s φ+ a−1(φ− φ3) +

√
2β−1 η(t , s), [16]

where a > 0 is a parameter, β is the inverse temperature, s ∈
[0, 1] denotes the spatial variable, and η is a spatiotemporal white
noise, and we impose Dirichlet boundary conditions in which
φ(s = 0) = φ(s = 1) = 0 throughout. This stochastic partial dif-
ferential equation (SPDE) is well posed in one spatial dimension

*In principle, the parameters of each Tm could also be further refined in this stage, but
we have not tested this scenario in experiments yet.
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(35, 36), and its invariant measure is the Gibbs measure associ-
ated with the Hamiltonian

U∗[φ] = β

∫ 1

0

[
a

2
(∂sφ)

2 +
1

4a

(
1− φ2(s)

)2]
ds. [17]

The first term in the Hamiltonian [17] is a spatial coupling that
penalizes changes in φ and hence, at low temperature, has the
effect of aligning the field in positive or negative direction. As a
result, the Hamiltonian [17] has two global minima, denoted by
φ+ and φ−, in which the typical values of φ are ±1 (Fig. 1A).
Because there is a free energy barrier between φ+ and φ−, local
updates via traditional MCMC based on, for example, using the
stochastic Allen–Cahn Eq. 16 will not mix, even on very long
timescales. Indeed, if we wanted to compute the free energy dif-
ference between these basins, we would need to construct a path-
way through configuration space and use importance sampling
techniques along the path (37). Our adaptive MCMC algorithm,
augmented with an NF, offers an alternative approach. Fig. 2
demonstrates that a map T can be trained to efficiently generate
samples with high statistical weight in the target distribution
enabling rapid mixing across the free energy barrier.
Informed base measure. In order to learn the map robustly,
a standard implementation of an NF model, with a standard
Gaussian field with uncoupled spins as base measure, does not
suffice in this instance. Using a base measure that is “informed”
alleviates this issue. Explicitly, we sample the base measure
corresponding to a Gaussian random field with a local coupling
(a “Ornstein–Uhlenbeck bridge”), which corresponds to a system
with Hamiltonian

UB[φ] = β

∫ 1

0

[
a

2
(∂sφ)

2 +
1

2a
φ2

]
ds. [18]

Importantly, this measure does not have any metastability and
remains easy to sample. As discussed in SI Appendix, section S2,
at this continuous-field level, we must choose this measure to
ensure that the push-forward distribution has a nonvanishing
statistical weight in the target distribution.
Numerical implementation and results. In practice, we must dis-
cretize the field on a grid, and throughout, we take N = 100 with
a lattice spacing Δs = 1/N , meaning that the map we must learn
is high-dimensional T : RN → R

N . We also use the associated
Langevin equation as the discretized version of the SPDE [16]
to generate samples as the local component of our compounded
MCMC scheme.

We trained maps T andTU along our adaptive MCMC with the
informed base measure [18] and an uninformed Gaussian mea-
sure that lacked a coupling term (SI Appendix, Eq. S66), respec-
tively, using the same architecture and compared their suitability
for resampling after an equal number of iterations. Typical con-
figurations φ(x ), in this case generated by the NF T, are shown in
Fig. 1A. For comparison, we show in SI Appendix, Fig. S3 samples
generated with TU .

While T generates samples that are accepted in the MCMC
procedure with average acceptance rate approaching 60%
(Fig. 2), TU fails to produce samples that have appreciable
statistical weight in the target distribution. The evident difference
is in the local structure of the random fields that are produced.
Fig. 1C shows the Fourier spectrum of field φ computed with
samples from the target measure (obtained using the proposed
MCMC method after convergence) as well as from the push
forward in the informed ρ̂ and uninformed ρ̂U case. While ρ̂
accurately captures the decay of the Fourier components at all
scales, TU fails to compensate for the uncoupled base measure,
and ρ̂U does not accurately capture high-frequency oscillations
of the field φ, which subsequently leads to high rejection rates in
the MCMC procedure.

While at the discrete level, the adequacy of the base measure
is a priori less stringent than at the continuous level examined in
SI Appendix, section S2, this experiment shows that at N = 100,
it is already highly beneficial to preadapt the covariance of the
push forward. In the absence of preexisting samples to compute
an empirical whitening transform, it is the role of the proposed
informed base measure.
Interpreting the map. Examining the learned map T reveals its
simple underlying structure. As shown in Fig. 1B, the map is
spatially local, transporting spins near the center of the domain
to ±1, while spins near the boundary are mapped closer to 0. It is
again useful to examine the properties of a mapped configuration
in Fourier space. The k = 0 mode reveals that the mean value is
transported substantially; T (φ̂0) is approximately ±1, as shown
in SI Appendix, Fig. S2. However, higher-frequency modes are
left invariant by the map (SI Appendix, Fig. S2).
Calculating free energy differences. Perhaps most remarkably,
the learned map T can be used to evaluate free energy differences
between the metastable basins φ− and φ+, even in thermo-
dynamic conditions distinct from those in which the map was
trained. Fig. 1D shows an estimate of the free energy difference
between the positive and negative metastable basins as a function
of an external field h, which enters the Hamiltonian as

U∗,h [φ] = β

∫ 1

0

[
a

2
(∂sφ)

2 +
1

4a
(1− φ2(s))2 + hφ(s)

]
ds.

[19]
These estimates are produced with importance sampling using
ρ̂ as described in SI Appendix, section S11. Analytical estimates
at low temperature via a Laplace approximation reveal that the
NF accurately recapitulates the free energy difference despite
the fact that the map was optimized only with samples where
h = 0. Similar generalization properties were observed in refs.
21, 38, and 39, where a map was used at temperatures distinct
from the temperature at which training data were collected. This
approach is valid in cases where the modified parameter, here
the field h, distorts the relative populations of the metastable
basins but has a mild effect on the local structure of the field,
which can be controlled by monitoring the variance of the
estimator.

Additional tests for related applications are presented in
SI Appendix. For this stochastic Allen–Cahn system, we show
that the method can be useful to sample configurations with
domain walls by tilting the Hamiltonian (SI Appendix, Fig. S5).
In SI Appendix, section S9, we discuss a similar sampling problem
that involves the nonequilibrium transition path, which we
employ to illustrate the use of Brownian bridge base measures.
This example is challenging as metastable basins have very
different statistical weights, which is also the case for the particle
systems discussed in the next section, where we demonstrate the
usage of mixtures to tackle this circumstance.

Detecting Phase Transitions in Interacting Particle Systems. Thermal
systems undergoing a first-order phase transition are archetypal
examples of models displaying metastability. Near the transition
point, ergodic mixing from the unstable to the stable phase is
broken in the thermodynamic limit, leading to the well-known
challenge of detecting these transitions with molecular dynamic
simulations. In this section, we show our method to be useful in
this context.
Particle system and phase diagram. As an example, we consider
a system of N interacting particles evolving in a two-dimensional
periodic box of lateral size L according to the Langevin equation
(here written in the overdamped limit):

dxi =− 1

N

N∑
j=1

∇W (xi − xj )dt +
√
2β−1 dWi . [20]
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Fig. 3. Detecting phase transitions in interacting particle systems. (Left and Center) Two hundred particles seen in the gas and liquid phases, respectively,
in dimension d = 2 at a temperature below the critical β−1

c , at which both phases are metastable but the clustered one is thermodynamically preferred.
(Right) A contour plot of the local density ud(x) of the particles in the liquid phase plotted in log scale.

The interaction W (x ) is a pairwise attracting potential with
range a > 0:

W (x ) =− exp(L2[1− cos(2π|x |/L)2]/(4π2a2)), [21]

which when a � L, is well approximated by W (x ) =− exp
(−|x |2/[2a2]). These equations sample the Boltzmann–Gibbs
distribution of the system

ρ∗(X ) = Z−1
∗ exp

(
− β

2N

N∑
i,j=1

W (xi − xj )

)
, [22]

where we denote by X = (x1, . . . , xN ) ∈ [0,L]2N the state of the
N particle system.

When a is much smaller than L, in the thermodynamic limit
(N � 1), this system displays a first-order phase transition be-
tween a gas-like phase, where the particles are uniformly dis-
tributed in the domain that is preferred at high temperatures,
and a liquid-like phase, where they cluster in a droplet that is
preferred at low temperatures. Typical particle configurations
in these phases are shown in Fig. 3. The phase diagram of
the model can be estimated using a mean-field approximation
(SI Appendix, section S10 has details) and is shown in Fig. 4.

Detecting this phase transition via brute-force simulation
of Eq. 20 is, however, challenging because the particles stay
trapped in whichever configuration they occupy (homogeneous
or droplet) for very long periods of time; in fact, the transition
times from one phase to the other in a parameter regime
where they are both metastable can be estimated as tl→g �
exp(NβFl→g) and tg→l � exp(NβFg→l), where Fg→l and Fl→g

denote, respectively, free energy barriers between the liquid
and the gas phase and vice versa. Since these barriers are both
independent of N, these transition times diverge exponentially
with the number of particles N.
Adaptive simulations augmented by nonlocal resampling. Simu-
lation of Eq. 20 augmented by a nonlocal resampling map can
detect the phase transition. As the two modes of interest have
here very different structures and very different statistical weights
across the phase transition, we resort to a parameterization of
the nonlocal proposal density ρ̂ in terms of a mixture. For the
homogeneous phase mixture component, it is straightforward
to draw particles configurations; we can simply pick each of
their individual positions uniformly in the box. For the droplet
phase mixture component, it is natural to use as base distribution
the uniform distribution ρB(X ) = 1/L2 that corresponds to the
homogeneous phase and train a map T that then takes one such
configuration and maps it onto a droplet configuration whose

local density is close to that of the particles in the liquid phase.
Denoting this local density by ud(x ), we can also exploit the fact
that the liquid droplet has no internal structure and factorize
the map as T (X ) = (t(x1), t(x2), . . . , t(xN )) with t : [0,L]2 →
[0,L]2 such that t(x ) has density ud(x ) if x is drawn uniformly
in [0,L]2: that is, ud(x ) = L−2 det∇t̄(x ), where t̄ is the inverse
of the map t. All in all, this leads to a resampling mixture density
ρ̂ that can be expressed as

ρ̂(X ) = p
N∏
i=1

ud(xi) + qL−2N , [23]

where p ∈ [0, 1] is a factor to be learned, q = 1− p, and the
local density ud(x ) needs to be estimated—in the simulations,
we simply used the mean-field approximation recalled in
SI Appendix, section S10 to calculate ud(x ) numerically, but this
density could also be estimated directly from the molecular
dynamics (MD) simulations.
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Fig. 4. Detecting phase transitions in interacting particle systems. Blue
curves and labels show the free energies of the gas and liquid phases,
showing that a first-order phase transition occurs at the critical 1/βc ≈
0.089. For temperatures around this value, particles configurations in either
the homogeneous or the clustered phase are highly metastable, and no
transition between these states is observed in brute-force simulation of
Eq. 20. Red curve and labels show the value of p in the mixture [23] learned
by our adaptive procedure augmented with an NF starting from p(0) = 1/2;
the algorithm correctly learns the right value of p in the mixture and thereby,
is able to detect the phase transition.
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Implementation and results. Consistent with Algorithm 1, we run
Eq. 20 used as the local sampler for a fixed duration tL and
then attempt a resampling move by proposing a configuration
from Eq. 23. This resampling step requires one to evaluate the
Metropolis–Hastings probability in Eq. 6 accurately, which is
nontrivial when N is large. Here, we used as approximation
log ρ̂(X )≈ S(X ) with

S(X ) = min

(
N∑
i=1

log ud(xi) + log p,−2N logL+ log q

)
,

[24]
leading to the following explicit approximation for the ratio
ρ∗(X )/ρ̂(X ):

ρ∗(X )

ρ̂(X )
≈ exp

(
− β

2N

N∑
i,j=1

W (xi − xj )− S(X )

)
. [25]

This expression shows that the presence ρ̂(X ) in the Metropolis–
Hastings probability effectively accounts for the entropy of the
particle configurations, as opposed to their energy accounted
for by ρ∗(X ). Eq. 25 also emphasizes the need for ρ̂ (i.e., the
NF map in general) to be accurate enough; indeed, to get any
significant probability of acceptance, even for a move aimed
toward the thermodynamically preferred phase, the factor in the
exponentials in Eq. 25 must be of order 1 in N. If the map fails to
achieve this accuracy and the factors remain of order N (which is
their typical scale for a map that is unadapted), the move would
be systematically rejected (or accepted between configurations
with little resemblance to permitted ones). This issue will be
generic for problems where the system’s energy is extensive.

In the context of the present example, once ud(x ) has been
estimated, the learning component of Algorithm 1 reduces to
optimizing the parameter p. This is done by approximating the
KL divergence DKL(ρ̂(X )||ρ∗(X )) using an estimator based on
using the current state X (t) of the system. Specifically, we used
log ρ̂(X (t))≈ S(X (t)) as an objective on which we performed
gradient descent in p concurrently with running the augmented
MD strategy above.

We applied the procedure above to a system of N = 200
particles drawn initially from the mixture density [23] using
p(0) = 1/2 as the initial value. As can be seen in Fig. 4, this
allowed us to train p to values converging either to p = 0 or
p = 1 in a way that detects the phase transition. That is, the
augmented procedure correctly reweights the homogeneous
and droplet configurations and determines which of the
two is the most likely even in situations where brute-force
MD simulations would observe no transitions between these
configurations.

We stress that a simplifying feature of this example is that the
particles experience no short-range repulsion (i.e., there is no
order in the droplet phase). This is what allowed us to use the
product of ud(x ) in the mixture density in Eq. 23. In systems with
hard-core repulsions, this approximation is invalid, in which case
more complicated mixtures (or equivalently, more complicated
maps in the NF) will have to be used. We leave investigation of
such situations for future work.

Conclusions
Connections and Differences with Previous Works. Most of the
methods that seek to train an NF to (approximately) sample
from the Boltzmann distribution of a known target energy rely
on the reverse KL training using Eq. 9 (15, 18, 38, 39). However,
this objective is known to be prone to “mode collapse,” where the
estimation concentrates on the bulk of one mode. This failure
comes typically from the fact that the map may never explore
modes far away from the core of the base distribution—such

that these modes are missed altogether† (40). Additionally, the
reverse KL objective is known to lead to underestimation of the
tails (41).

To alleviate the shortcomings of reverse KL training, ref. 21
relied on initial short trajectories to estimate and factor in the
optimization objective of the forward KL divergence. Closer to
our proposition, the authors of ref. 42 propose Markov score
climbing, an adaptive MCMC strategy using the same estimate
of the forward KL as Eq. 11 to discover good variational ap-
proximators. Our method can be seen as an extension of Markov
score climbing, introducing the additional alternation with a local
sampler and the replacement of simple variational families by
the more flexible NFs. Along the same lines, ref. 43 investigated
proposals parametrized by lower triangular maps. Interestingly,
ref. 21 also proposed an iteratively retrained variant of its Boltz-
mann generator that shares similarity with our proposition. Note
that an advantage of the adaptive MCMC over the consecutive
training, then sampling schemes with either reverse KL (15, 18,
38) or forward KL (11, 21) training objectives is to allow for
real-time monitoring of the quality of training toward the final
purpose of obtaining well-mixed samples. In the experiments,
that was done by monitoring, for instance, acceptance rates and
autocorrelation of the chains across iterations.

The adaptive MCMC proposed here retains a local component
in the sampling in the form of interleaved steps of a local sam-
pler that brings robustness to the scheme. Albeit different, the
adaptive MCMC proposed in ref. 21 also defines an intermediary
between a purely global and a purely local procedure. The pro-
posals consist of local steps in the latent space of the NF, while
our query of the generative model yields completely independent
resampling. To encourage transition across modes, the algorithm
of ref. 21 was augmented with parallel tempering in ref. 39, a step
that does not appear to be necessary in our scheme.

Outlook and Future Work. As the use of data-driven methods from
machine learning becomes increasingly routine in the physical
sciences, we must carefully assess the cost of data acquisition and
training to ensure that we can leverage machine learning methods
in a productive fashion. Sampling systems with complex local
structure and multiple metastable basins is a generically chal-
lenging task in high-dimensional systems, and we have already
seen that neural networks can contend with this challenge in
nontrivial settings (5, 6, 15, 18, 21). Nonlocal transport in MCMC
algorithms can significantly enhance mixing, and NFs provide a
compelling framework for designing adaptive schemes, even in
cases where no statistically representative dataset is available at
first. Nevertheless, we do not find that these methods enable dis-
covery of unknown modes of a target distribution, emphasizing
the importance of having some a priori information about the
metastable states of the system.

Many questions remain about how to ensure efficient learning
in complex high-dimensional systems and encourage desirable
properties of the map, such as locality and transferability. In-
corporating known invariances and symmetries of target distri-
butions into architectures is currently a key area of research
(e.g., refs. 44 and45) that will help scaling further applications
of sampling methods enhanced by learning.
Data Availability. Python code and trained models have been deposited in
Zenodo (https://zenodo.org/record/4783701#.Yfv53urMJD8).
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